Patient-centric authorization framework for electronic healthcare services

Jing Jin, Gail-Joon Ahn, Hongxin Hu, Michael J. Covington, Xinwen Zhang

Deutsche Bank Global Technologies, Cary, NC, USA
Arizona State University, 699 S. Mill Ave, Tempe, AZ, USA
Intel Corporation, Hillsboro, OR, USA
Samsung Information Systems America, San Jose, CA, USA

Abstract

In modern healthcare environments, a fundamental requirement for achieving continuity of care is the seamless access to distributed patient health records in an integrated and unified manner, directly at the point of care. However, Electronic Health Records (EHRs) contain a significant amount of sensitive information, and allowing data to be accessible at many different sources increases concerns related to patient privacy and data theft. Access control solutions must guarantee that only authorized users have access to such critical records for legitimate purposes, and access control policies from distributed EHR sources must be accurately reflected and enforced accordingly in the integrated EHRs. In this paper, we propose a unified access control scheme that supports patient-centric selective sharing of virtual composite EHRs using different levels of granularity, accommodating data aggregation and privacy protection requirements. We also articulate and address issues and mechanisms on policy anomalies that occur in the composition of discrete access control policies from different data sources.

1. Introduction

In much of the developed world, healthcare has evolved to a point where patients can have many different providers—including primary care physicians, specialists, therapists, and even alternative medicine practitioners—to address their diverse medical needs. It is not uncommon for patients to visit providers who are physically separated from one another; some are located across town, while others are across the country or on another continent. As a result, medical records can be found scattered throughout the entire healthcare sector. From the clinical perspective, delivering proper patient care requires access to integrated and unified patient information that is often collected in real-time to ensure the freshness of time-sensitive data. Yet the data dispersion in current healthcare settings typically results in painstaking, time-consuming efforts to obtain a patient’s complete medical history, or unnecessary duplication of tests and other investigations. There is a strong need to create an infrastructure that uniformly integrates this heterogeneous collection of medical data and delivers it to the healthcare professionals who need it at the point of care (IEEE-USA's Medical Technology Policy Committee Interoperability Working Group, 2006). The adoption of standardized Electronic Health Records (EHRs) (Gates and Slonim, 2003; Ciena, 2008) has become an extremely important prerequisite for...
a policy evaluation mechanism is further elaborated in Section 5. Our prototype EHR sharing system is described in Section 6. Section 7 concludes this paper with future research directions.

2. Related work

2.1. EHR standards

There are several standards currently under development to structure and specify the clinical content of an EHR for the purpose of exchange, such as openEHR and HL7 Clinical Document Architecture (CDA) (openEHR Community, 2010; Dolin et al., 2004). openEHR uses a two-level methodology to model the EHR structure. In the first level, a generic reference model is designed to express the generic data content needed in clinical contexts and it also provides an explicit representation of the semantic and vocabulary of all EHR instances. In the second level, the notion of archetype is introduced to model specific healthcare concepts such as blood pressure and lab results. These archetypes are the fundamental building blocks to form the contents in various clinical EHR instances. Similarly, HL7 V3 Standards define an underlying Reference Information Model (RIM) that forms the generic information domain used across all HL7 messages, while CDA defines detailed structure and semantics of medical documents in terms of a set of coded components (called vocabulary) to model basic medical concepts.

2.2. Access control for EHR systems and e-Consent

A number of solutions have been proposed to address security and access control concerns associated with EHR systems (Eyers et al., 2006; Becker and Sewell, 2004; Bhatti et al., 2006). All of these approaches, to some extent, utilize role-based access control (RBAC) to address organizational security management requirements and authorize access to various healthcare parties. However, selective sharing of composite EHRs requires clear understanding of the internal clinical information and their structural relationships. None of these approaches took into account the structure and semantics of composite EHRs, and thus cannot support a more fine-grained access control to selectively share EHRs in whole or only partially. In this paper, we focus on the “selective” feature of an EHR system where a logical structure of a composite EHR is captured with its internal data elements being clearly distinguished and organized, so that our access control policies can be specified to authorize any portion of an EHR for data sharing.

Achieving privacy preservation in medical information sharing is also a critical concern for an EHR system. Several purpose-based access control models have been proposed recently to protect sensitive data (Byun et al., 2005; Yang et al., 2007). These models associate the intended purpose information with a given data element, and access is granted when the access purpose is consistent with the data element’s intended purpose. However, as healthcare is such a complex domain involving various parties with different duties and objectives, the purpose-based access control alone cannot meet all the patient’s privacy protection requirements. In this paper, we incorporate more applicable factors beyond purpose to control the selective sharing of EHRs.
To enable the patient control of medical information sharing, “e-Consent” mechanisms have been proposed to allow patients to issue or withhold authorization policies as electronic consents to those who wish to access their electronic health information (Coiera and Clarke, 2004; Ruan and Varadharajan, 2003; O’Keefe et al., 2005; Fritts and Connor, 2007). Several consent models with associated consent templates have been identified (Coiera and Clarke, 2004; Ruan and Varadharajan, 2003), and a few e-Consent based systems have been built upon these guidelines (Fritts and Connor, 2007; O’Keefe et al., 2005). However, it is still essential to develop a systematic approach to determine how a patient’s consent is expressed and at what granularity the consent is applied to the EHRs. Meanwhile, with dispersed EHR instances across many caregivers, it is also required for a patient to manage his consents in a unified and consistent manner within a shared EHR environment.

2.3. **Policy anomaly discovery and resolution**

A number of policy analysis tools have been introduced with the goal of detecting policy conflicts. A tool called Firewall Policy Advisor (Al-Shaer et al., 2003) was proposed to detect pairwise conflicts in firewall policies. Yuan et al. (2006) presented FIREMAN, a tool to check for policy misconfigurations through static analysis. These approaches for firewall policies cannot be directly applied to our policy analysis at both the EHR-instance level and the aggregation level. The resolution of policy conflicts also remains as an important issue. Some work presented general conflict resolution methods for access control in various areas (Fundulaki and Marx, 2004; Jajodia et al., 1997; Moses, 2005). In this paper, we propose a strategy chain to achieve more complete and effective conflict resolution while accommodating the features from these approaches.

3. **Patient-centric authorization framework**

3.1. **Unified logical EHR model**

A patient’s EHRs are typically dispersed over a wide range of distributed clinical systems and data structures. As suggested in dbMotion (2008), a Unified Data Schema (UDS) can be specified for all EHR instances so that a unified medical record can be maintained without the need to be adapted for these different environments. Similar to the generic reference models in openEHR and HL7, UDS defines generic semantics and logical relationships between data elements drawn from medical domains such as patient demographics, labs, medications, encounters, imaging and pathology reports, and a variety of other medical domains from primary, specialty and acute care settings. Based on these predefined categories, EHR instances are aggregated and integrated into a unified patient record as a virtual composite EHR.1 In Fig. 1, a virtual composite EHR aggregates two EHR instances from hospitals h1 and h2 based on a simple UDS defining three categories, Demographics, History and Labs.

In our model, both EHR instances and the aggregated virtual composite EHR are uniformly modelled as a labelled hierarchical structure. The nodes represent the clinical data elements that need to be protected for sharing. Their relations are captured as the association links between the nodes within the hierarchy. Each node is associated with specific properties to address essential features in term of the sources of data and their sensitivity levels. The properties can be categorized into three dimensions: origin, sensitivity, and object type. The origin property is specified to indicate the source(s) of data within the composition. As patient information may be duplicated in multiple EHR instances, such data elements should be merged as one element within a virtual composite EHR. We also use multiple origins to indicate such data merge, while a node with a single origin indicates that the data is unique from the respective origin. Using the category of illness history in Fig. 1 as an example, the information of asthma comes from both h1 and h2, while HIV information is uniquely from h2. The sensitivity property is designed to label a node based on the sensitivity of the content contained in it, which can be eventually used to prevent the patient’s sensitive medical information from being disclosed unintentionally. In the practice of Iowa HISP C (Iowa Foundation for Medical Care, 2007), the sensitivity classifications of medical data include general medical data, drug and alcohol treatment, substance abuse treatment, mental health, communicable disease (HIV, STDs etc.), decedent, immunizations, and so on. Based on these classifications, data elements representing the patient’s HIV history and CD4 lab test should be marked with a property of “communicable disease” (“HIV” for simplicity). Finally, the object type property gives another dimension on data selection and protection. The nodes can be primitive types such as plain texts, dates and images. They can also be a composite type in the hierarchical structure including other types of data nodes. Formally, an EHR can be uniformly modelled and defined as follows:

Definition 1. (Logical EHR Model) An EHR composition is a tuple $C = \langle \psi, V_o, E_o, \gamma_V \rangle$, where

- ψ is the root representing the whole EHR object;
- V_o is a set of nodes within the composite structure;
- $E_o \subseteq V_o \times V_o$ is a set of links between nodes; and
- $\gamma_V : V_o \rightarrow P$ is a node labelling function to specify the property of a node. P is a set of properties defined in **Definition 2**.

Definition 2. (Property) Let O, S, and T be the sets of data origins, sensitivity classifications, and object types, respectively. And let $n = |V_o|$ be the number of nodes in an EHR composition C.

- $P_o = \{p_{o_1}, ..., p_{o_n}\}$ is a collection of origin sets, where $p_{o_i} \subseteq O$ is a set of origins associated with a node, $i \in [1,n]$;
- $P_s = \{p_{s_1}, ..., p_{s_n}\}$ is a collection of sensitivity classification sets, where $p_{s_i} \subseteq S$ is a set of sensitivity classifications associated with a node, $i \in [1,n]$; and
- $P = P_o \times P_s \times T$ is a set of three dimensional properties of origin, sensitivity, and data type.
Given a node \(v_i \in V_o \) inside an EHR composition \(C \), the function \(f(v_i) = p \) is defined to retrieve the property label \(p \) for the node. And we use the dot notation to refer to a specific property dimension. For instance, \(p.p_o \) refers to the data origin property; \(p.p_s \) refers to the sensitivity property; and \(p.p_t \) refers to the object type. Within a logical EHR structure, nodes can be explicitly denoted by their identifiers, or can be implicitly addressed by means of Path Expressions. We apply an XPath-like expression for the path representation. Table 1 describes the notions and examples we use to select nodes inside a virtual composite EHR illustrated in Fig. 1(c).

3.2. Policy specification

To enable an authorized and selective sharing of patients’ EHRs, it is essential for an authorization policy to determine a subject’s access privileges for specific portion(s) of an EHR composition. Our policy specification scheme is built upon the identified logical EHR model so that access policies can be effectively defined at different granularity levels within the structure. In this paper, we assume that EHR instances are virtually aggregated at the point of care for a practitioner to review, therefore we mainly focus on read-only access permission.

3.2.1. Subjects

In the context of healthcare, some authorizations may be given by patients in relation to identified individuals. For instance, a patient may want to indicate the following intent: “Dr. Smith is allowed to access my medical data”. In other circumstances, the authorization is for a role such as “general physician”, “cardiologist”, “nurse”, and so on. As healthcare practitioners are always associated with certain organizations, such a unique property may also be articulated to further constrain the subject. Formally, the subject specification is defined as follows:

Definition 3. (Subject Specification) Let \(E, R \) and \(O \) be the sets of user IDs, roles, and origins, respectively. A subject \(s \) is defined as a tuple \(s = (e, r, o) \), where \(e \in E \), \(r \in R \), and optional subject origin set, \(o \in O \). Overall, the subject set \(S \) is defined as \(S = (E \times R) \cup (R \times O) \).

3.2.2. Objects and filtration property

In order to support a flexible selection of data objects in an EHR composition, we utilize XPath-like path expressions to specify the scope of data elements to which an authorization policy applies. Meanwhile, the filtration properties are defined to be compared with the property label of each node within the EHR, and only matched nodes are selected as the Target Objects of the authorization. We formally define these concepts as follows:

Definition 4. (Filtration Property) Let \(O, S, \) and \(T \) be the sets of data origins, sensitivity classifications, and object types, respectively, and \(\Pi \) be the set of data filters. Then, a filtration property \(f \) is defined as a function \(f : \Pi \rightarrow \{0, 1\} \) that satisfies the following conditions:

- \(f(o, s, t) = 1 \) if and only if \(o \in O \), \(s \in S \), and \(t \in T \).
- \(f(o, s, t) = 0 \) otherwise.

Table 1 – Path expression for node selection.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nodeName</code></td>
<td>Select the named nodes</td>
<td>CXR</td>
</tr>
<tr>
<td><code>/</code></td>
<td>Select the node through absolute path from root node</td>
<td><code>/EHR/Labs/CXR</code></td>
</tr>
<tr>
<td><code>//</code></td>
<td>Select the node through relative path</td>
<td><code>//Labs/CXR</code></td>
</tr>
<tr>
<td><code>*</code></td>
<td>Select all immediate children nodes</td>
<td><code>//Labs/CXR/*</code></td>
</tr>
<tr>
<td><code>/*</code></td>
<td>Select all descendant nodes</td>
<td><code>//Labs/CXR/*</code></td>
</tr>
</tbody>
</table>
respectively as defined in Definition 2. A filtration property is specified as a tuple \(prop = (po, ps, pt) \), where \(po \subseteq O \) is the filtration property for origins; \(ps \subseteq S \) is the filtration property for sensitivity classifications; and \(pt \subseteq T \) is the filtration property for object types.

Definition 5. (Property Match) Suppose \(prop = (po, ps, pt) \) is a filtration property specification, and \(p' = (po', ps', t') \) is the property label of a node, the node matches the filtration property if the following conditions are satisfied:

- \(1' \subseteq prop.po \);
- \(2' \subseteq prop.ps \); and
- \(3' t \subseteq prop.pt \).

Definition 6. (Object Specification) Let \(scp _expr \) be a scope expression to denote a set of nodes within the composition, and \(prop \) be a filtration property specification, the object selection specification is defined as a tuple \(oo = (scp _expr _prop) \). Given an EHR composition \(C = (o, v, e, t, r) \) and an object selection specification \(oo \), we define a function: select \((C, oo) \rightarrow V_o \) where \(V_o \subseteq V \) to select the matched nodes within the specified scope as the Target Objects.

In specifying filtration properties, we also allow patterns to be used. Pattern “*” is to indicate any value within a property dimension, and pattern “[]” is to specify any set within a property dimension.

Example 1. The following are two examples of object selection specifications against the EHR structure in Fig. 1(c).

- \(ao1 = \langle VirtualEHR/History/*, [general], text \rangle \); and
- \(ao2 = \langle VirtualEHR/History/*, [HIV], * \rangle \).

Both object specifications select the same scope, History category in the virtual composite EHR. \(ao1 \) selects the nodes that come from any origins with general level of sensitivity and text as an object type. \(ao2 \) selects the nodes from any origins with HIV level of sensitivity and any object types. Fig. 1(c) also illustrates the target objects being selected as two dashed zones. In particular, \(ao1 \) results in the Asthma node under illness being selected, and \(ao2 \) results in the nodes of HIV and Prescription2 being selected under Illness and Medications, respectively.

Purposes: To further address a patient’s privacy concerns in sharing his medical information, an attribute of “purpose” is necessary to be specified in the authorization policy to confine the intended purposes/reasons for data access in healthcare practice. According to Dimitropoulos (2007), business practices for health information exchange can be organized by eleven purposes including payment, treatment, research, and so on. Formally, the intended purpose is specified as follows.

Definition 7. (Intended Purpose) Let \(P \) be a set of purposes for business practices in a healthcare domain. And let \(m \) be the total number of authorizations in the system. The intended purpose set \(P_0 = \{ p_1, ..., p_m \} \) is a collection of possible intended purpose sets, where \(p_i \subseteq P \) specifies the intended purposes for a particular authorization, \(i \in [1,m] \).

Access Control Policy: To summarize the above-mentioned policy elements, we introduce the definition of an access control policy as follows.

Definition 8. (Access Control Policy) An access control policy is a tuple \(acp = (sub, ao, pp, effect) \), where

- \(sub \in Sub \) is a subject;
- \(ao \) is an object selection specification resulting in a set of nodes \(V_o \subseteq V \) being selected as target objects;
- \(pp \in P_0 \) is the intended purposes; and
- \(effect \in \{ permit, deny \} \) is the authorization effect of the policy.

Example 2. Given \(ao1 \) and \(ao2 \) in Example 1 and suppose a patient articulates following access control policies in \(h1 \):

- \(P1: (GP, \{\}, ao1, \{research\}, permit) \);
- \(P2: (SP, \{h1\}, ao2, \{treatment, research\}, permit) \); and
- \(P3: (Dr. Butcher, \{h1\}, ao2, \{treatment, research\}, deny) \).

In \(P1 \), a patient allows all general practitioners (GP) to view his general medical history for a research purpose. In \(P2 \), the patient allows all specialists (SP) in \(h1 \) to view his HIV history for treatment and research purposes. Suppose Specialist Dr. Butcher in \(h1 \) is a relative of the patient, the patient defines \(P3 \) to deny his access to the HIV data.

In healthcare practices, HIPAA regulations are widely adopted by healthcare practitioners in the United States, by default allowing healthcare providers to share clinical information without the individual’s explicit permission for treatment, payment and healthcare operations (Pritts and Connor, 2007). In addition, in order to accommodate the emergency situations, a “break-of-glass” policy (“BG” policy for simplicity) should be specified to allow staffs in emergency rooms to access the patient’s medical information without the patient’s explicit authorizations. Both the default HIPAA policy and “BG” policy can be specified conforming to our unified policy schema.

Example 3. The default policy and BG policy can be specified as follows:

- \(P_{DG}: (HP, \{\}, \{\}, \{treatment, payment, HCO\}, permit) \);
- \(P_{BG}: (ERS staff, \{\}, \{\}, \{treatment\}, permit) \).

4. Policy anomaly analysis

The access control policies in our model can be uniformly specified both at the EHR-instance level within different origin domains and at the aggregation level within a virtual composite EHR. Yet bringing in both positive and negative policies raises potential conflicts, and the flexibility in data selection may result in possible policy overlaps. We generalize such critical issues as policy anomalies.

In practice, there are two stages for policy anomaly analysis. The first stage is during the policy specification phase when a patient inserts, modifies or removes a policy from a local policy set. Policy anomaly analysis should be conducted to highlight any potential anomalies that may be introduced in adding and updating policies. Such anomalies can be resolved by consulting the patient to make changes to certain policy specifications.
against the detected anomalies. The second stage of policy anomaly detection is during the policy composition and enforcement phase when the EHR instances are aggregated and policies are evaluated against the virtual composite EHR. Redundancies in composite policies could be identified and removed immediately in this stage. However, considering the large number of policies associated with the virtual composite EHR, it may be very difficult, or even impossible, to manually resolve all conflicts. And without a priori knowledge on the patient’s authorization requirements, we cannot automatically correct the conflicts either. In this case, a practical method of resolving policy conflicts is to identify which policy involved in a conflict situation should take precedence in policy evaluation. The details of conflict detection and resolution in the second stage are discussed in Section 5. In this section, we focus on the policy anomaly analysis.

4.1. Anomaly classification

Example 4. We additionally define two object selection specifications as

\[\text{ao3} = (\text{VirtualEHR}/\text{History}/\text{HIV}, \text{h2}, \text{HIV}); \text{and} \]

\[\text{ao4} = (\text{VirtualEHR}/\text{History}/\text{HIV}, \text{h2}). \]

Assume the patient defines four policies in h2 as follows:

\[P4: (\text{SP}_i, \text{ao3}, \text{treatment, research}, \text{deny}); \]

\[P5: (\text{Dr. Jones}, \text{h2}), \text{ao2, research, permit}); \]

\[P6: (\text{SP}_j, \text{ao3}, \text{treatment, research}, \text{permit}); \text{and} \]

\[P7: (\text{Dr. Jones}, \text{h2}), \text{ao4, treatment, research}, \text{deny}). \]

Given the above example, we elaborate the following policy anomalies:

1. Contradictory: Two policies are contradictory to each other if they have different effects (permit or deny) over the same subjects (sub), target objects (ao) and intended purposes (pp). This is often considered as a typical policy conflict. For example, P4 is contradictory to P6 as all specialists (SP) are permitted to access the data matching ao3 for treatment and research purposes in P4, but are explicitly denied in P6.

2. Exception: A policy is an exception of another policy if they have different effects, but one policy is the subset of the other. Suppose Dr. Jones is a specialist (SP). P7 is then an exception of P6, since all specialists are allowed to view the data matching ao3 for treatment and research purposes (P6), except for Dr. Jones (P7). The exception is not necessarily a policy conflict as it is commonly used to exclude a specific access request from a general access permission.

3. Correlation: Two policies are correlated if they have different effects, but one policy intersects with the other. In this case, the intersection of the two policies is permitted by one policy, but denied by the other. This is considered as a partial policy conflict. For example, P5 and P7 fall in this category. The intersection of P5 and P7 is a data element of HIV history. P5 permits Dr. Jones in h2 to access this data element for research purpose, but P7 denies it.

4. Redundancy: A policy is redundant if there is another same or more general policy available with the same effect. For example, P7 is redundant since all specialists (P4), including Dr. Jones (P7), are already denied to access the data matching ao2, which is a subset of ao3.

4.2. Anomaly detection

According to Definition 8, an access control policy essentially determines a relation of \(\text{sub} \times \text{ao} \times \text{pp} \), where \(\text{V}_a \) is derived from \(\text{ao} \). We further define such a relation as an Authorization Zone (AZ) and a utility notation \(P_i[j] \) is used to indicate a particular field of a policy. \(P_i[j] \) implies that a field (or a set of fields) \(j \) from a policy \(P_i \). There are four possible relationships between the authorization zones of two access control policies:

- **Exactly Match (VEM):** An authorization zone \(AZ_x \) determined by a policy \(P_x \) exactly matches another authorization zone \(AZ_y \) derived from a policy \(P_y \), if and only if the fields of sub, ao and pp in \(P_x \) are equal to the corresponding fields in \(P_y \). Formally,

 \[
 \forall i: P_i[j] = P_j[i] \Rightarrow AZ_x \land \text{VEM}(AZ_y), \text{where} \ i \in F = \{\text{sub, ao, pp}\}, \]

- **Inclusively Match (VIM):** An authorization zone \(AZ_x \) determined by a policy \(P_x \) inclusively matches another authorization zone \(AZ_y \) derived from a policy \(P_y \), if and only if the fields of sub, ao and pp in \(P_x \) do not exactly match but are a subset of the corresponding fields in \(P_y \). Formally,

 \[
 \forall i: P_i[j] \subseteq P_j[i] \land \exists j: P_x[j] \subset P_y[j] \Rightarrow AZ_x \lor \text{VIM}(AZ_y), \text{where} \ i \in F \text{ and } i \neq j. \]

- **Partially Match (VPM):** An authorization zone \(AZ_x \) determined by a policy \(P_x \) partially matches another authorization zone \(AZ_y \) derived from a policy \(P_y \), if and only if the fields of sub, ao and pp in \(P_x \) do not exactly and inclusively match, but have intersections with the corresponding fields in \(P_y \). Formally,

 \[
 \forall i: P_i[j] \cap P_y[i] \neq \emptyset \land \exists j: P_x[j] \subset P_y[j] \neq P_x[j] \Rightarrow AZ_x \lor \text{VPM}(AZ_y), \text{where} \ i \in F \text{ and } i \neq j. \]

- **Disjoint (VD):** An authorization zone \(AZ_x \) determined by a policy \(P_x \) is disjoint with another authorization zone \(AZ_y \) derived from a policy \(P_y \), if and only if the fields sub, ao and pp in \(P_x \) have no intersection with the corresponding fields in \(P_y \). Formally,

 \[
 \forall i: P_x[i] \cap P_y[i] = \emptyset \Rightarrow AZ_x \lor \text{VD}(AZ_y), \text{where} \ i \in F. \]

By formalizing the relationships between the authorization zones and their effects, we could detect the policy anomalies between two policies \(P_x \) and \(P_y \) as follows:

1. \(AZ_x \lor \text{VEM}(AZ_y) \lor AZ_x \lor \text{IEM}(AZ_y) \land P_i[\text{effect}] = P_j[\text{effect}] \Rightarrow \text{Redundancy:} \text{If authorization zones determined by } P_x \text{ and } P_y \text{ exactly match or inclusively match and } P_x \text{ and } P_y \text{ define the same effect, then } P_x \text{ is a redundant policy.} \]

2. \(AZ_x \lor \text{VEM}(AZ_y) \land P_i[\text{effect}] \neq P_j[\text{effect}] \Rightarrow \text{Contradictory:} \text{If authorization zones determined by } P_x \text{ and } P_y \text{ exactly match and } P_x \text{ and } P_y \text{ define different effects, then } P_x \text{ and } P_y \text{ are contradictory to each other.} \]

3. \(AZ_x \lor \text{VEM}(AZ_y) \land P_i[\text{effect}] = P_j[\text{effect}] \Rightarrow \text{Exception:} \text{If authorization zones determined by } P_x \text{ and } P_y \text{ inclusively match and } P_x \text{ and } P_y \text{ define different effects, then } P_x \text{ is then regarded as an exception of } P_y. \]

4. \(AZ_x \lor \text{VEM}(AZ_y) \land P_i[\text{effect}] \neq P_j[\text{effect}] \Rightarrow \text{Correlation:} \text{If authorization zones determined by } P_x \text{ and } P_y \text{ partially match and } P_x \text{ and } P_y \text{ define different effects, then } P_x \text{ and } P_y \text{ are correlated.} \)
5. **Policy evaluation**

Once authorization policies are specified, an authorization view of a virtual composite EHR can be computed through the policy evaluation. Meanwhile, conflicts in composite policies should be identified and resolved as well when enforcing policies to generate authorization views. As illustrated in **Fig. 2**, our policy evaluation mechanism computes a requester's authorization view with five steps: policy filtration, authorization zone segmentation, conflicting zone identification, strategy-based conflict resolution, and permitted zone aggregation. In the step one, all applicable authorization policies are selected by a policy filter from the policy pool based on an access request. These policies serve as the basis for deriving the requester’s authorization view. In the step two, a policy-based segmentation technique is adopted to divide the entire authorization zone into disjoint segments. By identifying conflicting zones in these disjoint segments, conflicting policies can be determined in the step three. A strategy-based conflict resolution approach is then introduced in the step four to resolve all identified conflicts and generate the evaluation result. Finally in the step five all permitted zones are aggregated to yield the requester’s authorization view. The details of our policy evaluation mechanism are illustrated in **Algorithm 1**.

5.1. **Authorization zone segmentation and conflicting zone identification**

Policy-based segmentation technique converts a list of policies into a set of disjoint authorization zones. As shown in lines 26–44 in **Algorithm 1**, a function called `Partition()` accomplishes this procedure. The function works by adding authorization zones `Z_p` derived from each policy `p` to an authorization zone set `Z`. A pair of authorization zones must satisfy one of the following relations: subset (line 31), superset (line 36), partial match (line 39), or disjoint (line 43). Therefore, one can utilize set operations to separate the overlapped zones from disjoint zones.

Definition 9. *(Conflicting Authorization Zone)* A conflicting authorization zone `cz` for a set of policies `P` is a collection of all nodes matching at least two policies that have different actions: `Permit` and `Deny`.

Conflicting zones are identified as shown in lines 6–9 in **Algorithm 1**. To illustrate our approach using the policy pool in **Example 4**, assume that a patient has removed `P4` from the policies of `h2` to resolve the contradictory conflict between `P4` and `P6`. Then, the policies from `h1` and `h2` defined by the patient are aggregated together along with the virtual composite EHR. In addition, suppose that Dr. Jones in `h2` sends a request to access this patient’s EHR for a research purpose. The matched policies, `P1`, `P5`, `P6` and `P7` are then selected to generate the authorization view. **Fig. 3** gives a representation of the zones derived from these four policies. We can notice that five unique disjoint zones are generated.\(^2\) `dz_1` is a denied zone defined by `P1`, `pz_1`, and `pz_2` are two permitted zones derived from `P5` and `P6`, respectively. Moreover, two conflicting zones `cz_1` and `cz_2` are identified. They represent two policy conflicts, where a conflicting zone `cz_2` is associated with two conflicting policies `P1` and `P6`, and a conflicting zone `cz_2` is related to three conflicting policies `P5`, `P6` and `P7`.

5.2. **Strategy-based conflict resolution**

Once the conflicting zones are identified, the policy conflicts can be resolved by checking which policy involved in the conflict situation should take precedence in the policy

\(^2\) For the purposes of brevity and understandability, we employ a two-dimensional geometric representation for each zone. Note that an object selection specification in an access control policy of our model typically utilizes four fields to define the scope of object selection, thus a complete representation of authorization zone should be multi-dimensional.
enforcement. We introduce the following strategies to resolve policy conflicts in our patient-centric EHR sharing system.

1. Recency-overrides: This strategy states that newer authorizations prevail older ones. As the authorization requirements may change over a period of time, a patient may specify certain policies in one origin, and he might define new policies in other origins along with his changed authorization requirements. Obviously, when aggregating these policies together, newer policies should take precedence to respond an access request that matches policies from different origins. However, this strategy may not always resolve the policy conflicts since no authorization wins when two conflicting policies have the same timestamps. We call a strategy that cannot always derive a solution as a nondeterministic strategy.

Algorithm 1. (Policy Evaluation Algorithm)

Input: Virtual composite EHR, EHR; Composite policies, CP; Requester’s ID, ID; Requester’s purpose, PR.

Output: Requester’s authorization view.

/* Policy filter */

1. P ← Filter(CP, ID, PR);

2. /* Partition the entire authorization zone */

3. S ← Partition(P);

4. /* Identify the conflicting zone */

5. foreach z ∈ Z do

6. /* Identify the permitted zone */

7. P′ ← GetPolicy(z);

8. if ∃ p ∈ E, p_j ∈ E, p_i ≠ p_j and Effect(p_i) ≠ Effect(p_j) then

9. CZ.Append(z);

10. /* Strategy-based conflicting resolution */

11. foreach cz ∈ CZ do

12. /* Permitted zone aggregation */

13. P′′ ← GetPolicy(cz);

14. foreach cz ∈ CZ do

15. /* Permitted zone aggregation */

16. if cz.Effect = “Permit” then

17. AV ← AV ∪ cz;

18. return GenerateView(EHR, AV);

19. Partition(P)

20. foreach p ∈ P do

21. AuthorizationZone(p);

22. foreach z ∈ Z do

23. /* z_p is a subset of z */

24. if z_p ⊆ z then

25. Z.Append(z \ z_p);

26. z ← z_p;

27. Break;

28. /* z_p is a superset of z */

29. else if z_p ⊇ z then

30. z_p ← z_p \ z;

31. /* z_p partially matches z */

32. else if z_p \ z ≠ ∅ then

33. Z.Append(z \ z_p);

34. z ← z \ z_p;

35. z_p ← z_p \ z;

36. return Z;

Please cite this article in press as: Jin J, et al., Patient-centric authorization framework for electronic healthcare services, Computers & Security (2010), doi:10.1016/j.cose.2010.09.001
2. Specificity-overrides: This strategy states that a more specific authorization overrides a more general authorization. As we discussed earlier, exception in composite policies is not necessarily a conflict, but is often used to exclude specific parts of a larger set for a certain effect. This strategy is also nondeterministic if there is no exception in composite policies.

3. Deny-overrides: This strategy indicates that the decision for an access request is "Deny" if any matched policy’s evaluation results in "Deny". As the fundamental reason of policy conflict is that two policies specify different effects, it implies that at least one policy defines an effect as "Deny". Therefore this strategy is deterministic and always returns "Deny". In order to protect the patient’s privacy and confidentiality in healthcare systems, it is plausible to apply such a strict strategy in some special cases.

Since recency-overrides and specificity-overrides strategies are nondeterministic, and deny-overrides strategy is too restricted in general for conflict resolution, it is possible to combine these strategies together to achieve a more effective conflict resolution. Fig. 4 demonstrates a composite strategy for policy conflict resolution that sequentially applies recency-overrides, specificity-overrides, and deny-overrides strategies.

In the example depicted in Fig. 3, if we assume that the policies defined in h2 is newer than the policies defined in h1, the conflicting authorization zone cz1 can be resolved by applying recency-overrides strategy, where P6 takes precedence over P1 by granting SP an access to the data covered by the conflicting authorization zone cz1.

Regarding the conflict represented in cz2, the conflicting policies P5, P6 and P7 are defined in h2 with the same timestamps. Therefore, recency-overrides strategy cannot be applied but specificity-overrides strategy can be applied to resolve this conflict by denying an access to the data covered by cz2 since P7 is an exception of both P5 and P6.

5.3. Permitted zone aggregation

To generate the requester’s authorization view (AV), all permitted zones should be aggregated together. The following relation is used to aggregate all permitted zones for constructing the authorization view:

\[AV = CZ^P \cup PZ \]

Fig. 3 – Authorization zone segmentation.

Fig. 4 – Composite strategy for policy conflict resolution.

Fig. 5 – Dr. Jones’s authorization view.

6. EHR sharing system

As part of our ongoing research efforts, we have designed and implemented a proof-of-concept system, called InfoShare, which is a simplified clinical information sharing system that utilizes our proposed model for a patient to control accesses of his medical information. In particular, InfoShare collects a patient’s access control policies as patient consents, and uses these consents to selectively share the patient’s medical information as contained in the virtual composite EHR with different requesting parties through a point of service (POS) web application.

Architecturally, health information as EHR instances generally is maintained and managed at each geographically distributed healthcare provider’s local site with the notation of federation. The data elements in the EHR instances should be associated with special properties for data filtration and authorization purposes. We therefore establish an EHR data labelling system in the federation to facilitate the unified property labelling for the healthcare providers’ EHR instances. Fig. 6(a) illustrates the overall architecture of an integrated InfoShare information system.
As a general clinical information sharing system, the Registry Service, EHR Data Service, General Security Service and Health Information Communication Bus are common system components to achieve the required functionalities of secure data retrieval, virtual composite EHR creation and communication with requesting POS applications. Especially, we inject the Consent Management Service and EHR Authorization & Selection Service as the major system modules to convey the core features of our proposed approach. In particular, the Consent Management Service enables the patient control by collecting and analyzing the patient’s access control policies encapsulated in consents. A web-based consent editor tool is implemented to facilitate a patient to edit his policy consents, and interact with the Consent Management Service for the patient to store and update his consents. Also, anomalies in policy consents can be pointed out in this consent editor tool. The EHR Authorization & Selection Service is responsible to handle the data access requests, and composite and evaluate relative access control policies to derive the authorization view for the requester. Conflicts can be identified and resolved in the policy evaluation.

There are three types of consents in the system: the patient’s specific consents, the default consent, and the “BG” consent, respectively as shown in Example 3. The precedence order of evaluating these consents is defined as $BG_{consent} \geq patient_{consent} \geq default_{consent}$. We have articulated our policy evaluation approach for patient’s specific consents in Section 5. Fig. 6(b) illustrates the procedures for the EHR Authorization & Selection Service to handle access requests and derive the authorized data to be shared, considering all three types of consents. An access request includes information of the requester subject, the requested data, the intended purposes of use, and an optional “BG” consent in emergency situations. The “BG” consent has the highest priority in execution, therefore such consents are directly evaluated to get the authorized data. In other situations, the authorization service interacts with the Consent Management Service to locate the related patient consents based on the specified subject and intended purposes. If certain matched consents are located, the policies are aggregated and evaluated to derive the authorized portion of data within a virtual composite EHR. If there are no patient consents being located, the default consent is evaluated to derive the authorized data. After the authorized data portion is determined, it is compared with the requester’s requested data and only matched data portion is returned to the requester. If the requester is not authorized to access all the data he requested, the requester is notified with a warning, so that the requester may further ask for new patient consents to access the data for the need of his practice. Such an effective mechanism is utilized to balance the data integrity concern of the practitioners and the privacy concern of the patients for shared EHRs.

In terms of implementation details, the XML-based HL7 Clinical Document Architecture (CDA) (Dolin et al., 2004) is utilized in our InfoShare system for the formal representation of EHR instances as well as the virtual composite EHR. We use Jaxe XML editor as the EHR data labelling service to associate properties with data elements in CDA EHRs. We implement the patient consents as X.509 attribute certificates (Housley et al., 2002), where the access control policies are encapsulated as attributes within the certificate. We utilize Ordered Binary Decision Diagrams (BDDs)3 to represent policies and

3BDD has been demonstrated as an efficient data structure to deal with a variety of policy analysis, such as policy conflict detection in firewall (Yuan et al., 2006) and XACML policy verification (Fisler et al., 2005).
perform various set operations required by the zone segmentation algorithm, such as unions (\cup), intersections (\cap), and set differences (\setminus). A Java-based BDD library, called JavaBDD [2007], is employed in our implementation. The InfoShare system employs a Java Servlet based web portal as the POS application for a healthcare practitioner to query and view the authorized medical information of a patient.

As discussed earlier, policy evaluation is the core functionality of the EHR Authorization Service in our InfoShare System. Thus, the efficiency of our policy evaluation approach should be evaluated. In our experiments, we built a policy pool with 200 composite policies along with a virtual EHR dataset constructed based on our unified logical EHR model. The experiments were carried out on a desktop PC running Windows XP SP2 with 3.25 GB RAM and 3.00 GHz Intel Core 2 Duo CPU. By randomly triggering the policy evaluation process with different access requests, we measured the response time for each request. Since time required by the policy evaluation process highly depends upon the number of matched policies for a request, we selected six representative samples, which are shown in Table 2, with respect to the different number of matched policies. The preprocessing time of each request in this table indicates the time for locating and aggregating matched policies. The processing time for a request includes the time for segmenting authorization zones, the time for identifying conflicting authorization zones, the time for resolving conflicts, and the time for aggregating permitted zones to generate the requester's authorization view. Table 2 also summarizes the information for the policy segmentation including the numbers of all generated segments, the numbers of constructed BDD nodes, and the numbers of conflicting segments. From Table 2, we observe that our policy evaluation approach performs fast enough to handle an access request matched a large number of policies. For example, evaluating a request with 31 matched policies only takes totally around 200 ms to generate corresponding authorization view in our experiments.

7. Conclusion and future work

In this paper, we proposed an innovative approach to supporting selective sharing of virtual composite EHRs. The access control policies are specified around the unified logical EHR model, taking into consideration of critical issues such as distributed data integration and privacy protection concerns. We also proposed a mechanism to identify and resolve policy anomalies in the process of policy composition. Our approach has been demonstrated in a proof-of-concept prototype InfoShare system that applies e-Consent mechanism to enable the patient-centric medical information sharing with different parties in the healthcare environments.

For the future work, rigorous experiments need to be conducted to evaluate the performance and storage efficiency of our InfoShare system. Meanwhile, a variety of analytical and empirical methods from the area of usability study could also be adopted to investigate usability of our system.

Acknowledgments

This work was partially supported by the grants from National Science Foundation (NSF-IIS-0900970 and NSF-CNS-0831360) and Department of Energy (DE-SC0004308 and DE-FG02-03ER25565).

References

Table 2 – Experimental result for policy evaluation process.

<table>
<thead>
<tr>
<th># of Matched Policies</th>
<th>Preprocessing Time (ms)</th>
<th># of Segments</th>
<th># of BDD Nodes</th>
<th># of Conflicting Segments</th>
<th>Processing Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>11</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>13</td>
<td>21</td>
<td>2</td>
<td>67</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>26</td>
<td>39</td>
<td>5</td>
<td>82</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>34</td>
<td>47</td>
<td>6</td>
<td>105</td>
</tr>
<tr>
<td>25</td>
<td>32</td>
<td>45</td>
<td>62</td>
<td>10</td>
<td>123</td>
</tr>
<tr>
<td>31</td>
<td>38</td>
<td>78</td>
<td>92</td>
<td>13</td>
<td>159</td>
</tr>
</tbody>
</table>

References:

Please cite this article in press as: Jin J, et al., Patient-centric authorization framework for electronic healthcare services, Computers & Security (2010), doi:10.1016/j.cose.2010.09.001