Operation and Administration of Access Control in IoT Environments

Ph.D. Dissertation Defense

Mehrnoosh Shakarami
Institute for Cyber Security (ICS),
Department of Computer Science
The University of Texas at San Antonio

Committee:
Prof. Ravi Sandhu (Advisor and Chair)
Dr. Murtuza Jadliwala
Dr. Ram Krishnan
Dr. Palden Lama
Dr. Xiaoyin Wang

April 2022
The Internet of Things (IoT) denotes a network of evolving and expanding number of technologies embedded in smart things with at least one network interface to connect, interact, and exchange data and information.
Access Control in IoT Environments

<table>
<thead>
<tr>
<th>Policy Specification</th>
<th>Granularity</th>
<th>Context Awareness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>● ● ● ● ●</td>
<td>● ● ● ● ●</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy Management</th>
<th>Handling the complexity of Environment</th>
<th>Usability</th>
<th>Multi-domain Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○ ● ● ◻ ● ◻ ● ● ○</td>
<td>● ○ ○ ● ◻ ● ○</td>
<td>○ ● ● ◻ ● ◻ ●</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy Enforcement</th>
<th>Minimum user involvement</th>
<th>Light-weight</th>
<th>Reliability and Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○ ● ● ● ● ●</td>
<td>○ ○ ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
</tr>
</tbody>
</table>

- We recognize smart home IoT unique characteristics necessitate oriented authorization models to be particularly designed.
- Little attention has been paid to administration of access in IoT environments.
- The potential security violations which may happen in device-to-device interactions are largely uninvestigated.

© Mehrnoosh Shakarami World-Leading Research with Real-World Impact!
The uptick of smart home technology adoption while its authorization is less investigated compared to other domains.

We investigate three major access control-related topics which affect or directly provide authorization in the home IoT environment.

Attribute-Based Access Control (ABAC) is a widely adopted paradigm to provide access control in different IoT access, including smart home. Using ABAC expose smart environments to the risk of access violation due to inconsistency.

While overall system security is crucially dependent on both administrative and operational authorization models, administration of access in smart home environments is overlooked.

There is a hype around utilizing blockchain for access control in IoT environments, but it is not clear if the provided benefits could overcome inherent blockchain drawbacks.

A holistic view of home automation demands catered access control specifications to facilitate device-to-device interactions.
• The established paradigm of role-based access control can be utilized for access administration of user-to-device in corresponding operational access control models, which could be based on either role-based or attribute-based access control.

• If the operational authorization is based on attribute-based access control, a detailed analysis of required consistency for both mutable and immutable attribute values can ultimately benefit the overall safety of the system by providing a decision point with most recent values of attribute credentials.

• The established paradigm of attribute-based access control can be adapted and extended to provide a device-to-device access control approach towards considering heterogeneous IoT devices in a smart home as an ecosystem with intercommunication.
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue

1. Introduce/ Formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

User-to-Device Access Control

RBAC Administration

1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

Message-Based Access Control

1. Formal specification of a device-to-device operational access control model using a message-based paradigm.

Scenario-Driven Access Control

1. Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.

1. AWS-based enforcement architecture
2. proof-of-concept implementation for a smart home use case.
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue

1. Introduce/Define a formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

User-to-Device Access Control

RBAC Administration

1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

Message-Based Access Control

Formal Specification of a device-to-device operational access control model using a message-based paradigm.

Scenario-Driven Access Control

Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.

Scenario-Driven Access Control

1. AWS-based enforcement architecture
2. Proof-of-concept implementation for a smart home use case.
Safety and Consistency- a Smart Home IoT Use Case

Consider a smart lock with its access control deployed on the vendor’s cloud. Smart lock would authenticate and pair with a user's mobile in its Bluetooth range, then receive the status of that specific user's access key from the cloud. The key status would be also saved in the local database of the lock.

- Due to intermittent Internet connection and limited storage space of home IoT devices, required authorization information might not be available in real time.
- There is an increased risk of making access control decisions based on outdated information.
- This problem may arise in any attribute-based access control environment in which attributes are provided incrementally to the decision point.
- We investigate this problem in general, interpreted with use cases in a smart home IoT environment.

Exposure of decision point to stale attributes, hence access violation.

State Consistency Attack
Refresh instead of Revoke – A smart Home IoT Use Case

Refresh replaces an older value with a newer one, while Revoke simply invalidates the old value.

\[
\leftrightarrow \left(\text{op.trustLevel} \leq \text{u.trustLevel} \right) \land \left(\text{u.role} = \text{"parent"} \right) \lor \left(\left(\text{u.role} \in \{ \text{"babysitter"}, \text{"kid"} \} \right) \land \left(\text{u.location} = \text{"home"} \right) \right)
\]

What if babysitter tries to adjust the thermostat after leaving home?

Access Violation
Safety and Consistency of Mutable Attributes Using Quotas – A smart Home IoT Use Case

Mutable Attribute: Attribute changes are the consequence of access utilization by subject. We claim the revocation scenario to be inappropriate for mutable attributes.

\[(s: \text{user}, o: \text{playstation}, op: \text{operation}) \leftrightarrow ((u.\text{quota} > 0) \land ((u.\text{role} == \text{"parent"}) \lor (u.\text{role} == \text{"kid"}) \land (\text{day}_\text{of}_\text{week} \in \{\text{"Saturday"}, \text{"Sunday"}\})))\]

What if parents decide to reduce the usage limit?

Access Violation

Lifetime Overlap Consistency Level
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue

1. Introduce/Formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

User-to-Device Access Control

RBAC Administration

1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

Message-Based Access Control

Formal Specification of a device-to-device operational access control model using a message-based paradigm.

Scenario-Driven Access Control

Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.

1. AWS-based enforcement architecture
2. Proof-of-concept implementation for a smart home use case.
Administration of Access

- Access administration has been overlooked.
 - Overall system security is crucially dependent on both the administrative and operational models.
 - Many lack the support of a formal model and rely on informally assumed policy objectives.

- Administration of access must be carefully crafted to ensure that policy does not drift away from its original objectives.

- Access administration in a smart home environment is a particular access management problem due to:
 - lack of expertise in home users.
 - shared ownership of IoT devices.

- We follow PEI (Policy, Enforcement Architecture, Implementation) as our reference model.

- We opt for EGRBAC as our underlying operational model, for it being:
 - Granular at permission level, instead of device level.
 - Capture the environment conditions and provide contextuality.
We recognize administration is best to be done decentralized. Decentralization provided through Administrative Units (AU).

We define one administrative unit per operational assignment to be managed, which includes a unique administrative role (AR) and a set of administrative tasks (AT).

Authorization is scoped as a set of administrative tasks defined to manage corresponding assignments in the operational model.
• We extended our administrative model by defining one administrative unit per operational assignment to be managed.

• Each administrative unit includes a unique administrative role which controls a predefined set of administrative tasks which represents its scope of administration.
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue

1. Introduce/Formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

User-to-Device Access Control

1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

RBAC Administration

Message-Based Access Control

1. AWS-based enforcement architecture
2. Proof-of-concept implementation for a smart home use case.

Scenario-Driven Access Control

1. Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.
PEI: Blockchain-Based Enforcement Architecture

- **Benefits:**
 - Decentralized Control
 - Transparency and Auditability
 - Distributed Information
 - Tamper-proof

- **Why NOT Blockchain for Operational Access Control:**
 - IoT Constraints
 - Long Transaction Confirmation Time
 - Financially Prohibitive

- **Why Blockchain for Administrative Access Control:**
 - Less Frequency of Administrative Tasks
 - Posteriori Analysis
 - Scalable
 - No need for IoT devices to be engaged in blockchain

- **Threat Model and Blockchain Benefits:**

 Threat Model:
 - **Insider Attack:**
 - Spoofing, Tampering, Privilege Escalation, Repudiation

 Assumptions:
 - Users’ communication with edge is secure over local network.
 - Routing attacks are out-of-scope
 - Attacks against Web3 API are **out-of-scope**
 - API attacks against user’s private keys in their wallets considered to be **out-of-scope**

 Blockchain Security Benefits:
 - Administrator account cannot be faked
 - Administrative policy is encoded in a smart contract recorded to ledger via consensus
 - System is equipped with transparency and auditability

© Mehrnoosh Shakarami

World-Leading Research with Real-World Impact!
PEI: Enforcement Architecture

Decentralized Ledger-based Publish-subscribe
Sequence Diagram

Admin Request
1. Add/Remove (p,d,r) or (p,d) task to prohibited-task list
2. Add/Remove (p,d,r) to policy
3. Add/Remove (p,d) to policy

User Signature
Res. Data
Publish
Subscribe

Transaction Request
Sign Ethereum Transaction
Signed Transaction
Ethereum Worker/Miner
Transaction mined

API
Transaction Hash
Check for Event
API (internal)

WEB3 SOLUTION

© Ravi Sandhu
World-Leading Research with Real-World Impact!
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue

1. Introduce/Formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

RBAC Administration

1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

Message-Based Access Control

Scenario-Driven Access Control

1. Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.

1. AWS-based enforcement architecture
2. proof-of-concept implementation for a smart home use case.
PEI: Implementation Setup

- Administrative access control policy implemented in a single smart contract on the Ropsten.
- Different administrative controls are coded as functions, which would be triggered by transactions.
- Smart contract is programmed in Solidity and tested it on Remix IDE.
- Infura is used as web3.0 API to interact with blockchain.

- Experiment Environment:
 - AWS IoT Greengrass v1.
 - Greengrass runs on a dedicated virtual machine: one virtual CPU, 2 GB of RAM and 20 GB hard drive.
 - The virtual machine’s operating system is Ubuntu 20.4.2 LTS and it is connected to a 1 Gbps network.
 - Our AWS lambda code on the Greengrass is written in Python 3.8 and is running in a long-lived isolated runtime environment with limited RAM of 256 MB

- Experiments are done for a normal distribution with a 99.9% confidence interval.
- We ran our experiments in two settings with the policy sizes of n=20 and n=500.
 - Both experiments were run for a total of 500 times.
Admin Timer: After a transaction has been successfully mined, Lambda checks the logs to search out the succeeded transactions. Then, it makes appropriate changes to the “policy.json” file and publishes the results to the User/Status/Update to inform the user about his/her administrative request.

Full Timer: Complete cycle of an administrator submitting a request, to that request being mined, and the lambda function processing the results and updating as necessary.

Gas Used: the actual amount of gas which was used during execution. Gas prices are denoted in GWEI, which equals to 10^{-9} ETH. We calculated the monetary cost of each transaction to be 28 cents.
Our administrative model features:
- Decoupled Assignment and Revocation
- Symmetric Assignment and Revocation
- Generalizability
- Transparency and Auditability
- Privacy

Security considerations specific to our architecture:
- Smart Contract Security
- Device-Cloud Communications

Limitations:
- Continuous Access control and Mutability
- Handling Conflicts

Our implementation results are reassuring that although the use of blockchain for operational access control is NOT promising, BUT it is promising to be utilized at administrative level.

EGRBAC is not chosen as a de-facto!
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue
1. Introduce/Formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

User-to-Device Access Control

RBAC Administration
1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

Message-Based Access Control
Formal Specification of a device-to-device operational access control model using a message-based paradigm.

Scenario-Driven Access Control
Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.

1. AWS-based enforcement architecture
2. proof-of-concept implementation for a smart home use case.
• Seamless interoperability among IoT devices, *device-to-device communication*, is imperative for incipient evolution of the IoT ecosystem.

• There is heterogeneity in all levels of IoT technology, including *device*, *networking*, *middleware*, *application*, and *data/semantics* of IoT scenarios, makes heterogeneous IoT devices cumbersome.
 • There is no de-facto standard and there would be none in foreseeable future.

• Scenarios of *device-to-device interactions* are inevitable for real-life *home automation*, which brings added convenience but also inherent security risks.

• In this context, securing D2D interaction through *authorization of the flow of information among devices* is of utmost importance.

• There is no access control model specification to provide authorization for *device-to-device interoperability*.

We present an access control model which governs authorized flow of information for *device-to-device interactions* in a *smart home IoT* using *Attribute-Based Access Control (ABAC)* for the first time, utilizing a *message passing paradigm*.
PEI: Message-Based Device-to-Device ABAC Access Control Model

Core Components
- \(D \) is a set of smart home IoT devices; each device has a unique identifier (ID).
- \(OP \) is a set of operations available to different devices in the system.
- \(ES = \{ \text{current} \} \) determines the attributes of environment at the current time.
- \(\text{Ent} : D \cup ES \cup M \) is the set of entities in the system.
- \(DOA \subseteq D \times 2^{OP} \) is a one to many relation which associates a device to its own operations, and is specified by device manufacturer.

Attribute Functions
- \(attValueTypE \subseteq \{ D, ES \} \times \{ \text{atomic set} \} \)
- \(\text{att} = DA \cup EA \), maps a device/environment to an atomic value or a finite set as follows:
 - \(att : Ent \rightarrow \{ \text{Range}(attkey) \} \) if \(attValueTypE = \text{atomic} \)
 - \(att : Ent \rightarrow \{ \text{Range}(attkey) \} \) if \(attValueTypE = \text{set} \)
- \(DA, EA \) are one to many functions which associates a device or environment state to their available attributes.
- \(\forall d \in D, \forall att \in DA : attAssignType(d, att) \rightarrow \{ \text{static defined statically by the vendor/owner dynamic may change dynamically} \} \)

Message and Message Functions
- \(M = \{ m_i : m_i = \{ (\text{"sender"}, s \in D), (\text{"type"}, t \in \text{typeSet}), \{ \text{attSet}(t) \}, (\text{"receiver"}, r \in D) \} \} \)
- \(\text{attSet}(t \in \text{typeSet}) = \begin{cases} \leq \text{DOA}(m.\text{"receiver"}) & \text{if } t = \text{"pull"} \text{ or } \text{"push"} \\ \in \text{DOA}(m.\text{"receiver"}) & \text{if } t = \text{"command"} \\ \phi & \text{if } t = \text{"finish"} \end{cases} \)
- \(\text{Impact}(m \in M) : M \times \{ \text{current} \} \rightarrow \text{att}(m.\text{"sender"}) \cup \text{att}(m.\text{"receiver"}) \cup \{ \text{null} \} \)

Manufacturer-defined

© Mehrnoosh Shakarami

World-Leading Research with Real-World Impact!
A Smart Home IoT Use Case

CheckAccess(s: D, m:M, r: D, current: ES)
≡ [(m.s = "oc1") ∧ (m.typeSet ∈ {"pull", "push", "finish"}) ∧ (m.attSet ∈ {"occupied", "recording"}) ∧ (m.r ∈ {"sc1", "sc2"}])
∨ [(m.s = "oc1") ∧ (m.typeSet ∈ {"command"}) ∧ (m.attSet ∈ {"StartRecording", "StopRecording"}) ∧ (m.r ∈ {"sc1", "sc2"}])
∨ [(m.s ∈ {"sc1", "sc2"}) ∧ (m.typeSet ∈ {"pull", "push"}) ∧ (m.attSet ∈ {"recording", "occupied"}) ∧ (m.r = "oc1")]
∨ [(m.s = "oc1") ∧ (m.typeSet ∈ {"command"}) ∧ (m.attSet ∈ {"Lock", "Unlock"}) ∧ (m.r ∈ {"dl1"})]
∨ [(m.s = "dl1") ∧ (m.typeSet ∈ {"pull", "push"}) ∧ (m.attSet ∈ {"locked"}) ∧ (m.r ∈ {"oc1"})]
Threat Model

- IoT devices’ susceptibility to cyberattacks could make them disturbing security holes.
 - A hacker with access to your thermostat could fiddle with it, causing your HVAC system to malfunction.
 - An attacker may lock you out of your home in case the door lock is hacked.

- We adopt the Dolev-Yao (DY) threat model in which communicating endpoints cannot be assumed as trusted nodes in the network.
 - An adversary can tamper with the data through modification, deletion, or insertion of fake information as the communications rely on wireless medium.

- Our Assumptions:
 - As many IoT devices are not IP-enabled, using a gateway (GW) node in the network is inevitable. We assume the GW node in our model is trustworthy and available, which is a common assumption.
 - Attacker is assumed to be an outsider to the network with the goal of obtaining illegitimate access to available functionalities/operations of smart home IoT devices.
 - We do not consider adversaries to have physical access to IoT devices.

Our access control approach provides a defense-in-depth prevention/protection against any outsider attack, through restricting the set of authorized messages being communicated among IoT devices.
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue
1. Introduce/Formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

User-to-Device Access Control

RBAC Administration
1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

Message-Based Access Control

Formal Specification of a device-to-device operational access control model using a message-based paradigm.

Scenario-Driven Access Control

1. AWS-based enforcement architecture
2. Proof-of-concept implementation for a smart home use case.

Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.
Priority is a binary relation between two scenarios s_i and s_j which is reflected in priority values. In a smart home environment, the priority values could be defined as follows: $(pr, <) = (1 < low < medium < high <)$

Comparability: two scenarios s_i and s_j are comparable if and only if either ($s_i < s_j$) or ($s_j < s_i$), with respect to priority relation. Two scenarios which include command messages with common receiver devices must be comparable.

Scenario-driven access control model resolves a class of conflicts due to receiving two conflicting command messages by the the same device.
A Smart Home IoT Use Case

CheckAccess(s:D, m:M, r:D, current:ES) ≡ CheckPriority(s: D, m: M, r: D, current: ES) ∧ p

p = ((m. s = ld) ∧ (m.typeSet = {pull, push}) ∧ (m.attSet ∈ {leak}) ∧ (m.r = wm)) ∨ ((m. s = wm) ∧ (m.typeSet = {com, fin}) ∧ (m.attSet ∈ {shutOff, turnOn}) ∧ (m.r ∈ {v_1, v_2, sm})) ∨ ((m. s = sm) ∧ (m.typeSet = {pull, push}) ∧ (m.attSet ∈ {occupied}) ∧ (m. r = sc)) ∨ ((m. s = sm) ∧ (m.typeSet = {com, fin}) ∧ (m.attSet ∈ {turnOn, shutOff}) ∧ (m. r = s))

CheckPriority(s:D, {m'_1, m'_2} ∈ s', r:D, current: ES) = True
CheckPriority(s:D, ∀m ∈ s, r:D, current: ES) = True
CheckPriority(s:D, m'_3 ∈ s', r:D, current: ES) = False, provided that s' happens after s.
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue

1. Introduce/Define formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

RBAC Administration

User-to-Device Access Control

1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

Message-Based Access Control

Scenario-Driven Access Control

- Formal Specification of a device-to-device operational access control model using a message-based paradigm.
- Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.

1. AWS-based enforcement architecture
2. Proof-of-concept implementation for a smart home use case.
PEI: Enforcement Architecture

- **Greengrass** utilization enables devices to autonomously react to local events and securely communicate with each other over the local network.
- Using **MQTT**, devices will communicate on their private topics, `device/shadow/update`, to update their shadows, and trigger the local computation function, known as `Lambda` function.
- When `Lambda` is triggered, it executes the code we developed to check the policy.
Summary of Contributions

Operation and Administration of Access Control in IoT Environments

Safety and Consistency issue

1. Introduce/Formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

User-to-Device Access Control

RBAC Administration

1. Proposing RBAC administrative model with Smart home use case.
2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

Message-Based Access Control

1. AWS-based enforcement architecture
2. proof-of-concept implementation for a smart home use case

Scenario-Driven Access Control

Extension of the message-based to a scenario-driven access control model and define priorities to handle conflicts.

World-Leading Research with Real-World Impact!
PEI: Implementation

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Min</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Timer</td>
<td>24.2</td>
<td>25.4</td>
<td>26.0</td>
<td>34.9</td>
<td>36.7</td>
<td>39.1</td>
<td>42.9</td>
<td>47.2</td>
<td>67.2</td>
</tr>
<tr>
<td>State Update</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>5.7</td>
<td>6.6</td>
<td>6.9</td>
<td>7.4</td>
<td>10.2</td>
<td>21.8</td>
</tr>
</tbody>
</table>

A proof-of-concept implementation of two previously discussed smart home use cases. Statistics collected across 500 trials. All statistics are in milliseconds.

Full timer: A device to execute an action using our model/architecture, have lambda process it, and update the respective devices. The average full timer is 35 milliseconds.

State Update: The time to update a device’s state, e.g., a door lock going from unlocked to locked, is on average 6 milliseconds.

Time per Action: Depicted in the box-whisker plot. The box shows the 25 percentile and 75 percentile of the data, with median as the line contained inside the box.
Our model provides specification for mediating access in device-to-device communications for the first time. Presented model is context-aware, dynamic and lightweight.

Continuity of Access: Any change in participating devices’ attributes triggers the lambda which then re-evaluates the policy and adjusts the access authorizations accordingly.

- In order to provide continuity as one of the model’s elements, regardless of its enforcement method, the continuous retrieval and evaluation of entity/environment attributes should be incorporated in the model.
- Continuity of access control could be concluded when the proposed model is able to revoke the previously granted access in case of any unintended change in attributes.

Post-Authorization: Any message communication may result in a change of its sender/receiver attributes which is indicated through Impact function in our model.

Architecture Agnostic: Our model is not peculiar to Amazon AWS.

- We use AWS because of its simplicity, security and flexibility.
- AWS IoT Device Management is agnostic to device type and OS.
Conclusion

Operation and Administration of Access Control in IoT Environments

Safety and Consistency Issue

1. Introduce/Formal definition of consistency levels for subject attributes.
2. Introduce refresh instead of revoke for increased safety and availability.
3. Formal definition of consistency levels using refresh.
4. Consistency levels for mutable attributes.

User-to-Device Access Control

- RBAC Administration
 1. Proposing RBAC administrative model with Smart home use case.
 2. Blockchain-based Enforcement Architecture.

Device-to-Device Access Control

- Message-Based Access Control

- Scenario-Driven Access Control
 1. AWS-based enforcement architecture
 2. Proof-of-concept implementation for a smart home use case.

World-Leading Research with Real-World Impact!
Some Future Directions

Monitoring:
- Conflict Discovery
- Device Discovery
- Rule Integrity
- Anti-Pattern Usage Discovery

Adjustments:
- Continuity of Control
 - Revocation/Mutability
- Conflict Resolution
- Administrative Changes

Design:
- Comprehensive Approach containing both U2D and D2D solutions
- Factual Interoperability of heterogeneous Devices
Conference/Workshop Papers:

THANKS FOR TAKING THE TIME TO BE HERE!