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Dependability
● Dependability in Software Engineering

○ Availability
○ Reliability
○ Safety
○ Security

● Dependability defined for Software Systems
○ Privacy Policies
○ Software Bugs

● Analysis of Dependability
○ Privacy policy compliance
○ Software bug detection
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The Cost of Poor Dependability
● Financial Loss

○ In 2018 alone, software bugs cost the world economy over $1.7 trillion and impacted over 3.7 
billion people

● Loss of Privacy
○ Facebook scandals have leaked private information for about 500 million users

● Loss of Life
○ The U.S. Patriot missile defense system did not detect an incoming missile due to inaccurate 

tracking calculation causing the loss of 28 U.S. military troops

● By verifying policy requirements and detecting bugs in code, many of the 
costs and damages caused by poor software Dependability can be eliminated
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The Need For Automation
● The manual process to verify policy compliance and perform bug detection of 

code takes too long and requires too much information
○ Any system could have dozens or hundreds of privacy constraints

■ Medical systems must be in compliance with HIPAA
○ Any system could exhibit any number of different types of bugs

■ Currently, CWE defines 808 different types of bugs
■ A system could be tens of thousands to millions of lines of code in size
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State of the Art: Static Analysis and Model Checking 
Techniques
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● Model Checking
○ Construct specifications (usually in temporal logic) that define the constraints of the system
○ If any state of the system does not satisfy the specifications, it is reported as a bug

● Many of the most popular static analysis bug detection tools and techniques 
use Bug Patterns

○ Each pattern defines a bug or policy violation
○ Usually defined in the form of if-then 



Model Checking Problems

● Model checking is not scalable
○ Subject to the state explosion problem

● Still need to manually generate specifications for policy and system or 
manually create a model of the system to be checked
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Static Analysis Problems
● Static analysis requires patterns/specifications to be provided for it

○ Patterns and specifications must be manually defined for each bug that wants to be detected
○ Cannot detect bugs that do not have a pattern or specification defined for it 
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● Static analysis is conservative
○ Most static analysis techniques have a high false positive rate

● Static analysis is not always scalable
○ Some static analysis techniques require an exploration of all possible paths/states/etc. 

which is subject to the state explosion problem



Why Perform Deep Learning
● Many of the limitations of static analysis can likely be mitigated by deep 

learning:
○ Will learn features of code and bugs, so no patterns or specifications need to be defined
○ There is a good chance that new or different versions of learned bugs can still be detected
○ Will not be as conservative
○ Is not subject to the state explosion problem

● We should be able to utilize many existing deep learning techniques from 
natural language processing (NLP)
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Background: Feed-Forward Neural Networks (FFNNs)

Cat

Dog
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Background: Vector Representations

king = {2,0,3}

queen = {2,2,2}

man = {0,1,4}

woman = {0,3,3}

How do we learn these vector representations?
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Major Obstacles for Deep Learning on Software 
Code
● Syntactic structures are more complex

● The data sparsity problem is more severe

● The number of new code elements encountered is usually far greater than 
normal NLP
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Toward a Semantic-Oriented Model

● To learn a new semantic-oriented model, a new type of relationship 
between words must be defined

○ An equivalence relation can be defined between one word and a sequence of words by using 
the dictionary
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● By using this semantic model we can solve many previously mentioned 
limitations:

○ No longer affected by data sparsity (only need a word’s definition)
○ New token can be handled easily (only a definition needs to be provided for it)

● Previous word embeddings based on definition of a language model was 
based on statistical frequencies of co-occurrences of code elements (a 
contextual-oriented model)



Toward a Semantic-Oriented Model
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Conclusion
● Automation of dependability analysis for software systems is important to 

prevent loss and feasibly perform analysis at large scale

● Model checking and static analysis are state of the art, but have many 
limitations

● Many of these limitations may be solved through the use of deep learning
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? Questions ?
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Overview
● Dependability Using Model Checking and Static Analysis

● Background: Deep Learning

● Toward Deep Learning on Software Code

● Toward a Semantic-Oriented Model
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Policy Verification Obstacles

● Written in natural language ● Written in code

Policy Software System

● Code can have bugs
● Code can be written in 

different programming 
languages

● Natural language is 
ambiguous

Verification of Compliance

● Want a similar 
representation for 
comparison/analysis

● Want formalized 
specifications
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Improper Authorization Code Example
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Improper Authorization Pattern Detection Example
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Privacy Policy Verification Using Model Checking

21



Background: Artificial Neuron
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Background: 
Feed-Forward Neural 
Networks (FFNNs)
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Background: Feed-Forward Neural Networks (FFNNs)

Cat

Dog



Background: Vector Representations
● Neural networks and deep learning work great for numerical data, but can’t 

perform calculations on code because it is text

● Need to convert code to some numerical representation
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king = {2,0,3}

queen = {2,2,2}

man = {0,1,4}

woman = {0,3,3}

● A vector representation is an m-dimensional 
real-valued vector representing the relative meaning of 
a word (compared to other words in the vocabulary)

○ Learns vector representations based on the language model



26

Background: Vector Representations

king = {2,0,3}

queen = {2,2,2}

man = {0,1,4}

woman = {0,3,3}

How do we learn these vector representations?
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Background: Language Model

● A language model is a probability distribution of occurrence of a sentence (or 
sequence of words) or the next word in a sequence

P(“I ran to the store for groceries”)

● Vector representations in deep learning attempt to model the meaning of 
words



Background: Language Model

● Limitations of the language model:
○ The data sparsity problem (need a huge corpus to learn on)
○ If new words are encountered after training they cannot be handled
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● Predict the next word given a previous sequence of words

“I” -> “ran”
“I ran” -> “to”
…
“I ran to the store for” -> “groceries”



Previous Research in the Literature
● On the Naturalness of Software (Hindel et al.)

○ Software exhibits behavior like a natural language, and can therefore be treated like a natural 
language

○ Can have natural language processing techniques and language model be applied to software
○ Can learn software using deep learning similar to natural language
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● Previous deep learning on code can be split into two main categories:
○ Models that apply word prediction exactly like NLP
○ Models that use an abstract syntax tree (AST) and perform prediction using AST nodes

■ Perform better on average
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Background: Recurrent Neural Networks (RNNs)



● Previous word embeddings based on definition of a language model was 
based on statistical frequencies of co-occurrences of code elements (a 
contextual-oriented model)
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Need to Learn Word Embeddings Differently
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Behavioral Language 
Model Code Element 
Collection Rules



33

If-Statement 
Example



Word embeddings for 
Apache Shiro’s 99 most 
common code elements

Word 
Embeddings

34



Word embeddings for 
Apache Shiro’s 99 most 
common code elements
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Word 
Embeddings



Limitations of the Behavioral-Oriented Model

● Still subject to the data sparsity problem

● Still cannot handle new code elements
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