Automating Dependability

Analysis for Software Systems

John Heaps
Computer Science Department

Dependability

e Dependability in Software Engineering

o Availability
o Reliability
o Safety

o Security

e Dependability defined for Software Systems

o Privacy Policies
o Software Bugs

e Analysis of Dependability

o Privacy policy compliance
o Software bug detection

The Cost of Poor Dependability

e Financial Loss
o In 2018 alone, software bugs cost the world economy over $1.7 trillion and impacted over 3.7
billion people

e Loss of Privacy
o Facebook scandals have leaked private information for about 500 million users

e Loss of Life

o The U.S. Patriot missile defense system did not detect an incoming missile due to inaccurate
tracking calculation causing the loss of 28 U.S. military troops

e By verifying policy requirements and detecting bugs in code, many of the
costs and damages caused by poor software Dependability can be eliminated

The Need For Automation

e The manual process to verify policy compliance and perform bug detection of

code takes too long and requires too much information
o Any system could have dozens or hundreds of privacy constraints
m Medical systems must be in compliance with HIPAA
o Any system could exhibit any number of different types of bugs
m Currently, CWE defines 808 different types of bugs
m A system could be tens of thousands to millions of lines of code in size

State of the Art: Static Analysis and Model Checking
Techniques

e Model Checking

o Construct specifications (usually in temporal logic) that define the constraints of the system
o If any state of the system does not satisfy the specifications, it is reported as a bug

e Many of the most popular static analysis bug detection tools and techniques

use Bug Patterns

o Each pattern defines a bug or policy violation
o Usually defined in the form of if-then

Model Checking Problems

e Model checking is not scalable
o Subiject to the state explosion problem

e Still need to manually generate specifications for policy and system or
manually create a model of the system to be checked

Static Analysis Problems

e Static analysis requires patterns/specifications to be provided for it
o Patterns and specifications must be manually defined for each bug that wants to be detected
o Cannot detect bugs that do not have a pattern or specification defined for it

e Static analysis is conservative
o Most static analysis techniques have a high false positive rate

e Static analysis is not always scalable
o Some static analysis techniques require an exploration of all possible paths/states/etc.
which is subject to the state explosion problem

Why Perform Deep Learning

e Many of the limitations of static analysis can likely be mitigated by deep

learning:

Will learn features of code and bugs, so no patterns or specifications need to be defined
There is a good chance that new or different versions of learned bugs can still be detected
Will not be as conservative

Is not subject to the state explosion problem

O O O O

e \We should be able to utilize many existing deep learning techniques from
natural language processing (NLP)

Background: Feed-Forward Neural Networks (FFNNSs)

Hidden
Input

QOutput

Cat

Y

|
i
vV

Dog

Background: Vector Representations

king = {2,0,3} T man
O
queen = {2,2,2} b
‘ : S ~a woman
man = {0,1,4} king N o O
woman = {0,3,3} : queen
j : s

How do we learn these vector representations?

10

Source Text

B

brown [fox jumps

The

brown [fox | jumps

The|quick - fox|jumps

over

over

over

The|quick

brown - jumps

over

the

the

the

the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over) 11

Major Obstacles for Deep Learning on Software
Code

e Syntactic structures are more complex
e The data sparsity problem is more severe

e The number of new code elements encountered is usually far greater than
normal NLP

12

Toward a Semantic-Oriented Model

e Previous word embeddings based on definition of a language model was
based on statistical frequencies of co-occurrences of code elements (a
contextual-oriented model)

e To learn a new semantic-oriented model, a new type of relationship

between words must be defined
o An equivalence relation can be defined between one word and a sequence of words by using
the dictionary

e By using this semantic model we can solve many previously mentioned

limitations:
o No longer affected by data sparsity (only need a word’s definition)
o New token can be handled easily (only a definition needs to be provided for it) 13

Toward a Semantic-Oriented Model

public static int'max (int x, int y) {

if(x > y) {
RNN [—> RNN |—> ... —> RNN return x;
}
I return y;

()
o o o e

14

Conclusion

e Automation of dependability analysis for software systems is important to
prevent loss and feasibly perform analysis at large scale

e Model checking and static analysis are state of the art, but have many
limitations

e Many of these limitations may be solved through the use of deep learning

15

? Questions ?

16

Overview

e Dependability Using Model Checking and Static Analysis
e Background: Deep Learning
e Toward Deep Learning on Software Code

e Toward a Semantic-Oriented Model

17

Policy Verification Obstacles

Policy

/o Written in natural Ianguage\

e Natural language is
ambiguous

‘s

. /

Want a similar
representation for
comparison/analysis
Want formalized
specifications

—[Verification of Compliance H Software System

/o Written in code

e Code can have bugs
e Code can be written in
different programming

languages

18

Improper Authorization Code Example

public ResultSet runEmployeeQuery(Connection conn, String name){
PreparedStatement stmt = conn.prepareStatement("SELECT * " +
"FROM employees WHERE name = ?");
stmt.setString(1l, name);
ResultSet ts = stmt.executeQuery()
return rs;

// "canQueryEmployee()" returns true if current user is authorized to
// query the employees table.
if(AuthCheck.canQueryEmployee()){

ResultSet employeeRecord = runEmployeeQuery(dbConn, employeeName);

19

Improper Authorization Pattern Detection Example

public void sawOpcode(int seen) {
if ("AuthCheck".equals(classConstant) &&
seen == INVOKESTATIC &&
"canQueryEmployee".equals(nameConstant) && "()Z".equals(sigConstant)) {
seenGuardClauseAt = PC;
return;

}
if (seen == IFEQ & & (PC >= seenGuardClauseAt + 3 & & PC < seenGuardClauseAt + 7)) {

logBlockStart = branchFallThrough;
logBlockEnd = branchTarget;
}
if (seen == INVOKEVIRTUAL && "runEmployeeQuery".equals(nameConstant)) {
if (PC < logBlockStart || PC >= logBlockEnd) {
bugReporter.reportBug(
new BugInstance("IMPROPER_AUTHORIZATION", HIGH_PRIORITY)
.addClassAndMethod(this).addSourceLine(this));

20

Compliance

Verificationof |e—0oH

[

Policy
Specifications

Extract
Specifications
from Natural
Language
Policy

Privacy Policy Verification Using Model Checking

S
e
Model e
Checking Auditor
Verified
System
Specifications
;—!,
Static Analysis | «————1
Programmer
Extract
HIPAA EMRS Specification System

from System
Code

Specifications

21

Background: Artificial Neuron

L0 wo
@

axon from a neuron

WoIo

/" cell body

:E:zu;ri+-b
i

w1

Wa

f

f (\;w,-z,- + b)

>
output axon

activation
function

22

Background:
Feed-Forward Neural
Networks (FFNNSs)

Hidden

23

Background: Feed-Forward Neural Networks (FFNNSs)

Hidden

Input

QOutput

VAV

Cat

Dog

24

Background: Vector Representations

Neural networks and deep learning work great for numerical data, but can’t
perform calculations on code because it is text

Need to convert code to some numerical representation

o . . king = {2,0,3}
A vector representation is an m-dimensional

real-valued vector representing the relative meaning of queen = {2,2,2}

a word (compared to other words in the vocabulary)
Learns vector representations based on the language model man = {0; 1,4}

woman = {0,3,3}

25

Background: Vector Representations

king = {2,0,3} T man
O
queen = {2,2,2} S
‘ : By ~a woman
man = {0,1,4} king N o O
woman = {0,3,3} : queen
j : s

How do we learn these vector representations?

26

Background: Language Model

e Alanguage model is a probability distribution of occurrence of a sentence (or
sequence of words) or the next word in a sequence

P(W) - P(wlaw27w3a 7wn)
P(“l ran to the store for groceries”)

e \ector representations in deep learning attempt to model the meaning of
words

27

Background: Language Model

e Predict the next word given a previous sequence of words

“IH _> “ran”
“I ran” _> “tO”

“l ran to the store for” -> “groceries”

e Limitations of the language model:

o The data sparsity problem (need a huge corpus to learn on)
o If new words are encountered after training they cannot be handled

28

Previous Research in the Literature

e On the Naturalness of Software (Hindel et al.)
o Software exhibits behavior like a natural language, and can therefore be treated like a natural
language
o Can have natural language processing techniques and language model be applied to software
o Can learn software using deep learning similar to natural language

e Previous deep learning on code can be split into two main categories:
o Models that apply word prediction exactly like NLP
o Models that use an abstract syntax tree (AST) and perform prediction using AST nodes
m Perform better on average

29

Background: Recurrent Neural Networks (RNNSs)

30

Need to Learn Word Embeddings Differently

e Previous word embeddings based on definition of a language model was
based on statistical frequencies of co-occurrences of code elements (a
contextual-oriented model)

31

Behavioral Language
Model Code Element
Collection Rules

Node Types Identifier Code Elements Used As Context
Array Creation Expression array data type "new []"
Array Type ‘" array data type

Assignment Expression

assign operator

target and value expressions

Binary Expression

binary operator

left and right term expressions

Boolean Literal

“true” or "false”

"boolean”

Break Statement "break" associated loop or switch statement
Cast Expression cast data type expression being cast
Catch Clause “catch” exception types being caught
Char Literal "CHAR" "char"
. “"class” or "interface" and modifiers,
Class Or Interface Declaration name Y ;
interfaces, extension, and members
Conditional Expression sl condition expression and "else”
Continue Statement "continue” associated loop statement
Do Statement "do" "while" and condition expression
Double Literal "DOUBLE" "double”
Enum Declaration name "enum" and all modifiers
Explicit Constructor Invocation “this" or "super" associated arguments and expressions
Field Declaration field data type initializations, assignments, and modifiers
i h—— "for® "break"” alnd "comiflue" if present and
variable and iterable types
For Statmsnit “For" "break" an§l i‘continue" i»s present and im’tializat.ion type,
condition expression, and update expression
If Statement "if" condition expression and "else" if present
InstanceOf Expression "instanceof” expression and instance type
Integer Literal "INT" "int"
Long Literal "LONG" "long"
Method Call Expression name arguments
Miéthbd Declatation Gt modifiers, ret»urn type, parameters,
thrown exceptions, and method body
Null Literal "null" "void"

Object Creation Expression

object data type

"new", arguments, and anonymous class body if present

Primitive Type

primitive data type

associated expressions or declarations

Return Statement "return” associated expression
String Literal STRING "String”
Super Expression “"super” associated expression
Switch Entry Statement “case” or "default” "switch" and associated label expression if present
Switch Statement “switch" selector expression and switch entry statements
Synchronized Statement "synchronized" associated expression
This Expression "this" associated expression
Throw Statement "throw" associated expression
_— resource expressions, catch clauses if present,
Try Statement try

and "finally” if present

Unary Expression

unary operator

associated expression

Variable Declaration Expression

variable data type

modifiers and initialization expression if present

Void Type

"void"

associated expressions or declarations

While Statement

"while"

"break” and "continue” if present and
condition expression

32

If-Statement

Example wem o

- erfeshooce U“ :

name (SimpleName)

member (MethodDeclaration)

type (PrimitiveType) name (SimpleName) //check if the user is an admin
public boolean isAdmin(){

"
if(role == Role.Admin){
}

else{
return false;

}
}

thenStmt (BlockStmt)
statement (ReturnStmt) statement (RetumStmt)

identifier="ADMIN' expression (BooleanLiteralExpr) expression (BooleanLiteralExpr)
Node Types Identifier Code Elements Used As Context 33
If Statement "if" condition expression and "else" if present

= \Word
CHA&% £
checkPermlssnoa
MINU
tect
;prlo?ec e‘
priva
I I I t
E bed d I n g getLastAccess%('rn?\mgggg%en mi SlmpIeSessma
AuthentlcatlonTagmms AuthorlzanonExceptlosab&rac‘
Authorizationinfg
0 <oy Word embeddings for
fals,
EQUAL) oy
isDebugEnablég)p_qswAl—i h;R ; ApaChe ShII'O S 99 mOSt
asSRO
uag " Booleay O common code elements
i) catca A
ins ance(‘ siz : » getPrincipals, tio
LOGICAL_COMPLEMEN rermithedy Sessiog thi ﬁ?@'ﬁ;uhg B
thro“ tracs removs s
0 Serializabl,
é |sPerm|ttedAatms |nterface Pnﬁapiollectloa .
2 Subje isEmpty
PLUS & ® Y
getReaMalf%e%&eptlo ad\c}l‘ hasTe)$
Il 1Al tE ti
Subjectconte)gbjei . ega r%{mesn xcep! |03 vot‘ debug Stati‘ U"implemeni
e tStartTimest getloggeg toString-
Authentical:ionlnffe ArLimes ams : - S%Tl eot‘
on
100 POSTFIX_INCREMEV\& Logogg Delegatfifisubjecgollectiog
AqﬂﬁutlcatlonExceptloa
publi = - .
Dats‘ InvalldSess%nExceptloB extendi
SUP% getSesswa ﬁn%
Mag GREATER
-200 ne\“
34
-200 -100 0 100 200

=Word
&eé eckPermissioB MINU&
tect
Apr?Nec e‘
privat,
t .
Embeddings o s R a5
AuthentlcatlonTagwms uthorlzatuonExceptlosab&rac‘
Auth tionInf
Nihork lonsgc%rityManag
100 H
- Word embeddings for
Is
EQUAL &)
sDetugEnabidfPPEW 8 Apache Shiro’s 99 most
asR
equal %oolea g common code elements
irtance: i catca inci
“ Siz;)) getPrincipals NamindExceptio
AL COMPLEMENT e ™itted, Sessiog thi LEaéTS]_‘H)UXLg B
el trac elss
thro“ 5 removs
0 Serializabl, : .
& |sPerm|ttedA8 m‘s interface Pr%ﬁgi-';?iollectioa
PLU Subje% isSEmpty,
getRealﬂgalﬁs%e%%eptlos add hasTe)$
. lllegalA ntExceptios) b .
SubjectContenge‘i — ;) statig % implements
$ fo getLogger toString...
- €| iTimeo!
Authentlcatlonlnff 5% %
—00 POSTFIX_INCREMEND, Logosg Delegatffiisubjecgollectiog
A%tlcatlonExceptloa
Dpaligls InvalidSessicr)enExceptioB extendi
N p% gets;SaS;)% GREA:I?%
-200 ne\“
35
-200 -100 0 100 200

Limitations of the Behavioral-Oriented Model

e Still subject to the data sparsity problem

e Still cannot handle new code elements

36

References

e John Heaps, Xiaoyin Wang, Travis Breaux, and Jianwei Niu. Toward detection of access control models from source
code via word embedding. In Proceedings of the 24th ACM Symposium on Access Control Models and
Technologies, pages 103-112. ACM, 2019.

e Johnson, Claiborne and MacGahan, Thomas and Heaps, John and Baldor, Kevin and von Ronne, Jeffery and Niu,
Jianwei. "Verifiable Assume-Guarantee Privacy Specifications for Actor Component Architectures." Proceedings of
the 22nd ACM on Symposium on Access Control Models and Technologies. ACM, 2017.

37

