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Dependability

e Dependability in Software Engineering

o Availability
o Reliability
o Safety

o  Security

e Dependability defined for Software Systems

o Privacy Policies
o Software Bugs

e Analysis of Dependability

o Privacy policy compliance
o Software bug detection



The Cost of Poor Dependability

e Financial Loss
o In 2018 alone, software bugs cost the world economy over $1.7 trillion and impacted over 3.7
billion people

e Loss of Privacy
o Facebook scandals have leaked private information for about 500 million users

e Loss of Life

o The U.S. Patriot missile defense system did not detect an incoming missile due to inaccurate
tracking calculation causing the loss of 28 U.S. military troops

e By verifying policy requirements and detecting bugs in code, many of the
costs and damages caused by poor software Dependability can be eliminated



The Need For Automation

e The manual process to verify policy compliance and perform bug detection of

code takes too long and requires too much information
o Any system could have dozens or hundreds of privacy constraints
m Medical systems must be in compliance with HIPAA
o Any system could exhibit any number of different types of bugs
m Currently, CWE defines 808 different types of bugs
m A system could be tens of thousands to millions of lines of code in size



State of the Art: Static Analysis and Model Checking
Techniques

e Model Checking

o  Construct specifications (usually in temporal logic) that define the constraints of the system
o If any state of the system does not satisfy the specifications, it is reported as a bug

e Many of the most popular static analysis bug detection tools and techniques

use Bug Patterns

o Each pattern defines a bug or policy violation
o Usually defined in the form of if-then



Model Checking Problems

e Model checking is not scalable
o Subiject to the state explosion problem

e Still need to manually generate specifications for policy and system or
manually create a model of the system to be checked



Static Analysis Problems

e Static analysis requires patterns/specifications to be provided for it
o Patterns and specifications must be manually defined for each bug that wants to be detected
o Cannot detect bugs that do not have a pattern or specification defined for it

e Static analysis is conservative
o Most static analysis techniques have a high false positive rate

e Static analysis is not always scalable
o Some static analysis techniques require an exploration of all possible paths/states/etc.
which is subject to the state explosion problem



Why Perform Deep Learning

e Many of the limitations of static analysis can likely be mitigated by deep

learning:

Will learn features of code and bugs, so no patterns or specifications need to be defined
There is a good chance that new or different versions of learned bugs can still be detected
Will not be as conservative

Is not subject to the state explosion problem

O O O O

e \We should be able to utilize many existing deep learning techniques from
natural language processing (NLP)



Background: Feed-Forward Neural Networks (FFNNSs)
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Background: Vector Representations

king = {2,0,3} T man
O
queen = {2,2,2} b
‘ : S ~a woman
man = {0,1,4} king N o O
woman = {0,3,3} : queen
j : s

How do we learn these vector representations?
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Major Obstacles for Deep Learning on Software
Code

e Syntactic structures are more complex
e The data sparsity problem is more severe

e The number of new code elements encountered is usually far greater than
normal NLP
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Toward a Semantic-Oriented Model

e Previous word embeddings based on definition of a language model was
based on statistical frequencies of co-occurrences of code elements (a
contextual-oriented model)

e To learn a new semantic-oriented model, a new type of relationship

between words must be defined
o An equivalence relation can be defined between one word and a sequence of words by using
the dictionary

e By using this semantic model we can solve many previously mentioned

limitations:
o No longer affected by data sparsity (only need a word’s definition)
o New token can be handled easily (only a definition needs to be provided for it) 13



Toward a Semantic-Oriented Model

public static int'max (int x, int y) {

if(x > y) {
RNN [—> RNN |—> ... —> RNN return x;
}
I return y;

( )
o o o e
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Conclusion

e Automation of dependability analysis for software systems is important to
prevent loss and feasibly perform analysis at large scale

e Model checking and static analysis are state of the art, but have many
limitations

e Many of these limitations may be solved through the use of deep learning
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? Questions ?
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Overview

e Dependability Using Model Checking and Static Analysis
e Background: Deep Learning
e Toward Deep Learning on Software Code

e Toward a Semantic-Oriented Model
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Policy Verification Obstacles

Policy

/o Written in natural Ianguage\

e Natural language is
ambiguous

‘s

. /

Want a similar
representation for
comparison/analysis
Want formalized
specifications

—[ Verification of Compliance H Software System

/o Written in code

e Code can have bugs
e Code can be written in
different programming

languages
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Improper Authorization Code Example

public ResultSet runEmployeeQuery(Connection conn, String name){
PreparedStatement stmt = conn.prepareStatement("SELECT * " +
"FROM employees WHERE name = ?");
stmt.setString(1l, name);
ResultSet ts = stmt.executeQuery()
return rs;

// "canQueryEmployee()" returns true if current user is authorized to
// query the employees table.
if(AuthCheck.canQueryEmployee()){

ResultSet employeeRecord = runEmployeeQuery(dbConn, employeeName);
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Improper Authorization Pattern Detection Example

public void sawOpcode(int seen) {
if ("AuthCheck".equals(classConstant) &&
seen == INVOKESTATIC &&
"canQueryEmployee".equals(nameConstant) && "()Z".equals(sigConstant)) {
seenGuardClauseAt = PC;
return;

}
if (seen == IFEQ & & (PC >= seenGuardClauseAt + 3 & & PC < seenGuardClauseAt + 7)) {

logBlockStart = branchFallThrough;
logBlockEnd = branchTarget;
}
if (seen == INVOKEVIRTUAL && "runEmployeeQuery".equals(nameConstant)) {
if (PC < logBlockStart || PC >= logBlockEnd) {
bugReporter.reportBug(
new BugInstance("IMPROPER_AUTHORIZATION", HIGH_PRIORITY)
.addClassAndMethod(this).addSourceLine(this));
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Background: Artificial Neuron
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Background:
Feed-Forward Neural
Networks (FFNNSs)
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Background: Feed-Forward Neural Networks (FFNNSs)
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Background: Vector Representations

Neural networks and deep learning work great for numerical data, but can’t
perform calculations on code because it is text

Need to convert code to some numerical representation

o . . king = {2,0,3}
A vector representation is an m-dimensional

real-valued vector representing the relative meaning of  queen = {2,2,2}

a word (compared to other words in the vocabulary)
Learns vector representations based on the language model man = {0; 1,4}

woman = {0,3,3}
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Background: Vector Representations
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How do we learn these vector representations?
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Background: Language Model

e Alanguage model is a probability distribution of occurrence of a sentence (or
sequence of words) or the next word in a sequence

P(W) - P(wlaw27w3a 7wn)
P(“l ran to the store for groceries”)

e \ector representations in deep learning attempt to model the meaning of
words
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Background: Language Model

e Predict the next word given a previous sequence of words

“IH _> “ran”
“I ran” _> “tO”

“l ran to the store for” -> “groceries”

e Limitations of the language model:

o The data sparsity problem (need a huge corpus to learn on)
o If new words are encountered after training they cannot be handled
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Previous Research in the Literature

e On the Naturalness of Software (Hindel et al.)
o Software exhibits behavior like a natural language, and can therefore be treated like a natural
language
o Can have natural language processing techniques and language model be applied to software
o Can learn software using deep learning similar to natural language

e Previous deep learning on code can be split into two main categories:
o Models that apply word prediction exactly like NLP
o Models that use an abstract syntax tree (AST) and perform prediction using AST nodes
m Perform better on average
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Background: Recurrent Neural Networks (RNNSs)
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Need to Learn Word Embeddings Differently

e Previous word embeddings based on definition of a language model was
based on statistical frequencies of co-occurrences of code elements (a
contextual-oriented model)

31



Behavioral Language
Model Code Element
Collection Rules

Node Types Identifier Code Elements Used As Context
Array Creation Expression array data type "new []"
Array Type ‘" array data type

Assignment Expression

assign operator

target and value expressions

Binary Expression

binary operator

left and right term expressions

Boolean Literal

“true” or "false”

"boolean”

Break Statement "break" associated loop or switch statement
Cast Expression cast data type expression being cast
Catch Clause “catch” exception types being caught
Char Literal "CHAR" "char"
. “"class” or "interface" and modifiers,
Class Or Interface Declaration name Y ;
interfaces, extension, and members
Conditional Expression sl condition expression and "else”
Continue Statement "continue” associated loop statement
Do Statement "do" "while" and condition expression
Double Literal "DOUBLE" "double”
Enum Declaration name "enum" and all modifiers
Explicit Constructor Invocation “this" or "super" associated arguments and expressions
Field Declaration field data type initializations, assignments, and modifiers
i h—— "for® "break"” alnd "comiflue" if present and
variable and iterable types
For Statmsnit “For" "break" an§l i‘continue" i»s present and im’tializat.ion type,
condition expression, and update expression
If Statement "if" condition expression and "else" if present
InstanceOf Expression "instanceof” expression and instance type
Integer Literal "INT" "int"
Long Literal "LONG" "long"
Method Call Expression name arguments
Miéthbd Declatation Gt modifiers, ret»urn type, parameters,
thrown exceptions, and method body
Null Literal "null" "void"

Object Creation Expression

object data type

"new", arguments, and anonymous class body if present

Primitive Type

primitive data type

associated expressions or declarations

Return Statement "return” associated expression
String Literal STRING "String”
Super Expression “"super” associated expression
Switch Entry Statement “case” or "default” "switch" and associated label expression if present
Switch Statement “switch" selector expression and switch entry statements
Synchronized Statement "synchronized" associated expression
This Expression "this" associated expression
Throw Statement "throw" associated expression
_— resource expressions, catch clauses if present,
Try Statement try

and "finally” if present

Unary Expression

unary operator

associated expression

Variable Declaration Expression

variable data type

modifiers and initialization expression if present

Void Type

"void"

associated expressions or declarations

While Statement

"while"

"break” and "continue” if present and
condition expression

32



If-Statement

Example wem o

- erfeshooce U“ :

name (SimpleName)

member (MethodDeclaration)

type (PrimitiveType) name (SimpleName) //check if the user is an admin
public boolean isAdmin(){

"
if(role == Role.Admin){
}

else{
return false;

}
}

thenStmt (BlockStmt)
statement (ReturnStmt) statement (RetumStmt)

identifier="ADMIN' expression (BooleanLiteralExpr) expression (BooleanLiteralExpr)
Node Types Identifier Code Elements Used As Context 33
If Statement "if" condition expression and "else" if present
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Limitations of the Behavioral-Oriented Model

e Still subject to the data sparsity problem

e Still cannot handle new code elements
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