
Automating Dependability
Analysis for Software Systems

John Heaps
Computer Science Department

1

Dependability
● Dependability in Software Engineering

○ Availability
○ Reliability
○ Safety
○ Security

● Dependability defined for Software Systems
○ Privacy Policies
○ Software Bugs

● Analysis of Dependability
○ Privacy policy compliance
○ Software bug detection

2

The Cost of Poor Dependability
● Financial Loss

○ In 2018 alone, software bugs cost the world economy over $1.7 trillion and impacted over 3.7
billion people

● Loss of Privacy
○ Facebook scandals have leaked private information for about 500 million users

● Loss of Life
○ The U.S. Patriot missile defense system did not detect an incoming missile due to inaccurate

tracking calculation causing the loss of 28 U.S. military troops

● By verifying policy requirements and detecting bugs in code, many of the
costs and damages caused by poor software Dependability can be eliminated

3

The Need For Automation
● The manual process to verify policy compliance and perform bug detection of

code takes too long and requires too much information
○ Any system could have dozens or hundreds of privacy constraints

■ Medical systems must be in compliance with HIPAA
○ Any system could exhibit any number of different types of bugs

■ Currently, CWE defines 808 different types of bugs
■ A system could be tens of thousands to millions of lines of code in size

4

State of the Art: Static Analysis and Model Checking
Techniques

5

● Model Checking
○ Construct specifications (usually in temporal logic) that define the constraints of the system
○ If any state of the system does not satisfy the specifications, it is reported as a bug

● Many of the most popular static analysis bug detection tools and techniques
use Bug Patterns

○ Each pattern defines a bug or policy violation
○ Usually defined in the form of if-then

Model Checking Problems

● Model checking is not scalable
○ Subject to the state explosion problem

● Still need to manually generate specifications for policy and system or
manually create a model of the system to be checked

6

Static Analysis Problems
● Static analysis requires patterns/specifications to be provided for it

○ Patterns and specifications must be manually defined for each bug that wants to be detected
○ Cannot detect bugs that do not have a pattern or specification defined for it

7

● Static analysis is conservative
○ Most static analysis techniques have a high false positive rate

● Static analysis is not always scalable
○ Some static analysis techniques require an exploration of all possible paths/states/etc.

which is subject to the state explosion problem

Why Perform Deep Learning
● Many of the limitations of static analysis can likely be mitigated by deep

learning:
○ Will learn features of code and bugs, so no patterns or specifications need to be defined
○ There is a good chance that new or different versions of learned bugs can still be detected
○ Will not be as conservative
○ Is not subject to the state explosion problem

● We should be able to utilize many existing deep learning techniques from
natural language processing (NLP)

8

9

Background: Feed-Forward Neural Networks (FFNNs)

Cat

Dog

10

Background: Vector Representations

king = {2,0,3}

queen = {2,2,2}

man = {0,1,4}

woman = {0,3,3}

How do we learn these vector representations?

11

Major Obstacles for Deep Learning on Software
Code
● Syntactic structures are more complex

● The data sparsity problem is more severe

● The number of new code elements encountered is usually far greater than
normal NLP

12

Toward a Semantic-Oriented Model

● To learn a new semantic-oriented model, a new type of relationship
between words must be defined

○ An equivalence relation can be defined between one word and a sequence of words by using
the dictionary

13

● By using this semantic model we can solve many previously mentioned
limitations:

○ No longer affected by data sparsity (only need a word’s definition)
○ New token can be handled easily (only a definition needs to be provided for it)

● Previous word embeddings based on definition of a language model was
based on statistical frequencies of co-occurrences of code elements (a
contextual-oriented model)

Toward a Semantic-Oriented Model

14

Conclusion
● Automation of dependability analysis for software systems is important to

prevent loss and feasibly perform analysis at large scale

● Model checking and static analysis are state of the art, but have many
limitations

● Many of these limitations may be solved through the use of deep learning

15

? Questions ?

16

Overview
● Dependability Using Model Checking and Static Analysis

● Background: Deep Learning

● Toward Deep Learning on Software Code

● Toward a Semantic-Oriented Model

17

Policy Verification Obstacles

● Written in natural language ● Written in code

Policy Software System

● Code can have bugs
● Code can be written in

different programming
languages

● Natural language is
ambiguous

Verification of Compliance

● Want a similar
representation for
comparison/analysis

● Want formalized
specifications

18

Improper Authorization Code Example

19

Improper Authorization Pattern Detection Example

20

Privacy Policy Verification Using Model Checking

21

Background: Artificial Neuron

22

23

Background:
Feed-Forward Neural
Networks (FFNNs)

24

Background: Feed-Forward Neural Networks (FFNNs)

Cat

Dog

Background: Vector Representations
● Neural networks and deep learning work great for numerical data, but can’t

perform calculations on code because it is text

● Need to convert code to some numerical representation

25

king = {2,0,3}

queen = {2,2,2}

man = {0,1,4}

woman = {0,3,3}

● A vector representation is an m-dimensional
real-valued vector representing the relative meaning of
a word (compared to other words in the vocabulary)

○ Learns vector representations based on the language model

26

Background: Vector Representations

king = {2,0,3}

queen = {2,2,2}

man = {0,1,4}

woman = {0,3,3}

How do we learn these vector representations?

27

Background: Language Model

● A language model is a probability distribution of occurrence of a sentence (or
sequence of words) or the next word in a sequence

P(“I ran to the store for groceries”)

● Vector representations in deep learning attempt to model the meaning of
words

Background: Language Model

● Limitations of the language model:
○ The data sparsity problem (need a huge corpus to learn on)
○ If new words are encountered after training they cannot be handled

28

● Predict the next word given a previous sequence of words

“I” -> “ran”
“I ran” -> “to”
…
“I ran to the store for” -> “groceries”

Previous Research in the Literature
● On the Naturalness of Software (Hindel et al.)

○ Software exhibits behavior like a natural language, and can therefore be treated like a natural
language

○ Can have natural language processing techniques and language model be applied to software
○ Can learn software using deep learning similar to natural language

29

● Previous deep learning on code can be split into two main categories:
○ Models that apply word prediction exactly like NLP
○ Models that use an abstract syntax tree (AST) and perform prediction using AST nodes

■ Perform better on average

30

Background: Recurrent Neural Networks (RNNs)

● Previous word embeddings based on definition of a language model was
based on statistical frequencies of co-occurrences of code elements (a
contextual-oriented model)

31

Need to Learn Word Embeddings Differently

32

Behavioral Language
Model Code Element
Collection Rules

33

If-Statement
Example

Word embeddings for
Apache Shiro’s 99 most
common code elements

Word
Embeddings

34

Word embeddings for
Apache Shiro’s 99 most
common code elements

35

Word
Embeddings

Limitations of the Behavioral-Oriented Model

● Still subject to the data sparsity problem

● Still cannot handle new code elements

36

References
● John Heaps, Xiaoyin Wang, Travis Breaux, and Jianwei Niu. Toward detection of access control models from source

code via word embedding. In Proceedings of the 24th ACM Symposium on Access Control Models and
Technologies, pages 103–112. ACM, 2019.

● Johnson, Claiborne and MacGahan, Thomas and Heaps, John and Baldor, Kevin and von Ronne, Jeffery and Niu,
Jianwei. "Verifiable Assume-Guarantee Privacy Specifications for Actor Component Architectures." Proceedings of
the 22nd ACM on Symposium on Access Control Models and Technologies. ACM, 2017.

37

