
Online Malware Detection in Cloud Auto-Scaling
Systems Using Shallow Convolutional Neural

Networks
Mahmoud Abdelsalam, Ram Krishnan and Ravi Sandhu

Institute for Cyber Security,
Center for Security and Privacy Enhanced Cloud Computing,

Department of Computer Science,
Department of Electrical and Computer Engineering

University of Texas at San Antonio

In Proceedings 31st Annual IFIP WG 11.3 Working Conference on Data and Applications
Security and Privacy (DBSec), Charleston, SC, July 15-17, 2019

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

1

Introduction and Motivation

2

Malware Detection Classification

Malware Detection using Machine Learning

File ClassificationOnline Malware Detection

1. File classification:
○ Given a file/executable, classify if it’s a malware or not by running it and observing its

behavior.
○ You have a file as a suspect.
○ You don’t keep monitoring them once they are clean.

2. Online malware detection:
○ Assume that the malware got into the system and is executing.
○ You keep monitoring the system’s behavior for malware detection.
○ You don’t just focus on a given file, but the entire system (processes).

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

3

Malware Detection using ML

4

Malware
and

Benign
Executables

Features Extraction ML Model

build/train

detect/test

File
Classification

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

Malware Detection using ML

5

Malware
and

Benign
Executables

Features Extraction ML Model

build/train

detect/test

System Features ML Model

build/train

detect/test

Running
Systems

File
Classification

Online
Malware
Detection

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

Motivation

Online Malware Detection

 Features Extraction

Performance metrics Memory features System/API calls

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

What makes an approach cloud-specific?

Most, if not all, cloud-specific research:
✔ Restrict the selection of features to those that can only be fetched through the hypervisor.
✘ Leverage cloud characteristics for online malware detection.

6

Motivation (cont.)

On-Demand
Self-Service

Rapid
Elasticity

Measure
Service

Broad
Network
Access

Resource
Pooling

Exploited System
Vulnerabilities

E.g. Co-resident
attacks

Configuration
Vulnerabilities

Insider Threats

Compromised
Credentials

CLOUD

Can we leverage cloud characteristics for online malware detection? “Auto-Scaling”
Goal: Leverage auto-scaling for online malware detection by:

● Using 2d CNN to learn processes behavior of multiple VMs.
● Introducing a novel approach of pairing samples to accommodate for correlations between VMs.

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

7

3-tier example

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

8

CNN Overview

Input
Matrix

Convolution Pooling Convolution Pooling Fully connected

Normal
Malicious

Prediction

Feature
Map

Feature extraction Classification

Convolution operation example
Ref: blog.csdn.net

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

9

Methodology

10

Process-level Performance Metrics

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

➢ We use performance metrics as a way of defining a process behavior.
➢ 28 process-level performance metrics.
➢ These metrics can easily be fetched through the hypervisor.

11

Shallow CNN Model

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

Input layer

Convolution Layer 1 + ReLU activation

Max Pooling Layer 1

Convolution Layer 2 + ReLU activation

Max Pooling Layer 2

Fully Connected Layer 1 + ReLU activation

Dropout Layer

Fully Connected Layer 2

Standardized Input Matrix

Output Prediction

12

We represent each sample as an image (2d matrix) which will be the input
to the CNN.

Consider a sample at a particular time , that records features
(performance metrics) per process for processes in a VM:

CNN Input

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

13

➢ CNN requires the same process to remain in the same row in each
sample.

➢ The CNN in computer vision takes fixed-size images as inputs, so
the number of features and processes must be predetermined.

Use the max process identification number (PID) which is set by the
OS?

○ The limit (max number of PIDs) is defined in /proc/sys/kernel/pid_max
which is usually 32k.

○ Huge input matrix!
○ Change the max PID number defined?

■ Kernel confusion if wrap around happened too often.

➢ there is no guarantee that, for instance, a process with a PID 1000
at a particular time is going to be the same process at a later time.

CNN Input (cont.)

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

14

➢ We define a process, referred to as unique process, by a 3-tuple:
○ process name
○ command line used to run process
○ hash of the process binary file (if applicable)

➢ We set the maximum number of unique processes to 120 to
accommodate for newly created unique processes.

Unique process

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

15

+-------+----------------+---+------------------------------------+-------------+------------------------------+
| pid | name | cmd | hash | kb_sent | cpu_user | sample_time |
+-------+----------------+---+------------------------------------+----------+----------+---------------------+
1241	php-fpm7.0	php-fpm: pool www	7eb8522425...	33.61710	0.03000	2018-06-15 11:19:04
1240	php-fpm7.0	php-fpm: pool www	7eb8522425...	38.79308	0.00000	2018-06-15 11:19:04
1221	php-fpm7.0	php-fpm: master process (/etc/php/7.0/...	7eb8522425...	0.00000	0.02000	2018-06-15 11:19:04
1287	python	python	23eeeb4347…	0.00000	0.15000	2018-06-15 11:19:04
+------+-----------------+---+--------------------+--------------+--------------+-----------------------------+						
+---+						
Unique Process						
+----------------+---+--------------------+----------------------+----------------------+-----------------------------+						
name	cmd	hash	AVG(kb_sent)	AVG(cpu_user)	sample_time	
+----------------+---+--------------------+----------------------+----------------------+-----------------------------+						
php-fpm7.0	php-fpm: pool www	7eb8522425...	36.2051	0.0150	2018-06-15 11:19:04	
php-fpm7.0	php-fpm: master process (/etc/php/7.0/...	7eb8522425...	0.00000	0.0200	2018-06-15 11:19:04	
python	python	23eeeb4347…	0.00000	0.1500	2018-06-15 11:19:04	
+----------------+---+--------------------+----------------------+----------------------+-----------------------------+

Unique process (cont.)

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

16

Two different experiments (each with a different malware) where the number of
total standard processes are compared to the number of unique processes.

Single VMs Single Samples
(SVSS)

17

Single VMs Single Samples
(SVSS)

18

Disadvantage: Losing information if a VM has some effects on other VMs.

Multiple VMs Single Samples
(MVSS)

19

Key Intuition

Number of used voluntary context switches over 30
minutes for two different runs of the same unique
process

Number of used voluntary context switches over 30
minutes for one run of 10 VMs in an auto-scaling
scenario.

What do we gain from having multiple VMs in an auto-scaling scenario?
“Correlation between VMs”

20

Multiple VMs Paired Samples
(MVPS)

21

Experimental Setup and Results

22

➢ Our experiments were conducted

on Openstack.

➢ To simulate a real world scenario,

we used a 3-tier web architecture

and a self-similar traffic gen.

(on/off Pareto) is used.

➢ Data collection:

Experimental Setup

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

0 30 60

Time
(min)

Clean phase Malware injection Point.
113 Malware executables are
injected (one per experiment).

Period of potential
malware activity prone
to mislabeling problem

Collect 28 different process performance metrics
(Table I) every 10 seconds for ≃ 100 processes

23

Results

MVSS MVPS

24

The goal of this paper was to provide a develop cloud-specific online
malware detection method by leveraging cloud characteristics (i.e.,
auto-scaling).

1. We developed an effective approach for detecting malware using
process-level features for low-level malware in an auto-scaling scenario.

2. We introduced a novel pairing samples approach for capturing
correlations between VMs.

Future Work:

• Applying and testing multiple architectures (e.g., hadoop systems or
containers)

• Investigating and leveraging more cloud characteristics for security.
• Develop techniques to handle the situation when multiple VMs are

infected simultaneously by an attacker.

Conclusion & Future Work

25

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

Questions/Comments

26

