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Introduction and Motivation
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Malware Detection Classification

Malware Detection using Machine Learning

File ClassificationOnline Malware Detection

1. File classification:
○ Given a file/executable, classify if it’s a malware or not by running it and observing its 

behavior.
○ You have a file as a suspect.
○ You don’t keep monitoring them once they are clean.

2. Online malware detection:
○ Assume that the malware got into the system and is executing.
○ You keep monitoring the system’s behavior for malware detection.
○ You don’t just focus on a given file, but the entire system (processes).

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

3



Malware Detection using ML
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Malware Detection using ML
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Motivation

Online Malware Detection

        Features Extraction

Performance metrics Memory features System/API calls
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What makes an approach cloud-specific?

Most, if not all, cloud-specific research:
✔ Restrict the selection of features to those that can only be fetched through the hypervisor.
✘ Leverage cloud characteristics for online malware detection.
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Motivation (cont.)
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Can we leverage cloud characteristics for online malware detection? “Auto-Scaling”
Goal: Leverage auto-scaling for online malware detection by:

● Using 2d CNN to learn processes behavior of multiple VMs. 
● Introducing a novel approach of pairing samples to accommodate for correlations between VMs.
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3-tier example
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CNN Overview
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Ref: blog.csdn.net
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Methodology
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Process-level Performance Metrics

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

➢ We use performance metrics as a way of defining a process behavior.
➢ 28 process-level performance metrics.
➢ These metrics can easily be fetched through the hypervisor.
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Shallow CNN Model
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Input layer

Convolution Layer 1 + ReLU activation

Max Pooling Layer 1

Convolution Layer 2 + ReLU activation

Max Pooling Layer 2

Fully Connected Layer 1 + ReLU activation

Dropout Layer 

Fully Connected Layer 2

Standardized Input Matrix

Output Prediction
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We represent each sample as an image (2d matrix) which will be the input 
to the CNN. 

Consider a sample       at a particular time   , that records     features 
(performance metrics) per process for      processes in a VM:

CNN Input

© Mahmoud Abdelsalam World Leading Research with Real World Impact!

13



➢ CNN requires the same process to remain in the same row in each 
sample.

➢ The CNN in computer vision takes fixed-size images as inputs, so 
the number of features and processes must be predetermined.

Use the max process identification number (PID) which is set by the 
OS?

○ The limit (max number of PIDs) is defined in /proc/sys/kernel/pid_max 
which is usually 32k.

○ Huge input matrix!
○ Change the max PID number defined? 

■ Kernel confusion if wrap around happened too often.

➢ there is no guarantee that, for instance, a process with a PID 1000 
at a particular time is going to be the same process at a later time.

CNN Input (cont.)
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➢ We define a process, referred to as unique process, by a 3-tuple:
○ process name
○ command line used to run process
○ hash of the process binary file (if applicable)

➢ We set the maximum number of unique processes to 120 to 
accommodate for newly created unique processes.

Unique process
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+-------+----------------+-------------------------------------------------------+------------------------------------+-------------+------------------------------+
| pid    | name           | cmd                                                           | hash                | kb_sent     | cpu_user | sample_time               |
+-------+----------------+-------------------------------------------------------+------------------------------------+----------+----------+---------------------+
| 1241 | php-fpm7.0 | php-fpm: pool www                                    | 7eb8522425... | 33.61710  |  0.03000  | 2018-06-15 11:19:04  |
| 1240 | php-fpm7.0 | php-fpm: pool www                                    | 7eb8522425... | 38.79308  |  0.00000  | 2018-06-15 11:19:04  |
| 1221 | php-fpm7.0 | php-fpm: master process (/etc/php/7.0/...  | 7eb8522425... |  0.00000   |  0.02000  | 2018-06-15 11:19:04  |
| 1287 | python        | python                                                        | 23eeeb4347… |  0.00000   |  0.15000  | 2018-06-15 11:19:04  |
+------+-----------------+-------------------------------------------------------+--------------------+--------------+--------------+-----------------------------+
+-----------------------------------------------------------------------------------------------+
|                                            Unique Process                                |
+----------------+-------------------------------------------------------+--------------------+----------------------+----------------------+-----------------------------+
| name          | cmd                                                           | hash                | AVG(kb_sent)     | AVG(cpu_user) | sample_time               |
+----------------+-------------------------------------------------------+--------------------+----------------------+----------------------+-----------------------------+
| php-fpm7.0 | php-fpm: pool www                                    | 7eb8522425... |  36.2051             |  0.0150              | 2018-06-15 11:19:04  |
| php-fpm7.0 | php-fpm: master process (/etc/php/7.0/...  | 7eb8522425... |  0.00000             |  0.0200              | 2018-06-15 11:19:04  |
| python        | python                                                        | 23eeeb4347… |  0.00000             |  0.1500              | 2018-06-15 11:19:04  |
+----------------+-------------------------------------------------------+--------------------+----------------------+----------------------+-----------------------------+



Unique process (cont.)
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Two different experiments (each with a different malware) where the number of
total standard processes are compared to the number of unique processes.



Single VMs Single Samples 
(SVSS)
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Single VMs Single Samples 
(SVSS)
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Disadvantage: Losing information if a VM has some effects on other VMs.



Multiple VMs Single Samples 
(MVSS)
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Key Intuition

Number of used voluntary context switches over 30 
minutes for two different runs of the same unique 
process

Number of used voluntary context switches over 30 
minutes for one run of 10 VMs in an auto-scaling 
scenario.

What do we gain from having multiple VMs in an auto-scaling scenario?
“Correlation between VMs”
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Multiple VMs Paired Samples 
(MVPS)
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Experimental Setup and Results
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➢ Our experiments were conducted

on Openstack.

➢ To simulate a real world scenario,

we used a 3-tier web architecture

and a self-similar traffic gen.

(on/off Pareto) is used.

➢ Data collection:

Experimental Setup
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Clean phase Malware injection Point.
113 Malware executables are 
injected (one per experiment).

Period of potential 
malware activity prone 
to mislabeling problem

Collect 28 different process performance metrics 
(Table I) every 10 seconds for ≃ 100 processes
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Results

MVSS MVPS
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The goal of this paper was to provide a develop cloud-specific online 
malware detection method by leveraging cloud characteristics (i.e., 
auto-scaling).

1. We developed an effective approach for detecting malware using 
process-level features for low-level malware in an auto-scaling scenario.

2. We introduced a novel pairing samples approach for capturing  
correlations between VMs.

Future Work:

• Applying and testing multiple architectures (e.g., hadoop systems or 
containers)

• Investigating and leveraging more cloud characteristics for security.
• Develop techniques to handle the situation when multiple VMs are 

infected simultaneously by an attacker.

Conclusion & Future Work

25



© Mahmoud Abdelsalam World Leading Research with Real World Impact!

Questions/Comments
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