
C-SPECC Presentation
Fall 2018

Deep Learning for Privacy 
and Code Analysis

John Heaps



Learning Information Type 
Semantics to Verify Privacy 

Requirements

John Heaps
Mitra Bokaei Hosseini



The Goal
● Mobile and web apps are becoming increasingly popular and prevalent; when 

using the services personal information about the user is collected and stored

● Collected information can expose users to potential privacy risks if 
mishandled or misused (Facebook, Google, etc.)

● California law and many European nations require app developers to provide 
users with a legal privacy notice (privacy policy) detailing what information is 
collected, how it is used, and with whom it is shared

● However, it is difficult to determine compliance verification (i.e., if the app 
code performs as described by the privacy policy) (e.g., HIPPA (Health 
Insurance Portability and Accountability Act of 1996))



● Currently this is done by utilizing look-up tables, platform permissions, and 
information flow analysis, which uses “information types” (i.e., keywords that 
describe different types of information), however:

○ Information types must be compiled manually which is time consuming 
○ Information types (especially in natural language) are ambiguous (hypernymy, synonymy, etc.) 

which leads to inconsistencies and false positives/negatives in analysis

● Example from Adobe privacy policy:
○ “When you activate your Adobe product, we collect certain information about your device, the 

Adobe product, and your product serial number”
○ information about your device => information about your {mobile device, laptop, desktop, etc.}
○ Can imply device id, ip address, contacts, etc.



● Information types can be represented in an ontology
○ Can take steps to create and maintain ontology automatically
○ Will heavily reduce ambiguity of information types

● Ontology: a vocabulary of words/phrases and the relationships between them
○ Example: device is hypernymy of mobile device
○ Ours contains hypernymy and synonymy

● Can we utilize deep learning to maintain an ontology of information types?



Convolutional Neural Network (CNN)



What is it?

● Simplest Definition: A neural network that uses convolution hidden layers

● Very good at image processing

● Relatively little preprocessing of data needed



Convolution
● In mathematics: an operation on two functions to produce a third function that 

expresses how the shape of one is modified by the other

● In neural networks: a matrix that acts as a filter (also called a kernel) to detect 
important features in data

● The filter is a matrix of weights that defines important features

● It slides over an image where the dot product is calculated between the filter 
and the current pixels it is sliding over (this is the convolution operation)

● Larger values indicate a stronger presence of the feature 



Source: https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67bb41454e1



Source: https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67bb41454e1





● The filter is the weights that are trained using backpropagation

● The filter size depends on a number of factors (type/size of data, programmer 
decisions, etc.)

● Usually multiple filters are trained at once to capture multiple important 
features

● Convolution is passed through a non-linear activation function before being 
processed by next layer (relu, tanh, etc.)

● Problem: this can take a LOT of time/calculations



Pooling
● Two main purposes:

○ Reduce the size of the image space (fewer computations)
○ Identify the important information

● Slides a window over the image and reduces the data in the window

● Many types of pooling, but most popular is “max pooling”





Word Embeddings



What is it?
● The mapping of a vocabulary of words/phrase to real-valued vector 

representations in order to perform calculations on them

● Vectors represent a relative semantic meaning between words/phrases in the 
vector space

● Embeddings of words/phrases with similar semantic meaning should be 
grouped together in the vector space (e.g. - dog and puppy, etc.)

● Queen = King - Man + Woman

● Two of the most popular algorithms are GloVe and Skip-Gram



GloVe (Global Vectors for word representation)
● Word frequency based algorithm

● Constructs a word-to-word co-occurrence matrix

● Matrix factorization is utilized to determine the vector values for each word



Source: https://towardsdatascience.com/word-to-vectors-natural-language-processing-b253dd0b0817



Skip-Gram
● Word prediction based algorithm

● A window size is defined

● For each word in the corpus the surrounding words (defined by the window 
size) are used as context for that word

● A neural network is used to predict the context for that word and modifies the 
vector values for that word during backpropagation



Source: https://towardsdatascience.com/word-to-vectors-natural-language-processing-b253dd0b0817



Network Training and Results



The Data
● Word Embeddings

○ Trained domain-specific word embeddings using 77,556 English privacy policies collected 
from mobile apps from Google Play Store

○ Used Word2Vec which is a Skip-gram algorithm

● Base Ontology
○ We must have an existing ontology to train our model
○ Current ontology has 367 information types extracted from 50 privacy policies
○ The relations between each pair of information types were annotated by 6 experts with 

hypernymy, synonymy, or unrelated, roughly resulting in 67,161 comparisons
○ Resulted in 1583 hypernym pairs, 310 synonym pairs, and 65,268 unrelated pairs
○ 90% of each of the pairs was used for training and 10% for testing



● Extending Ontology:
○ We found 74 more unique information types from 6 other privacy policies to be added to the 

existing ontology
○ A ground truth (hypernym and synonym relations) was determined for the extended ontology
○ Pairs were formed between each 74 new information types and 367 existing information types 

which were given to our trained model to be classified



The Approach
● To add a new information type to the base ontology, we must determine 

relationships between it and ALL current information types in the ontology

● Input to the model will be a pair of information types (1 new, 1 existing)

● The semantic meaning of each information type will be modeled using a CNN 
(as it is difficult to directly find embeddings for information types)

● A semantic similarity will be calculated between the two CNN outputs

● Softmax will determine if the pairs relationship is hypernymy, synonymy, or 
unrelated

● New information type will be added based on all determined relationships



Model Architecture 



CNN



Semantic Similarity Calculation



Model Configurations (Hyper Parameters)



The Results

● True Positive (TP) = pair predicted as hypernym or synonym and is present in 
the ground truth

● False Positive (FP) = pair predicted as hypernym or synonym and is not 
present in the ground truth

● False Negative (FN) = pair predicted as unrelated and is not present in the 
ground truth

● True Negative (TN) = pair predicted as unrelated and is present in the ground 
truth





● We also performed an example violation detection using the base ontology 
and new ontology extended by our model

● We used a mapping from API method calls to information types to determine 
if a violation existed

● Performed the detection over 501 apps and found 26 new violations across 
14 apps



Future Work
● Compare results of using RNN to CNN

● Find ways to reduce the FP and FN

● Currently, the model can determine the type of relationship between 
information type pairs, but cannot determine the direction of that relationship 
(hypernymy); will find an alternative to the semantic similarity measure in 
order to determine this



? Questions ?



Understanding the Meaning of 
Code Elements Using Deep 

Learning
John Heaps



The Goal
● Program analysis on software source code can be used to assist in many 

developer tasks

● Many tools and approaches exist that rely on mappings from code elements 
and patterns to high-level concepts to perform analysis

○ Is usually a manual or semi-automated process which can be quite costly
○ Difficult and costly to stay up-to-date with new code versions (e.g. - languages, APIs, etc.)

● An automated technique that can construct mappings from code elements to 
high-level concepts will significantly enhance usability of code analysis tools 
in practice

● We propose using Word2Vec to represent code elements and deep learning 
to determine mappings



The Approach
● Word Embeddings

○ Preprocessing of code:
■ Code is very different from natural language, particularly the structure
■ We will convert code to an Abstract Syntax Tree (AST)

○ Using an AST, Word2Vec context can be based on structure, not just a window size
○ Will perform an analysis on embeddings to determine if they are reasonable (i.e. - like code 

elements should be grouped together in the word embedding vector space)

● Deep Learning
○ We will train a Recurrent Neural Network (RNN) to perform classification
○ RNN is appropriate as a code element is either dependent on what elements have come 

before it in its scope or dependent on a definition which is a series of code elements

● Training Analysis
○ We will compile a ground truth of mappings and use 90% for training and 10% for testing





Current State of Research
● Data

○ Our initial approach will focus on access control libraries in Java
○ Identified 4 access control libraries:

■ Spring Security
■ Casbin
■ Apache Shiro
■ Google IAM

● Preprocessing
○ We are currently modifying Word2Vec to accept dynamic number of inputs based on code 

structure (vs. the normal static window size based on word position)

● Knowledge Base and Classification
○ We are currently compiling data for the Knowledge Base and the ground truth for classification 

results to be measured against



? Questions ?


