C-SPECC Presentation
Fall 2018
Deep Learning for Privacy
and Code Analysis

John Heaps

Learning Information Type
Semantics to Verify Privacy
Requirements

John Heaps
Mitra Bokael Hosseini

The Goal

e Mobile and web apps are becoming increasingly popular and prevalent; when
using the services personal information about the user is collected and stored

e Collected information can expose users to potential privacy risks if
mishandled or misused (Facebook, Google, etc.)

e California law and many European nations require app developers to provide
users with a legal privacy notice (privacy policy) detailing what information is
collected, how it is used, and with whom it is shared

e However, it is difficult to determine compliance verification (i.e., if the app
code performs as described by the privacy policy) (e.g., HIPPA (Health
Insurance Portability and Accountability Act of 1996))

Currently this is done by utilizing look-up tables, platform permissions, and
information flow analysis, which uses “information types” (i.e., keywords that

describe different types of information), however:
o Information types must be compiled manually which is time consuming
o Information types (especially in natural language) are ambiguous (hypernymy, synonymy, etc.)
which leads to inconsistencies and false positives/negatives in analysis

Example from Adobe privacy policy:
o “When you activate your Adobe product, we collect certain information about your device, the
Adobe product, and your product serial number”

information about your device => information about your {mobile device, laptop, desktop, etc.}
o Can imply device id, ip address, contacts, etc.

e Information types can be represented in an ontology
o Can take steps to create and maintain ontology automatically
o Will heavily reduce ambiguity of information types

e Ontology: a vocabulary of words/phrases and the relationships between them

o Example: device is hypernymy of mobile device
o Ours contains hypernymy and synonymy

e Can we utilize deep learning to maintain an ontology of information types?

Convolutional Neural Network (CNN)

What is it?

e Simplest Definition: A neural network that uses convolution hidden layers
e \ery good at image processing

e Relatively little preprocessing of data needed

Convolution

In mathematics: an operation on two functions to produce a third function that
expresses how the shape of one is modified by the other

In neural networks: a matrix that acts as a filter (also called a kernel) to detect
important features in data

The filter is a matrix of weights that defines important features

It slides over an image where the dot product is calculated between the filter
and the current pixels it is sliding over (this is the convolution operation)

Larger values indicate a stronger presence of the feature

?\

Visualization of the filter on the image

0 |0 |0 |O |O |O

40|10 (0 (O (O |O
40(0 (400 (O |O |O
40 | 20 0 |0 [0 |O
0 |50 0 |0 |0 |O
0 |0 |50|0 |0 |O [0
25125|0 |50|0 |0 (O

Pixel representation of receptive field

o|jofojo |0 30 |0
01010 30 (0 |0
0|0(0]|30 |0 0 (0
00|00 |30 1|0 0 |0
0)j0|0|30 |0 0 |0
0)j0|0|30 |0 0 |0
ojojojo |0 0 |0

Pixel representation of filter

Multiplication and Summation=10

Source: https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67bb41454e1

0(0 |0 0 0 30 0(0|0 0 30 | 0
0|0(0O 50 | 50 | 50 0(0|0 30 | 0 0
0|0(0 20 (50| 0O 0 0|00 (30]0 0 0
0(0 |0 50 |50 (0 0 * ojofO0O(30 (0O 0 0
0(0]0 50 |50 (0 0 0|00 ([30]0 0 0
0(0]0 50 |50 (0 0 0|00 (30)0 0 0
0(0 |0 50 |50 (0 0 0|00 (0O 0 0 0
Visualization of the Pixel representation of the receptive Pixel representation of filter

receptive field field

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600 (A large number!)

Source: https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67bb41454e1

4

1/1/1/0(0
OxO 1x1 1x0 1 0
0><1 OxO 1><1 1 1

0(0|1|1(0
0(1(1|0(0

Convolved
Feature

Image

The filter is the weights that are trained using backpropagation

The filter size depends on a number of factors (type/size of data, programmer
decisions, etc.)

Usually multiple filters are trained at once to capture multiple important
features

Convolution is passed through a non-linear activation function before being
processed by next layer (relu, tanh, etc.)

Problem: this can take a LOT of time/calculations

Pooling

e Two main purposes:
o Reduce the size of the image space (fewer computations)
o ldentify the important information

e Slides a window over the image and reduces the data in the window

e Many types of pooling, but most popular is “max pooling”

Image 4 x4 x 1 Output2x 2x 1

Word Embeddings

What is it?

The mapping of a vocabulary of words/phrase to real-valued vector
representations in order to perform calculations on them

Vectors represent a relative semantic meaning between words/phrases in the
vector space

Embeddings of words/phrases with similar semantic meaning should be
grouped together in the vector space (e.g. - dog and puppy, etc.)

Queen = King - Man + Woman

Two of the most popular algorithms are GloVe and Skip-Gram

GloVe (Global Vectors for word representation)

e Word frequency based algorithm
e Constructs a word-to-word co-occurrence matrix

e Matrix factorization is utilized to determine the vector values for each word

1. I enjoy flying.
2. Ilike NLP.

3. Ilike deep learning.

The resulting counts matrix will then be:

I like enjoy deep learning NLP flying .
I 0 2 1 0 0 0 0 0]

like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0

X — deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 O 1 0 0 0 0 1
000 0 0 1 1 1 0.

Source: https://towardsdatascience.com/word-to-vectors-natural-language-processing-b253dd0b0817

Skip-Gram

e \Word prediction based algorithm
e A window size is defined

e For each word in the corpus the surrounding words (defined by the window
size) are used as context for that word

e A neural network is used to predict the context for that word and modifies the
vector values for that word during backpropagation

Source Text

-

brown |fox jumps

The

brown |fox | jumps

The quick-fox Jjumps

over

over

over

The|quick

brown - Jjumps

over

the lazy dog.

the lazy dog.

the lazy dog.

the lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

Source: https://towardsdatascience.com/word-to-vectors-natural-language-processing-b253dd0b0817

Network Training and Results

The Data

e \Word Embeddings

o Trained domain-specific word embeddings using 77,556 English privacy policies collected
from mobile apps from Google Play Store
o Used Word2Vec which is a Skip-gram algorithm

e Base Ontology
o We must have an existing ontology to train our model
o Current ontology has 367 information types extracted from 50 privacy policies
o The relations between each pair of information types were annotated by 6 experts with
hypernymy, synonymy, or unrelated, roughly resulting in 67,161 comparisons

Resulted in 1583 hypernym pairs, 310 synonym pairs, and 65,268 unrelated pairs
o 90% of each of the pairs was used for training and 10% for testing

e Extending Ontology:
o We found 74 more unique information types from 6 other privacy policies to be added to the
existing ontology
A ground truth (hypernym and synonym relations) was determined for the extended ontology
Pairs were formed between each 74 new information types and 367 existing information types
which were given to our trained model to be classified

The Approach

e To add a new information type to the base ontology, we must determine
relationships between it and ALL current information types in the ontology

e Input to the model will be a pair of information types (1 new, 1 existing)

e The semantic meaning of each information type will be modeled using a CNN
(as it is difficult to directly find embeddings for information types)

e A semantic similarity will be calculated between the two CNN outputs

e Softmax will determine if the pairs relationship is hypernymy, synonymy, or
unrelated

e New information type will be added based on all determined relationships

Model Architecture

Information_Type s

I . Information
Type Modeling

Information
Type Modeling

Information_Typegys

LHS
Semantic
Vector

|
RHS

Semantic
Vector

Semantic
Similarity —— Classifier

>
Calculation

§

CNN

Concatenation
T
Pooling Pooling Pooling
1 1 *
tanh tanh tanh
1 1
Convolution Convolution Convolution
T B
Filter Filter Filter
width = 1 width = 2 width =
=== _h ________________
I | Embedding Embedding Embedding Embedding Embedding
I
C 1 1 1 1 1
| XO X1 X2 xl

Semantic Similarity Calculation

dir = Vrgs © Vrus

Dis =|Vigs — Vrus

sim = o(Wdir

Udir

b)

Model Configurations (Hyper Parameters)

Function

Model Configurations Configuration Configuration
Options Selections
Number of Epochs 10, 15 10
Filter Width 3,4,5 3
Dropout Keep Rate 0.7, 0.8, 0.9 0.9
Batch Size 30, 55, 100 30
Learning Rate 0.1, 0.01, 0.001 0.001
Convolution tanh, relu, tanh
Activation Function sigmoid
Loss Normalization softmax, sigmoid softmax

The Results

e True Positive (TP) = pair predicted as hypernym or synonym and is present in
the ground truth

e False Positive (FP) = pair predicted as hypernym or synonym and is not
present in the ground truth

e False Negative (FN) = pair predicted as unrelated and is not present in the
ground truth

e True Negative (TN) = pair predicted as unrelated and is present in the ground
truth

accuracy = (T'P+TN)/(TP+TN + FP + FN)
precision = TP/(TP + FP)

recall = TP/(TP + FN)

Accuracy | Precision | Recall
0.980 0.607 0.738

We also performed an example violation detection using the base ontology
and new ontology extended by our model

We used a mapping from APl method calls to information types to determine
if a violation existed

Performed the detection over 501 apps and found 26 new violations across
14 apps

Future Work

e Compare results of using RNN to CNN
e Find ways to reduce the FP and FN

e Currently, the model can determine the type of relationship between
information type pairs, but cannot determine the direction of that relationship
(hypernymy); will find an alternative to the semantic similarity measure in
order to determine this

? Questions ?

Understanding the Meaning of
Code Elements Using Deep
Learning

John Heaps

The Goal

Program analysis on software source code can be used to assist in many
developer tasks

Many tools and approaches exist that rely on mappings from code elements

and patterns to high-level concepts to perform analysis

o Is usually a manual or semi-automated process which can be quite costly
o Difficult and costly to stay up-to-date with new code versions (e.g. - languages, APIs, etc.)

An automated technique that can construct mappings from code elements to
high-level concepts will significantly enhance usability of code analysis tools
in practice

We propose using Word2Vec to represent code elements and deep learning
to determine mappings

The Approach

e \Word Embeddings

o Preprocessing of code:
m Code is very different from natural language, particularly the structure
m We will convert code to an Abstract Syntax Tree (AST)
o Using an AST, Word2Vec context can be based on structure, not just a window size
o Will perform an analysis on embeddings to determine if they are reasonable (i.e. - like code
elements should be grouped together in the word embedding vector space)

e Deep Learning
o We will train a Recurrent Neural Network (RNN) to perform classification
o RNN is appropriate as a code element is either dependent on what elements have come
before it in its scope or dependent on a definition which is a series of code elements

e Training Analysis
o We will compile a ground truth of mappings and use 90% for training and 10% for testing

Training
Knowledge
Base

Training
Analysis

Classification

|
,Recurrent Neural rl

1 Network (RNN)

-y

Word
Embeddings
Embedding
X1
=== 1
: Source : 1
1 Code 1 :
1 L
' ' :
! Libraries | ¥
1 1 '
1 1

Preprocessing

S
>

Creation

Current State of Research

e Data
o QOur initial approach will focus on access control libraries in Java
o Identified 4 access control libraries:
m Spring Security
m Casbin
m Apache Shiro
m Google IAM

e Preprocessing
o We are currently modifying Word2Vec to accept dynamic number of inputs based on code
structure (vs. the normal static window size based on word position)

e Knowledge Base and Classification
o We are currently compiling data for the Knowledge Base and the ground truth for classification
results to be measured against

? Questions ?

