
An Algebra for Fine-Grained Integration of XACML Policies

Prathima Rao
Computer Science
Purdue University

prao@cs.purdue.edu

Dan Lin
Computer Science

Missouri S & T
lindan@mst.edu

Elisa Bertino
Computer Science
Purdue University

bertino@cs.purdue.edu

Ninghui Li
Computer Science
Purdue University

ninghui@cs.purdue.edu

Jorge Lobo
IBM T. J. Watson Research

Center
jlobo@us.ibm.com

ABSTRACT

Collaborative and distributed applications, such as dynamic coali-
tions and virtualized grid computing, often require integrating ac-
cess control policies of collaborating parties. Such an integration
must be able to support complex authorization specifications and
the fine-grained integration requirements that the various parties
may have. In this paper, we introduce an algebra for fine-grained
integration of sophisticated policies. The algebra, which consists
of three binary and two unary operations, is able to support the
specification of a large variety of integration constraints. To as-
sess the expressive power of our algebra, we introduce a notion of
completeness and prove that our algebra is complete with respect
to this notion. We then propose a framework that uses the algebra
for the fine-grained integration of policies expressed in XACML.
We also present a methodology for generating the actual integrated
XACML policy, based on the notion of Multi-Terminal Binary De-
cision Diagrams.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls

General Terms

Security

Keywords

access control, policy integration, XACML

1. INTRODUCTION
Many distributed applications such as dynamic coalitions and

virtual organizations need to integrate and share resources, and
these integration and sharing will require the integration of access
control policies. In order to define a common policy for resources
jointly owned by multiple parties applications may be required to
integrate policies from different sources into a single policy. Even

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’09, June 3–5, 2009, Stresa, Italy.
Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

in a single organization, there could be multiple policy authoring
units. If two different branches of an organization have different or
even conflicting access control policies, what policy should the or-
ganization as a whole adopt? If one policy allows the access to cer-
tain resources, but another policy denies such access, how can they
be composed into a coherent whole? Approaches to policy integra-
tion are also crucial when dealing with large information systems.
In such cases, the development of integrated policies may be the
product of a bottom-up process under which policy requirements
are elicited from different sectors of the organization, formalized
in some access control language, and then integrated into a global
access control policy.

When dealing with policy integration, it is well known that no
single integration strategy works for every possible situation, and
the exact strategy to adopt depends on the requirements by the ap-
plications and the involved parties. An effective policy integration
mechanism should thus be able to support a flexible fine-grained
policy integration strategy capable of handling complex integration
specifications. Some relevant characteristics of such an integration
strategy are as follows. First, it should be able to support 3-valued
policies. A 3-valued policy may allow a request, deny a request, or
not make a decision about the request. In this case we say the policy
is not applicable to the request. Three-valued policies are necessary
for combining partially specified policies, which are very likely to
occur in scenarios that need policy integration. When two orga-
nizations are merging and need policy integration, it is very likely
that the organizations are unaware or might not have jurisdiction
over each other resources, and thus a policy in one organization
may be “NotApplicable” to requests about resources in the other
organization. Second, it should allow one to specify the behavior
of the integrated policy at the granularity of requests and effects. In
other words, one should be able to explicitly characterize a set of
requests that need to be permitted or denied by the integrated pol-
icy. For example, users may require the integrated policy to satisfy
the condition that for accesses to an object Oi policy P1 has the
precedence, whereas for accesses to an object Oj , policy P2 has
precedence. Third, it should be able to handle domain constraints

requiring the integrated policy to be applied to a restricted domain
instead of the original domain. And fourth, it should be able to sup-
port policies expressed in rich policy languages, such as XACML
with features like policy combining algorithms.

The problem of policy integration has been investigated in pre-
vious works. The concept of policy composition under constraints
was first introduced by Bonatti et al. [7]. They proposed an al-
gebra for composing access control policies and use logic pro-
gramming and partial evaluation techniques for evaluating alge-
bra expressions. Another relevant approach is by Wijesekera et

63

Integrated Policy Generation

Integrated Policy of P1,P2,...,Pn

f(P1,P2,...,Pn)

P1 PnP2

Fine−grained Integration Algebra

Policy Expression Processing

Figure 1: Policy integration

al. [21] who proposed a propositional framework for composing
access control policies. Those approaches have however a number
of shortcomings. They support only limited forms of compositions.
For example, they are unable to support compositions that take into
account policy effects or policy jumps (i.e., if P1 permits, let P2

makes decision, otherwise P3 makes decision). They only model
policies with two decision values, either “Permit” or “Deny”. It
is not clear the scope or expressive power of their languages since
they do not have any notion of completeness. They do not pro-
vide an actual methodology or an implementation for generating
the integrated policies. Neither work relates their formalisms to
any language used in practice.

In this paper we propose a framework for the integration of ac-
cess control policies that addresses the above shortcomings. The
overall organization of our integration framework is outlined in Fig-
ure 1. The core of our framework is the Fine-grained Integration

Algebra (FIA). Given a set of input policies P1, P2, · · · , Pn, one
is able to specify the integration requirements for these input poli-
cies through a FIA expression, denoted as f(P1, P2, · · · , Pn) in
Figure 1. The FIA expression is then processed by the other com-
ponents of the framework in order to generate the integrated policy.
We demonstrate the effectiveness of our framework through an im-
plementation that supports the integration of XACML policies. We
choose XACML because of its widespread adoption and its many
features, such as attribute-based access control and 3-valued pol-
icy evaluation. We use Multi-Terminal Binary Decision Diagrams
(MTBDD) [10] for representing policies and generating the inte-
grated policies in XACML syntax. With the aid of the implemen-
tation of algebra operators, users can now easily specify their in-
tegration requirements by an expression and do not need to write
a new complex policy combining algorithm by themselves. The
novel contributions of this paper can be summarized as follows:

• We propose a fine-grained integration algebra for language
independent 3-valued policies. We introduce a notion of com-
pleteness and prove that our algebra is minimal and complete
with respect to this notion.

• We propose a framework that uses the algebra for the fine-
grained integration of policies expressed in XACML. The
method automatically generates XACML policies as the pol-
icy integration result. To the best of our knowledge, none of
the existing approaches has generated real policies as policy
integration output.

• We have carried out experimental studies which demonstrate
the efficiency and practical value of our policy integration
approach.

The rest of the paper is organized as follows. Section 2 reviews
related works on policy integration. Section 3 introduces back-
ground information on XACML and some preliminary definitions.

Section 4 presents our fine-grained integration algebra. Section 5
discusses the expressiveness of the algebra. Section 6 presents de-
tailed algorithms for generating well-formed integrated XACML
policies. Section 7 reports our experimental study. Section 8 con-
cludes the paper.

2. RELATED WORK
Many efforts have been devoted to policy composition [6, 7, 16,

19, 21, 12, 13, 8, 21]. However, for very few of these approaches,
the expressive power has been analyzed. Moreover, none of them
generates real policies as result of policy composition.

One early work on policy composition is the policy algebra pro-
posed by Bonatti et al. [7], which aims at combining authorization
specifications originating from heterogenous independent parties.
They model an access control policy as a set of ground (variable-
free) authorization terms, where an authorization term is a triple
of the form (subject, object, action). However, their algebra only
supports 2-valued policies and they do not clearly point out what
authorization specifications can be expressed and what cannot by
using their algebra. Regarding the algebra implementation, they
suggest to use logic programming, but do not show any experimen-
tal result. Compared to their work, we have proved that our algebra
can express any possible policy integration requirement and our
implementation is based on representations used in model check-
ing techniques which have been proven to be very efficient. Later,
Jagadeesan et al. [13] proposed a 3-valued policy algebra using
the timed concurrent constraint programming paradigm and define
boolean operators whose expressive power is equivalent to the al-
gebra in [7] in addition to added temporal features. However, this
is only a theoretical work which does not have any implementation
for generating the integrated policy.

Another related work is by Backes et al. [6] who proposed an al-
gebra for combining enterprise privacy policies. They define con-
junction, disjunction and scoping operations on 3-valued EPAL [5]
policies. However, they did not prove the completeness. In other
words, they cannot support some integration requirements that can
be expressed by our algebra. Mazzoleni et al. [15] have proposed an
extension to the XACML language, called policy integration pref-

erences, using which a party can specify the approach that must
be adopted when its policies have to be integrated with policies by
other parties. They do not discuss mechanisms to perform such
integrations. Also, the integration preferences discussed in such
work are very limited and do not support fine-grained integration
requirements as those presented in Section 5.2.

Most recently, Bruns et al. [8] proposed an algebra for four-
valued policies based on Belnap bilattice. In particular, they map
four possible policy decisions, i.e. grant, deny, conflict and unspec-
ified, to Belnap bilattice and claim that their algebra is complete
and minimal. However, such completeness is limited to Belnap
space where policy decisions need to follow certain order accord-
ing to the Belnap bilattice. Moreover, they did not propose any
implementation of their algebra.

Our work is also related to the area of many-valued logics. Most
work in such area focuses on establishing criteria for Sheffer func-

tions in m-valued logic. A Sheffer function is a single logical func-
tion that is complete. Martin [14] isolates all binary sheffer func-
tions in 3-valued logic and proves properties of such functions.
Wheeler [20] proves a generalization of [14] and establishes the
necessary and sufficient conditions for n-nary Sheffer functions in
the context of 3-valued propositional calculus. Rousseau [18] pro-
vides further generalization and proves the necessary and sufficient
conditions for any finite algebra with a single operation to be com-
plete. Arieli et al. [4] propose a propositional language with four-

64

valued semantics and study the expressive power of their language.
They also compare 3-valued and 4-valued formalisms. In contrast
to these approaches, we do not find or establish criteria for all possi-
ble complete operators or functions for a 3-valued algebra. Instead,
we focus on the definition of a set of operators that have intuitive
semantic meaning in the context of combining 3-valued policies
and study whether this set of operators is complete. We also study
properties such as expressive power and minimality for this set of
operators.

3. PRELIMINARIES

3.1 An Overview of XACML
XACML [2] is the OASIS standard language for the specification

of access control policies. XACML policies include the following
components: a Target, a Rule set, a Rule combining algorithm and a
set of Obligations. The Target identifies the set of requests that the
policy applies to. Each Rule consists of Target, Condition and Ef-

fect elements. The rule Target has the same structure as the policy
Target. It specifies the set of requests that the rule applies to. The
Condition element may further refine the applicability established
by the target. The Effect element specifies whether the requested
actions should be allowed (“Permit”) or denied (“Deny”). The re-
strictions specified by the target and condition elements support the
notion of attribute-based access control under which access control
policies are expressed as conditions against the properties of sub-
jects and protected objects. If a request satisfies both the rule target
and rule condition predicates, the rule is applicable to the request
and will yield a decision as specified by the Effect element. Oth-
erwise, the rule is not applicable to the request and will yield a
“NotApplicable” decision. If an error occurs to the evaluation of a
rule, an “Indeterminate” decision is returned. The 3-valued algebra
discussed in this paper is applicable to error free XACML policies
where in the authorization decision is one of “Permit”, “Deny” or
“NotApplicable”. However, the 3-valued algebra can be easily ex-
tended to a 4-valued algebra with similar properties that supports
the “Indeterminate” decision [17].

The Rule combining algorithm is used to resolve conflicts among
applicable rules with different effects. Obligations1 represent a set
of operations that must be executed in conjunction with an autho-
rization decision. An obligation is associated with either “Permit”
or “Deny” decision.

We now introduce an example of XACML policies that will be
used throughout the paper.

EXAMPLE 1. Consider a company with two departments D1

and D2. Each department has its own access control policies for

the data under its control. Assume that P1 and P2 are the access

control policies of D1 and D2 respectively. P1 contains two rules,

P1.Rul11 and P1.Rul12. P1.Rul11 states that the manager is al-

lowed to read and update any data in the time interval [8am, 6pm].

P1.Rul12 states that any other staff is not allowed to read. P2

also contains two rules, P2.Rul21 and P2.Rul22. P2.Rul21 states

that the manager and staff can read any data in the time interval

[8am, 8pm], and P2.Rul22 states that the staff cannot perform any

update action. For simplicity, we adopt the following succinct rep-

resentation in most discussion, where “role”, “act” and “time”

are attributes representing information on role, action and time,

respectively.

P1.Rul11: role=manager, act=read or update,

1Due to limited space we have omitted discussion of methods for
generating the correct set of obligations for an integrated policy in
this paper. More details regarding this can be found in [17].

time= [8am, 6pm], effect= Permit.

P1.Rul12: role=staff, act=read, effect = Deny.

P2.Rul21: role=manager or staff, act=read,

time = [8am, 8pm], effect = Permit.

P2.Rul22: role=staff, act=update, effect = Deny.

3.2 Definitions
Before we introduce our algebra we need to find a suitable def-

inition for a policy. We propose a simple yet powerful definition
for a policy according to which a policy is defined by the set of re-
quests that are permitted by the policy and the set of requests that
are denied by the policy. This simple notion will provide us with
a precise characterization of the meaning of policy integration in
terms of the sets of permitted and denied requests. In the rest of
this paper, we use Y , N and NA to denote the “Permit”, “Deny”
and “NotApplicable” decisions respectively.

In our work, we assume the existence of a vocabulary Σ of at-
tribute names and domains. Each attribute, characterizing a subject
or an object or the environment, has a name a and a domain, de-
noted by dom(a), in Σ. The following two definitions introduce
the notion of access request (request, for short) and policy seman-
tics.

DEFINITION 1. Let a1, a2, ..., ak be a set of attribute names

and let vi ∈ dom(ai) (1 ≤ i ≤ k) in the vocabulary Σ. r ≡
{(a1, v1), (a2, v2), · · · , (ak, vk)} is a request over Σ. The set of

all requests over Σ is denoted as RΣ.

EXAMPLE 2. Consider policy P1 from Example 1. An example

of request to which this policy applies is that of a manager wishing

to read any resource at 10am. According to Definition 1, such re-

quest can be expressed as r ≡ {(role, manager), (act, read), (time,
10am)}.

DEFINITION 2. A 3-valued access control policy P is a func-

tion mapping each request to a value in {Y, N, NA}. RP
Y , RP

N and

RP
NA denote the set of requests permitted, denied and not appli-

cable by the policy P respectively, and RΣ = RP
Y ∪ RP

N∪ RP
NA,

RP
Y

T

RP
N = ∅, RP

Y

T

RP
NA = ∅, RP

N

T

RP
NA = ∅. We define a

policy P as a triple 〈RP
Y , RP

N , RP
NA〉.

Our approach to formulating the definition of a policy is inde-
pendent of the language in which access control policies are ex-
pressed. Therefore, our approach can be applied to languages other
than XACML.

4. A FINE-GRAINED INTEGRATION

ALGEBRA
The Fine-grained Integration Algebra (FIA) is given by 〈Σ, PY,

PN, +, & , ¬, Πdc〉, where Σ is the vocabulary of attribute names
and their domains, PY and PN are two policy constants, + and &
are two binary operators, and ¬ and Πdc are two unary operators.

4.1 Policy Constants and Operators in FIA
We now describe the policy constants and operators in FIA. In

what follows, P1 ≡ 〈RP1

Y , R
P1

N , R
P1

NA
〉 and P2 ≡ 〈RP2

Y , R
P2

N , R
P2

NA
〉

denote two policies to be combined, and PI ≡ 〈RPI

Y , R
PI

N , R
PI
NA

〉
denotes the policy obtained from the combination. Operators on
policies are described as set operations.

Permit policy (PY) . PY is a policy constant that permits every-
thing. Thus PY ≡ 〈RΣ, ∅, ∅〉

Deny policy (PN) . PN is a policy constant that denies everything.

65

Thus PN ≡ 〈∅, RΣ, ∅〉

Addition (+) . Addition of policies P1 and P2 results in a com-
bined policy PI in which requests that are permitted by either P1

or P2 are permitted, requests that are denied by one policy and are
not permitted by the other are denied. More precisely:

PI = P1 + P2 ⇐⇒



R
PI
Y = R

P1

Y ∪ R
P2

Y

R
PI

N = (RP1

N \RP2

Y) ∪ (RP2

N \RP1

Y)

A binary operator can be viewed as a function that maps a pair of
values {Y, N,NA} to one value. We give this view of addition, in-
tersection, and two other derived binary operators to be introduced
later in Table 1. A binary operator is represented using a matrix
that illustrates the effect of integration for a given request r. The
first column of each matrix denotes the effect of P1 with respect to
r and the first row denotes the effect of P2 with respect to r.

Intersection (&) . Given two policies P1 and P2, the intersec-
tion operator returns a policy PI which is applicable to all requests
having the same decisions from P1 and P2. More precisely,

PI = P1 & P2 ⇐⇒



R
PI

Y = R
P1

Y ∩ R
P2

Y

R
PI

N = R
P1

N ∩ R
P2

N

The integrated policy makes a decision only when the two poli-
cies agree.

Negation (¬) . Given a policy P , ¬P returns a policy PI , which
permits (denies) all requests denied (permitted) by P . The negation
operator does not affect those requests that are not applicable to the
policy. More precisely:

PI = ¬P ⇐⇒



R
PI

Y = RP
N

R
PI

N = RP
Y

Domain projection (Πdc) The domain projection operator takes
as parameter the domain constraint dc and restricts a policy to the
set of requests identified by dc.

DEFINITION 3. A domain constraint dc takes the form {(a1,

range1), (a2, range2), · · · , (ak, rangek)}2, where a1, a2, ...,

ak are attribute names, and rangei(1 ≤ i ≤ k) is a set of values

in dom(ai). Given a request r = {(ar1 , vr1), · · · , (arm , vrm)},

we say that r satisfies dc if the following condition holds: for each

(arj
, vrj

) ∈ r (1 ≤ j ≤ m) there exists (ai, rangei) ∈ dc, such

that arj
= ai and vrj

∈ rangei.

The semantics of Πdc(P) is given by

PI = Πdc(P) ⇐⇒



R
PI
Y = {r|r ∈ RP

Y and r satisfies dc}

R
PI

N = {r|r ∈ RP
N and r satisfies dc}

4.2 FIA expressions
The integration of policies may involve multiple operators, and

hence we introduce the concept of FIA expressions.

DEFINITION 4. A FIA expression is recursively defined as fol-

lows:

- If P is policy, then P is a FIA expression.

- If f1 and f2 are FIA expressions so are (f1) + (f2), (f1) & (f2),

and ¬(f1).

- If f is a FIA expression and dc is a domain constraint then Πdc(f)
is a FIA expression.

2In case of an ordered domain, these sets can be represented by
ranges.

In what follows we will use the terms “policy” and “expression”
synonymously. In FIA expressions, the binary operators are viewed
as left associative and unary operators are right associative. The
precedence are ¬ and Πdc together have the highest precedence,
followed by & , and then by +. For example, P1 + ΠdcP2 +
¬P3 &P4 is interpreted as ((P1 +(ΠdcP2))+ ((¬P3) &P4). FIA
has algebraic properties including commutativity, associativity, ab-
sorption, distributivity, complement, idempotence, boundedness and
involution (proofs can be found in [17]).

4.3 Derived Operators
In this section, we introduce some commonly used operators.

They are defined using the core operators.

Not-applicable policy (PNA) . PNA is a policy constant that is not
applicable for every request. Since the & operator applies only to
requests that have common effects and PY and PN have no requests
with common effects, PY &PN yields a policy that is not applicable
for every request. Thus PNA can be defined as PY &PN.

Effect projection (ΠY and ΠN) . ΠY (P) restricts the policy P

to the requests allowed by it. It is defined as: ΠY (P) = P &PY.
Similarly, ΠN (P) restricts the policy P to the requests denied by
it; it is defined as ΠN(P) = P &PN. We are overloading Π to
denote both effect projection and domain projection; the meaning
should be clear from the subscript.

Subtraction (−) . Given two policies P1 and P2, the subtraction
operator returns a policy PI which is obtained by starting from P1

and limiting the requests that the integrated policy applies only to
those that P2 does not apply to. The subtraction operator is defined
as:

P1 − P2 = (PY &(¬(¬P1 + P2 + ¬P2))) +

(PN &(P1 + P2 + ¬P2)) .

To see why this is correct, observe that ¬P1 + P2 + ¬P2 will
deny a request if and only if P1 allows it and P2 gives NA for it.
Thus PY &(¬(¬P1 + P2 + ¬P2)) allows a request if and only if
P1 allows it and P2 gives NA it, and is not applicable for all other
requests. Similarly, PN & (P1 + P2 +¬P2) denies a request if and
only if P1 denies it and P2 gives NA for it.

Precedence (�) . Given two policies P1 and P2, the precedence
operator returns a policy PI which yields the same decision as P1

for any request applicable to P1, and yields the same decisions as
P2 for the remaining requests. The precedence operator can be
expressed as P1 + (P2 − P1). By limiting P2 to requests that P1

does not decide, this operator can be used as a building block for
resolving possible conflicts between two policies.

5. EXPRESSIVENESS OF FIA
In this section, we first show that our operators can express the

standard policy-combining algorithms defined for XACML poli-
cies as well as other more complex policy integration scenario. We
then show that the operators in FIA are minimal and complete in
that any possible policy integration requirements can be expressed
using a FIA expression. Finally, we discuss some interesting rea-
sonability properties of FIA.

5.1 Expressing XACML Policy Combining
Algorithms in FIA

In XACML there are six standard policy-combining algorithms
as follows:

Permit-overrides : The combined result is “Permit” if any pol-
icy evaluates to “Permit”, regardless of the evaluation result of the

66

P1 + P2
X

X
X

X
X

P1

P2 Y N NA

Y Y Y Y

N Y N N

NA Y N NA

P1 & P2
X

X
X

X
X

P1

P2 Y N NA

Y Y NA NA

N NA N NA

NA NA NA NA

P1 − P2
X

X
X

X
X

P1

P2 Y N NA

Y NA NA Y

N NA NA N

NA NA NA NA

P1 � P2
X

X
X

X
X

P1

P2 Y N NA

Y Y Y Y

N N N N

NA Y N NA

Table 1: Policy combination matrix of operator +, & ,−, �

other policies. If no policy evaluates to “Permit” and at least one
policy evaluates to “Deny”, the combined result is “Deny”. The
combination of policies P1, P2,..., Pn under this policy-combining
algorithm can be expressed as P1 + P2 + · · · + Pn.

Deny-overrides : The combined result is “Deny” if any policy
is encountered that evaluates to “Deny”. The combined result is
“Permit” if no policy evaluates to “Deny” and at least one policy
evaluates to “Permit”. Deny-overrides is the opposite of permit-
overrides. By using the combination of the negation and addition
operator, we can express deny-overrides as ¬((¬P1) + (¬P2) +
· · · + (¬Pn)).

First-applicable : The combined result is the same as the result
of the first applicable policy. This combining algorithm can be ex-
pressed by using the precedence operator. Given policies P1, P2,
..., Pn, the expression is P1� P2 � · · ·� Pn.

Only-one-applicable : The combined result corresponds to the re-
sult of the unique policy in the policy set which applies to the re-
quest. Specifically, if no policy or more than one policies are ap-
plicable to the request, the result of policy combination should be
“NotApplicable”; if only one policy is considered applicable, the
result should be the result of evaluating the policy.

When combining policies P1, · · · , Pn under this policy-combining
algorithm, we need to remove from each policy the requests appli-
cable to all the other policies and then combine the results using the
addition operator. The final expression is : (P1 − P2 −P3 − · · · −
Pn)+(P2−P1−P3−· · ·−Pn)+· · ·+(Pn−P1−P2−· · ·−Pn−1).

Note that the behaviour of Ordered-Permit-overrides and Ordered-

Deny-overrides policy combining algorithms is exactly the same
as Permit-overrides and Deny-overrides respectively except that
the policies are evaluated in the originally specified order. The
behaviour of the combined policy is the same in the unordered
and ordered versions of Permit(Deny)-overrides except the set of
obligations enforced might be different in the two versions. Thus
Ordered-Permit-overrides and Ordered-Deny-overrides policy com-
bining algorithms can be expressed using the same FIA expressions
used for Permit-overrides and Deny-overrides.

5.2 Expressing Complex Policy Integration
Requirements in FIA

Our algebra supports not only the aforementioned policy com-
bining algorithms, but also other types of policy combining require-
ments, like rule constraints. A rule constraint specifies decisions
for a set of requests. It may require that the integrated policy has
to permit a critical request. Such an integration requirement can be
represented as a new policy. Let P be a policy, and c be the policy
specifying an integration constraint. We can combine c and P by
using the first-applicable combining-algorithm. The corresponding
expression is c�P . Another frequently used operator is to find the
portion of a policy P1 that differs from a policy P2, which can be
expressed as: P1 & (¬P2).

By using the two policy constants, we can easily modify a policy
P as an open policy or a closed policy. An open policy of P allows
everything that is not explicitly denied, which can be represented
as P � PY . A closed policy of P denies everything that is not
explicitly permitted, which can be represented as P � PN.

Our algebra can also express the policy jump(similar to if-then-
else), a feature in the iptables firewall languages. The specific re-
quirement is that if a request is permitted by policy P1, then the
final decision on this request is given by policy P2; otherwise, the
final decision is given by policy P3. This can be expressed using

ΠY (P1 & P2) + ΠN(¬P1 &P2)) +

ΠY (¬P1 &P3) + ΠN(¬P1 &¬P3))

Among the four sub-expressions, the first one gives Y when both
P1 and P2 do so, and gives NA in all other cases. Similarly, the
second sub-expression gives N when P1 gives Y and P2 gives N ,
and gives NA otherwise. The third sub-expression gives Y when
P1 gives N and P3 gives Y and finally the fourth sub-expression
gives N when both P1 and P3 give N .

Next, we elaborate the example mentioned in the introduction
where the combination requirements are given for parts of a policy.

EXAMPLE 3. Consider the policies introduced in Example 1.

Assume that the policies must be integrated according to the follow-

ing combination requirement: for users whose role is manager, the

access has to be granted according to policy P1; for users whose

role is a staff, the access has to be granted according to policy P2.

The resultant policy will consist of two parts. One part is ob-

tained from P1 by restricting the policy to only deal with managers.

Such extraction can be expressed in our algebra as Πdc1(P1) where

dc1 ={(role, {manager}), (act, {read,update}), (time, [8am,8pm])}.

The other part is obtained from P2 by restricting the policy to

only deal with staff. Correspondingly, we can use the expression:

Πdc2(P2) with dc2 = {(role, {staff}), (act, {read,update}), (time,
[8am,8pm])}. Finally, we have the following expression represent-

ing the integrated policy : Πdc1(P1) + Πdc2(P2). The integrated

policy PI is thus:

PI .RulI1: role=manager, act=read or update,

time=[8am, 6pm], effect=Permit.

PI .RulI2: role=staff, act=read,

time=[8am, 8pm], effect=Permit.

PI .RulI3: role=staff, act=update, effect=Deny.

5.3 Completeness
While we have shown that many policy integration scenarios can

be handled by the operators in the algebra, our list of examples is
certainly not exhaustive. A question of both theoretical and prac-
tical importance is whether FIA can express all possible ways of
integrating policies, that is, whether FIA is complete. Addressing
this question requires choosing a suitable notion of completeness.
There are different degrees of completeness, and we show that FIA
is complete in the strongest sense. First, while Table 1 gave the pol-

icy combination matrices for the four binary operators, many other
matrices are possible, and each such matrix can be viewed as a
binary operator for combining two policies. As there are three pos-
sibilities for each cell in a matrix, namely, Y , N , and NA, and there
are nine cells, the total number of matrices is 39 = 19683. Second,
when n (n ≥ 2) policies are combined, policy combination can be
expressed using a n-dimensional matrix. We show that each such
n-dimensional matrix can be expressed using 〈PN,PY, +, & ,¬〉.
Finally, a fine-grained integration may use different policy combi-

67

P1, P2, ..., Pk−1 Pk M∗ fk−1(P1, P2, ..., Pk−1)

Y, Y, ..., Y Y e1,1 fk−1
1,1 (P1, P2, ..., Pk−1)

...

NA, NA, ...,NA Y e
1,3k−1 fk−1

1,3k−1
(P1, P2, ..., Pk−1)

Y, Y, ..., Y N e2,1 fk−1
2,1 (P1, P2, ..., Pk−1)

...

NA, NA, ...,NA N e2,3k−1 fk−1

2,3k−1 (P1, P2, ..., Pk−1)

Y, Y, ..., Y NA e3,1 fk−1
3,1 (P1, P2, ..., Pn−1)

...

NA, NA, ...,NA NA e3,3k−1 fk−1

3,3k−1 (P1, P2, ..., Pk−1)

(a)

Pk ei,j fk
i,j

Y Y fk−1

i,j &(Pk&PY)

Y N fk−1

i,j &[¬(Pk&PY)]

N Y fk−1

i,j &[¬(Pk&PN)]

N N fk−1

i,j &(Pk&PN)

NA Y fk−1
i,j

NA N fk−1

i,j

(b)

Table 2: n policies

nation matrices for different requests. We show that this can be han-
dled by using the operator Πdc in addition to 〈PN,PY, +, & ,¬〉.

THEOREM 1. (Completeness) Given n (n ≥ 1) policies P1,

P2, ..., Pn, let M∗(P1, P2, ... , Pn) be a n-dimensional policy

combination matrix which denotes the combination result of the n

policies. There exists a FIA expression fI(P1, P2, ..., Pn) that is

equivalent to M∗(P1, P2, ..., Pn).

PROOF. We prove this theorem by induction. The base case is
when n = 1. Given a policy P1, its 1-dimensional matrix (Table
3) contains three entries corresponding to the Permit, Deny and
NotApplicable request sets . For each entry, we aim to find an
expression fi (1 ≤ i ≤ 3). When e1 is Y , f1 = PY&P1; when
e1 is N , f1 = ¬(PY&P1). Similarly, we can obtain f2, which is
PN&P1 for e2 equal to N and ¬(PN&P1) for e2 equal to Y . f3 is
PY − P1 when e3 is Y , and PN − P1 when e3 is N . Finally, fI

is the sum of three expressions, i.e., fI=f1+f2+f3. Note that when
all three entries are NA, the integrated policy will be PNA.

P1 Y N NA

PI e1 e2 e3

Table 3: 1-dimensional Policy Combining Matrix

Assuming that when n = k − 1 the theorem holds, we now con-
sider the case when n = k. As shown in Table 2(a), M∗(P1, ..., Pk)
has 3k entries in total, each of which is denoted as ei,j (1 ≤
i ≤ 3, 1 ≤ j ≤ 3k−1). Take entries ei,1 to ei,3k−1 as a (k-1)-
dimensional policy combination matrix, and we have three such (k-

1)-dimensional policy combination matrices corresponding to the
policy Pk’s effect. Based on the assumption, we obtain the FIA ex-
pression for each cell for the k− 1 policies as shown in the column
of fk−1(P1, ..., Pk−1).

Next, we extend fk−1(P1, ..., Pk−1) to fk(P1, ..., Pk) for each
cell in M∗ (in what follows we use fk−1 and fk for short). Ac-
cording to the effect of Pk and ei,j , we summarize the expressions
of fk in Table 2(b). Note that we do not need to consider the cell
where ei,j is NA.

Finally, we add up fk for all the cells and obtain the expression
f(P1, P2, ..., Pk).

We have shown that the theorem holds for n = 1, and we have
also shown that if the theorem holds for n = k−1 then it holds for
n = k. We can therefore state that it holds for all n.

So far, we have proved the completeness in the scenario when
there is one n-dimensional combination matrix for all requests. In
the following theorem, we further consider the fine-grained integra-
tion when there are multiple combination matrices each of which is
corresponding to a subset of the requests.

DEFINITION 5. A fine-grained integration specification is given

by [(R1, M
∗

1), (R2, M∗

2), · · · , (Rk, M∗

k)], where R1, R2, · · · , Rk

form a partition of RΣ (the set of all requests over the vocabulary

Σ), i.e., RΣ = R1 ∪R2 ∪ ...∪Rk (k ≥ 1) and Ri ∩Rj = ∅ when

i 6= j, and each M∗

i (P1, .., Pn) (1 ≤ i ≤ k) is a n-dimensional

policy combination matrix. This specification asks requests in each

set Ri to be integrated according to the matrix M∗

i .

THEOREM 2. Given a fine-grained integration specification [(R1,

M∗

1), (R2, M∗

2), · · · , (Rk, M∗

k)], if for each Ri, there exists dci,1,

· · · , dci,mi
such that Ri = R(dci,1) ∪ · · · ∪ R(dci,mi

)(where

R(dci,j) denotes the set of requests satisfying dci,j), then there

exists a FIA expression fI(P1, P2, ..., Pn) that achieves the inte-

gration requirement.

PROOF. We first use the domain projection operator Πdc to project
each policy according to dc1,1, · · · , dck,mk

. For requests in each
R(dci,j), there is one fixed M∗

i . By Theorem 1, there is a FIA ex-
pression (denoted as fi,j) for integrating policies Πdci,j

(P1), ...,
Πdci,j

(Pn) according to M∗

i . Finally, fI is the addition of all
fi,j’s.

We note that the above theorem requires that each Ri in the par-
tition to be expressible in a finite number of domain constraints.

5.4 Minimal Set of Operators
Recall that FIA has {PY,PN, +, & ,¬, Πdc}. The operator Πdc

is needed to deal with fine-grained integration. Operators {PY, PN,
+, & , ¬} are complete in the sense that any policy combination
matrix can be expressed using them. A natural question is among
the set Θ = {PN,PY,PNA, +, & ,¬, ΠY , ΠN ,−,�}, what sub-
sets are minimally complete. We say a subset of Θ is minimally
complete, if operators in the subset are sufficient for defining all
other operators in Θ, and any smaller subset cannot define all oper-
ators in Θ. The following theorem answers this question. The only
redundancy in {PY,PN, +, & ,¬} is that only one of PY and PN

is needed.

THEOREM 3. Among the 10 operators in Θ, there are 12 min-

imally complete subsets. They are the 12 elements in the cartesian

product {¬} × {PY,PN} × {ΠY , ΠN , & } × {+, �}.

Proof of Theorem 3 can be found in [17].

6. INTEGRATED POLICY GENERATION
In this section, we present an approach to automatically generate

the integrated policy given the FIA policy expression. Internally,
we represent each policy as a Multi-Terminal Binary Decision Dia-
gram (MTBDD) [10], and then perform operations on the underly-
ing MTBDD structures to generate the integrated policy. We have

68

chosen an MTBDD based implementation of the proposed algebra
because (i) MTBDDs have proven to be a simple and efficient rep-
resentation for XACML policies [9] and (ii) operators in FIA can be
mapped to efficient operations on the underlying policy MTBDDs.
Our approach consists of three main phases:

1. Policy representation: For each policy Pi in the FIA expres-
sion f(P1, P2, ..., Pn), we construct a policy MTBDD, T Pi .

2. Construction of the integrated policy MTBDD: We combine
the individual policy MTBDD structures according to the oper-
ations in the FIA expression to construct the integrated policy

MTBDD.

3. Policy generation: The integrated policy MTBDD is then used
to generate the actual integrated XACML policy.

6.1 Policy Representation
We can define a policy P as a function P : R → E from the

domain of requests R onto the domain of effects E, where E =
{Y, N, NA}.

An XACML policy can be transformed into a compound Boolean
expression over request attributes [3]. A compound Boolean ex-
pression is composed of atomic Boolean expressions (AE) com-
bined using the logical operations ∨ and ∧. Atomic Boolean ex-
pressions that appear in most policies belong to one of the follow-
ing two categories: (i) one-variable equality constraints, a⊲c, where
a is an attribute name, c is a constant, and ⊲ ∈ {=, 6=}; (ii) one-
variable range constraints, c1 ⊳a ⊲ c2, where a is an attribute name,
c1 and c2 are constants, and ⊳, ⊲ ∈ {<,≤}.

EXAMPLE 4. Policy P1 from Example 1 can be defined as a

function :

P1(r) =

8

>

>

>

<

>

>

>

:

Y if role = manager ∧ (act = read∨

act = update)∧ 8am ≤ time ≤ 6pm

N if role=staff ∧ act=read

NA Otherwise

where r is a request of the form {(role, v1), (act, v2), (time, v3)}.

We now encode each unique atomic Boolean expression AEi in
a policy into a Boolean variable xi such that: xi = 0 if AEi is
false; xi = 1 if AEi is true. To determine unique atomic
Boolean expressions we use the following definition. The Boolean
encoding for policy P1 is given in Table 4.

i AEi xi

0 role = manager x0

1 role = staff x1

2 act = read x2

3 act = update x3

4 8am ≤ time ≤ 6pm x4

Table 4: Boolean encoding for P1

Using the above Boolean encoding, a policy P can be trans-
formed into a function P : Bn 7→ E, over a vector of Boolean
variables, ~x = x0, x1, · · · , xn, onto the finite set of effects E =
{Y, N, NA}, where n is the number of unique atomic Boolean ex-
pressions in policy P . A request r corresponds to an assignment
of the Boolean vector ~x, which is derived by evaluating the atomic
Boolean expressions with attribute values specified in the request.

x

1x 1x 1x

0x

1x

2x 2x
2x 2x

3x 3x 3x
3x 3x3x

4x 4x
4x

5x5x 5x

N NA Y N NA Y

P1
P20

Figure 2: MTBDDs of P1 and P2

EXAMPLE 5. After Boolean encoding, the policy P1 is trans-

formed into the function :

P1(~x) =

8

>

<

>

:

Y if x0 ∧ (x2 ∨ x3) ∧ x4

N if x1 ∧ x4

NA Otherwise

The transformed policy function can now be represented as a
MTBDD. A MTBDD provides a compact representation of func-
tions of the form f : B

n 7→ R, which maps bit vectors over a set
of variables (Bn) to a finite set of results (R). The structure of a
MTBDD is a rooted acyclic directed graph. The internal (or non-
terminal) nodes represent Boolean variables and the terminals rep-
resent values in a finite set. Each non-terminal node has two edges
labeled 0 and 1 respectively. Thus when a policy is represented
using a MTBDD, the non-terminal nodes correspond to the unique
atomic Boolean expressions and the terminal nodes correspond to
the effects. Each path in the MTBDD represents an assignment for
the Boolean variables along the path, thus representing a request
r. The terminal on a path represents the effect of the policy for
the request represented by that path. Note that different orderings
on the variables may result in different MTBDD representations
and hence different sizes of the corresponding MTBDD represen-
tation. Several approaches for determining the variable ordering
that results in an optimally sized MTBDD can be found in [11].
For examples discussed in this paper, we use the variable ordering
x0 ≺ x1 ≺ x2 ≺ x3 ≺ x4. The MTBDD of the policy P1 is
shown in Figure 2, where the dashed lines are 0-edges and solid
lines are 1-edges.

Compound Boolean expression representing the policies to be
integrated may have atomic Boolean expressions with matching
attribute names but overlapping value ranges. In such cases, we
need to transform the atomic Boolean expressions with overlapping
value ranges into a sequence of new atomic Boolean expressions
with disjoint value ranges, before performing the Boolean encod-
ing. A generic procedure for computing the new atomic Boolean
expression is described below.

Assume that the original value ranges of an attribute a are [d−

1 , d+
1],

[d−

2 , d+
2], ..., [d−

n , d+
n] (the superscript ‘-’ and ‘+’ denote lower

and upper bound respectively). We sort the range bounds in an
ascending order, and then employ a plane sweeping technique to
obtain the disjoint ranges: [d′−

1 , d′+

1], [d′−

2 , d′+

2], ..., [d′−

m , d′+
m],

which satisfy the following three conditions: (i) d′−

i , d′+

i ∈ D,
D = {d−

1 , d+
1 , ..., d−

n , d+
n }; (ii) ∪m

i=1[d
′−

i , d′+

i] = ∪n
j=1[d

−

j , d+

j];

and (iii) ∩m
i=1[d

′−

i , d′+

i] = ∅.
Consider policy P2 from Example 1. We can observe that the

atomic Boolean expression 8am ≤ time ≤ 6pm in P1 refers
to the same attribute as in the atomic Boolean expression 8am ≤
time ≤ 8pm in P2 and their value ranges overlap. In order to
distinguish these two atomic Boolean expressions during the later

69

policy integration, we split the value ranges and introduce the new
atomic Boolean expression 6pm ≤ time ≤ 8pm. The expression
8am ≤ time ≤ 8pm in P2 is replaced with (8am ≤ time ≤
6pm ∨ 6pm ≤ time ≤ 8pm). Boolean encoding is then per-
formed for the two policies by considering unique atomic Boolean
expressions across both policies.

EXAMPLE 6. By introducing another atomic Boolean expres-

sion 6pm ≤ time ≤ 8pm, i.e. x5, the transformed function for

policy P2 is :

P2(~x) =

8

>

<

>

:

Y, if (x0 ∨ x1) ∧ x2 ∧ (x4 ∨ x5)

N, if x1 ∧ x3

NA Otherwise

Using the same variable ordering x0 ≺ x1 ≺ x2 ≺ x3 ≺ x4 ≺
x5 we construct the MTBDD for P2 shown in Figure 2.

6.2 Construction of Integrated Policy MTBDD
Given the FIA expression f(P1, P2, ..., Pn) and the MTBDD

representations T P1 , T P2 , ..., T Pn of the policies P1,P2,...,Pn re-
spectively, we construct the integrated policy MTBDD T PI , by
performing the operations (specified in f) on the individual policy
MTBDDs.

Operations on policies can be expressed as operations on the
corresponding policy MTBDDs. Many efficient operations have
been defined and implemented for MTBDDs [10]. In particular,
we use the Apply operation defined on MTBDDs to perform the
FIA binary operations {+,−, &, �} and not operation defined on
MTBDD to perform the FIA unary negation (¬) operation. We in-
troduce a new MTBDD operation called Projection to perform
the effect(ΠY and ΠN) projection and domain projection(Πdc op-
erations defined in FIA.

The Apply operation combines two MTBDDs by a specified
binary arithmetic operation. The Apply operation traverses each
of the MTBDDs simultaneously starting from the root node. When
the terminals of both MTBDDs are reached, the specified operation
is applied on the terminals to obtain the terminal for the resulting
combined MTBDD. A variable ordering needs to be specified for
the Apply procedure.

The integrated MTBDD T PI for the policy expression f(P1, P2) =
P1+P2 is obtained by using MTBDD operation Apply(T P1 .root,

T P2 .root, +), where “root” refers to the root node of the corre-
sponding MTBDD. Figure 3 shows the integrated policy MTBDD.
The same variable ordering x0 ≺ x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 has
been used in the construction of the integrated policy MTBDD.

The procedure for performing effect projection operations is the
following. For ΠY , those paths in T P that lead to N are redirected
to the terminal NA. Similarly, for ΠN , those paths in T P that lead
to Y are redirected to the terminal NA.

For the domain projection operation with domain constraint dc,
we traverse the policy MTBDD from the top to the bottom and
check the atomic Boolean expression associated with each node
(denoted as Node). There are two cases. If the atomic Boolean
expression of Node contains an attribute specified in dc, we sim-
ply replace the attribute domain with the new domain given by dc.
Otherwise, it means Node represents an attribute no longer appli-
cable to the resulting policy, and hence we should remove it. After
removing Node, we need to adjust the pointer from its parent node
by redirecting it to Node’s left child which leads to the path when
N is not considered. After all nodes have been examined, those
nodes that have no incoming edges are also removed.

Thus, given any arbitrary FIA expression f(P1, P2, ..., Pn), we
can use a combination of the Apply, not, ProjectionMTBDD

NAN

0x

1x 1x

2x

3x

2x

3x 3x 3x

4x 4x 4x

5x 5x 5x

1 2P + P

Y

Figure 3: MTBDDs of P1 + P2

(b)

N

3x3x

2x

1x

0x

4x

5x

0x

1x

2x
2x

3x 3x

4x

5x

0x

1x 1x

2x

3x 3x 3x

4x 4x

5x 5x 5x

2x

4x

0x 0x

1x

2x

3x

4x

5x

4x

5x 5x

4x 4x

3x3x

2x
2x

1x

4x

Y

0x 1x 2x 3x 0x 1x 2x 3x 4x 5x0x 2x1x 3x 4x 5x0x 2x1x 3x 4x 5x
0x 1x 2x 3x 4x 5x 1x 3x0x 2x 4x 5x0x 1x 3x 4x2x

+++

+ +

(a)

Figure 4: Policy generation using MTBDD

operations on the policy MTBDDs to generate the integrated policy
MTBDD. An example is given below.

Consider the FIA policy expression for the only-one-applicable
policy combining algorithm together with the domain constraint dc

= {(role, {manager}), (act, {read, update}), (time, [8am, 8pm])}.
Here, f(P1, P2) = Πdc((P1 − P2) + (P2 − P1)). The integrated
MTBDD can be obtained by using the Apply and Projection
operations as follows :
Projection(Apply(Apply(T P1 .root, T P2 .root,−),

Apply(T P2 .root, T P1 .root,−), +), dc) .

6.3 XACML Policy Generation
In the previous section, we have presented how to construct the

integrated MTBDD given any policy expression f . Though such
integrated MTBDD can be used to evaluate requests with respect to
the integrated policy, they cannot be directly deployed in applica-
tions using the access control system based on XACML. Therefore,
we develop an approach that can automatically transform MTBDDs
to actual XACML policies. The policy generation consists of three
steps :

1. Find the paths in the combined MTBDD that lead to the Y

and N terminals, and represent each path as a Boolean ex-
pression over the Boolean variable of each node.

2. Map the above Boolean expressions to the Boolean expres-
sions on actual policy attributes.

3. Translate the compound Boolean expression obtained in step
2 into a XACML policy.

We first elaborate on step 1. In the MTBDD, each node has two
edges, namely 0-edge and 1-edge. The 0-edge and 1-edge of a node
labelled xi correspond to edge-expressions x̄i and xi respectively.
A path in the MTBDD corresponds to an expression which is the
conjunction of edge-expressions of all edges along that path. We
refer to this as a path-expression. Those paths leading to the same
terminal correspond to the disjunction of path-expressions. Figure
4 shows an example of P1+P2, where the Figure 4(a) and (b) show

70

PolicyId=P1+P2
<RuleId=R1 Effect=Deny>

<Target>
<Subject role=staff>
<Action act=update>

</Target>
</Rule>
<RuleId=R2 Effect=Deny>

<Target>
<Subject role=staff>
<Action act=read>

</Target>
<Condition time 6= [8am, 6pm] AND time 6= [6pm, 8pm]>

</Rule>
<RuleId=R3 Effect=Permit> · · ·

Figure 5: The integrated XACML policy representing P1 + P2

the paths leading to the Y and N terminals and the corresponding
Boolean expressions.

Next, we replace Boolean variables in the path-expressions with
the corresponding atomic Boolean expressions by using the map-
ping constructed in the Boolean encoding phase. During the trans-
formation in each path-expression, we need to remove some re-
dundant information. For instance, the resulting expression may
contain an attribute with both equality and inequality functions like
(role = manager) ∧ (role 6= staff). In that case, we only need
to keep the equality function of the attribute.

EXAMPLE 7. After the replacement, the Boolean expression of

the N terminal in Figure 4 is transformed as follows:

(role = staff ∧ act = update) ∨ (role = staff ∧ act = read ∧
time 6= [8am, 6pm] ∧ time 6= [6pm, 8pm])

The last step is to generate the actual XACML policy from the
compound Boolean expression obtained in previous step. Specifi-
cally, for each path-expression whose evaluation is Y , a permit rule
is generated; and for each path-expression whose evaluation is N ,
a deny rule is generated. Attributes that appear in conditions of
the rules in original policies still appear in conditions of the newly
generated rules, and attributes that appear in targets in the original
policies still appear in targets in the integrated policy. Here we do
not distinguish the policy target with rule target. Instead, all targets
appear as rule targets.

Consider policies P1 and P2 in Example 1, and the Boolean ex-
pression in Example 7. We generate the corresponding deny rules
for the integrated policy of P1 + P2 as shown in Figure 5.

7. EXPERIMENTAL STUDY
We performed experiments to evaluate the time taken for per-

forming FIA operations and the time for generating an integrated
policy. We also examined the size of the generated integrated pol-
icy in terms of the number of rules and number of atomic Boolean
expressions in each rule. All experiments were conducted on a
Pentium III 3GHz 500 MB machine. MTBDD operations were im-
plemented using the modified CUDD library developed in [9].

We implemented a random attribute based access control policy
generator to generate XACML policies in Boolean form. Each pol-
icy contained atomic Boolean expressions on a set of predefined at-
tribute names and values. The Boolean expressions corresponding
to the Condition element of an XACML policy was derived by ran-
domly concatenating atomic Boolean expressions with the logical
∨, ∧ and ¬ operators. Each rule was randomly assigned to either

permit or deny effect. Each policy was also associated with either
a deny-override or permit-override rule combining algorithm.

In the first set of experiments we measured the average time re-
quired for performing the FIA operations and the size of the ob-
tained MTBDDs. Figure 6 shows along the left y-axis the aver-
age time (in ms) for performing + and � operations on policies in
which the total number of atomic Boolean expressions in a policy
was fixed to 50 and the number of rules was varied between 2 and
10. This graph shows along the right y-axis the average size, i.e.,
the number of nodes, in the corresponding integrated MTBDDs.
From Figure 6, we can observe that the average time taken to per-

 0

 5

 10

 15

 20

 25

108642
 0

 5000

 10000

 15000

 20000

Av
g.

tim
e i

n m
s

Si
ze

 of
 M

TB
DD

No. of rules per policy

Addition (time)
Addition (size)
Precedence (time)
Precedence (size)

Figure 6: Average time and average integrated MTBDD size

with respect to operations “+” and “�”

form these operations increases with the increase in the size of the
integrated MTBDDs, and it differs for different operators. The rea-
son is that the actual time for performing operations depend on the
size of the resulting integrated MTBDD. The larger the MTBDD
is, the longer time the integration will take. Performing the � oper-
ation usually resulted in MTBDDs with a smaller size and hence it
took lesser time. Considering that for typical policies we have en-
countered in real world applications the average number of atomic
Boolean expressions lies between 10 and 50, the time trends ob-
served in Figure 6 is very encouraging.

We have also evaluated other operations and policies with 10
rules [17], which demonstrate similar trends. Due to the limited
space, we do not include them here.

In the second set of experiments, we studied the characteristics
of the integrated policy. Because the number of rules generated in
the integrated policy is equal to the number of paths which can be
exponential in the size of the integrated MTBDD a large number of
rules can be generated. We used ESPRESSO [1], a two level logic
minimizer to reduce the number of rules. ESPRESSO uses state-
of-the-art heuristic Boolean minimization algorithms to produce a
minimal equivalent representation of two-valued or multiple-valued
Boolean functions. The minterms obtained from the integrated
MTBDD were transformed to ESPRESSO inputs and the mini-
mized output was used for policy generation. Table 5 summarizes
the results obtained for + operation performed on data sets that
contained policies with 4 and 8 rules with an average 20 atomic
Boolean expressions per policy. We observe that using ESPRESSO
a substantial decrease in the number of rules and atomic Boolean
expressions(terms) was obtained. For the data sets used in our ex-
periments we observed a 75% to 99% reduction in the number of
rules and 35% to 71% reduction in the number of atomic Boolean
expressions per rule.

Finally, we evaluated the time required for generating the in-
tegrated XACML policy. It is worth noting that this step is op-
tional. Users can also directly use the integrated MTBDD for re-
quest evaluation. Figure 7 shows the policy generation times for
integrated MTBDDs with different number of paths. The time for
policy generation is observed to be proportional to the number of

71

Without ESPRESSO With ESPRESSO

of Rules Rule Avg # of Avg # of Avg # of Avg # of
in a Type Rules terms Rules terms
Policy per Rule per Rule

4 Rules Permit 790 19 69 9
Deny 3625 21 233 6

8 Rules Permit 20192 37 1221 19
Deny 131348 36 152 11

Table 5: Characteristics of integrated policy

paths in the integrated MTBDD. The number of paths in the in-
tegrated MTBDD is in turn determined by the nature of the com-
pound Boolean expressions in the policies and the chosen variable
ordering.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Av
g.

 p
ol

ic
y

ge
ne

ra
tio

n
tim

e
in

 s
ec

No. of paths in integrated MTBDD

Figure 7: Average time for integrated policy generation

8. CONCLUSIONS
In this work we have proposed an algebra for the fine-grained in-

tegration of language independent policies. Our operations can not
only express existing policy-combining algorithms but can also ex-
press any arbitrary combination of policies at a fine granularity of
requests, effects and domains, as we have proved in the complete-
ness theorem. We have implemented this algebra and our exper-
imental results indicate that the FIA operations can be performed
efficiently.

We plan to extend this work in several interesting directions. One
direction involves the extension with respect to obligations. An-
other interesting question that arises when using such integration
algebras is: how can one be sure that a given algebriac expression
will behave as expected. We believe that we can leverage tech-
niques from software engineering field to examine the integrated
policy with a random number of requests and assure with some
high probability that the expression indeed corresponds to the ex-
pected behaviour.

9. ACKNOWLEDGEMENTS
The work reported in this paper has been partially supported

by the NSF grant 0712846 “IPS: Security Services for Healthcare
Applications”, and MURI award FA9550-08-1-0265 from the Air
Force Office of Scientic Research.

10. REFERENCES
[1] http://fke.utm.my/downloads/espresso/.

[2] Extensible access control markup language (XACML)
version 2.0. OASIS Standard, 2005.

[3] A. Anderson. Evaluating xacml as a policy language.
Technical report, OASIS, 2003.

[4] O. Arieli and A. Avron. The value of the four values.
Artificial Intelligence, 102(1):97–141, 1998.

[5] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter.
Enterprise privacy authorization language (EPAL). Research

report 3485, IBM Research, 2003.

[6] M. Backes, M. Duermuth, and R. Steinwandt. An algebra for
composing enterprise privacy policies. In Proceedings of 9th

European Symposium on Research in Computer Security

(ESORICS), volume 3193 of Lecture Notes in Computer

Science, pages 33–52. Springer, September 2004.

[7] P. Bonatti, S. D. C. D. Vimercati, and P. Samarati. An algebra
for composing access control policies. ACM Transactions on

Information and System Security (TISSEC), 5(1):1–35, 2002.

[8] G. Bruns, D. S. Dantas, and M. Huth. A simple and
expressive semantic framework for policy composition in
access control. In Proceedings of the 5th ACM Workshop on

Formal Methods in Security Engineering (FMSE), 2007.

[9] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of
access-control policies. In Proceedings of the 27th

International Conference on Software Engineering (ICSE),
pages 196–205, 2005.

[10] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal
binary decision diagrams: An efficient datastructure for
matrix representation. Formal Methods in System Design,
10(2-3):149–169, 1997.

[11] O. Grumberg, S. Livne, and S. Markovitch. Learning to order
bdd variables in verification. Journal of Artificial Intelligence

Research, 18:83–116, 2003.

[12] J. Halpern and V. Weissman. Using first-order logic to reason
about policies. In Proceedings of the Computer Security

Foundations Workshop (CSFW’03), 2003.

[13] R. Jagadeesan, W. Marrero, C. Pitcher, and V. Saraswat.
Timed constraint programming: a declarative approach to
usage control. In Proc. of the 7th ACM SIGPLAN

international conference on Principles and practice of

declarative programming (PPDP), pages 164–175, 2005.

[14] N. Martin. The sheffer functions of 3-valued logic. The

Journal of Symbolic Logic, 19(1):45–51, 1954.

[15] P. Mazzoleni, E. Bertino, and B. Crispo. XACML policy
integration algorithms. In Proceedings of the 11th ACM

Symposium on Access Control Models and Technologies

(SACMAT), pages 223–232, 2006.

[16] P. McDaniel and A. Prakash. Methods and limitations of
security policy reconciliation. ACM Transactions on

Information and System Security (TISSEC), 9(3):259 – 291,
2006.

[17] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo. An algebra for
fine-grained integration of xacml policies. Technical report,

CERIAS, 2008.

[18] G. Rousseau. Completeness in finite algebras with a single
operation. Proceedings of the American Mathematical

Society, 18(6):1009–1013, 1966.

[19] F. B. Schneider. Enforceable security policies. ACM

Transanction of Information System and Security (TISSEC),
3(1):30–50, 2000.

[20] R. Wheeler. Complete connectives for 3-valued propositional
calculus. Proceedings of London Mathematical Society,
3(16):167–191, 1966.

[21] D. Wijesekera and S. Jajodia. A propositional policy algebra
for access control. ACM Transactions on Information and

System Security (TISSEC), 6(2):286–325, 2003.

72

