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ABSTRACT
We develop the foundations for a theory of Group-Centric Secure
Information Sharing (g-SIS), characterize a specific family of mod-
els in this arena and identify several directions in which this theory
can be extended. Traditional approach to information sharing, char-
acterized as Dissemination-Centric, focuses on attaching attributes
and policies to an object as it is disseminated from producers to
consumers in a system. In contrast, Group-Centric sharing envi-
sions bringing the users and objects together in a group to facilitate
sharing. The metaphors “secure meeting room” and “subscription
service” characterize the Group-Centric approach where partici-
pants and information come together to share for some common
purpose. Our focus in this paper is on semantics of group opera-
tions: Join and Leave for users and Add and Remove for objects,
each of which can have several variations called types. We use
Linear Temporal Logic to first characterize the core properties of a
group in terms of these operations. We then characterize additional
properties for specific types of these operations. Finally, we spec-
ify the authorization behavior for read access in a single group for
a family of g-SIS models and show that these models satisfy the
above-mentioned properties using the NuSMV model checker.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection—Unauthorized access

General Terms
Security
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1. INTRODUCTION AND MOTIVATION
The need to share information is driven by multiple forces. Post

9/11, the need-to-share principle has supplanted the traditional need-
to-know which caused failure to “connect the dots.” In our informa-
tion age, businesses collaborate not only with allies, but also with
competitors. For the individual citizen, modern healthcare requires
timely sharing of medical information amongst care providers while
maintaining privacy. The explosive phenomena of social network-
ing enables individuals to interact without geographic barriers, but
with an expectation of security and privacy.

In all of these cases, we see the need to “share but protect.” This
paper develops formal models and analysis for Group-Centric Se-
cure Information Sharing or g-SIS [18, 20]. Intuitively, users and
information come together in a group to facilitate sharing. We iden-
tify two metaphors: a secure meeting room and a subscription ser-
vice. A meeting room brings people together to “share” informa-
tion for some common purpose. The purpose can range from col-
laboration on a specific goal-oriented task (such as designing a new
product or merger and acquisition) to participation in a shared ac-
tivity (such as a semester long class) to a dynamic coalition (such as
a mission-oriented group driven towards completion of a particular
task). The subscription metaphor speaks to potentially larger scale
sharing with a publisher disseminating information to subscribers
who in turn participate in blogs and forums. We show that these
simple and familiar metaphors enable a rich space of policies that
will be systematically investigated. In particular, we show that the
temporal interactions of users joining and leaving the group and in-
formation being added and removed is critical to determination of
who can see what in the group.
Secure meeting room Visualize a conversation room (albeit vir-
tual) where users may join, leave and re-join, but only hear the
conversation occurring during their participation period. In gen-
eral, a meeting room has the notion of simultaneous presence of
participants engaged in the meeting. Users bring documents to this
room wherein they are asynchronously accessible by participants
from different stakeholders and third-party agents. Users’ partici-
pation may be intermittent as influenced by their availability, need
to know, etc. Let us consider some example scenarios:

Program committee meeting: Typically committee members are
privy only to conversations occurring in their presence. Alice, a
committee member, may be excused from the room when her paper
is being discussed and may re-join after that discussion has con-
cluded. The conversation that occurred during her absence is not
accessible to her. In a different setting, such conversations may be
recorded in a smart board and made available to her on return.



Collaborative product development: Consider collaborative prod-
uct design between ABC Corp. and XYZ Corp. Say ABC estab-
lishes a group by pulling in engineers from across the company.
Certain sensitive documents are provided to these ABC engineers,
but these are not accessible to XYZ engineers. Documents created
after the XYZ engineers join the group are shared by both ABC
and XYZ engineers. Moreover, both XYZ and ABC engineers re-
tain access to such new documents even after leaving the group. In
a different consulting scenario, incoming XYZ engineers may ac-
cess the sensitive ABC documents during their membership period,
but lose access once the collaboration ends.

Employee stock options: Stock option benefits typically change
over time. New employees only get to see benefits as of their join-
ing and not previously existing ones. Similarly, organizations may
share some information with existing employees, but withhold it
from future employees. In these cases, certain objects are shared
only with existing group members and not with future members.
Furthermore, when employees leave the company, they may be al-
lowed to retain certain information (such as their profile, recom-
mendations, etc.), but denied access to sensitive proprietary infor-
mation (such as design documents, code, etc.).
Subscription service Here access to content may depend upon
when the subscription began and the terms of subscription.

Magazine Subscription: Consider an online news magazine ABS
that offers four levels of membership. Level 1 ($10/year) sub-
scribers can access news articles that are published after they started
paying the subscription fee. If they cancel their subscription, they
completely lose access. In addition to Level 1 services, Level 2
($12/year) subscribers can retain access to news articles that they
paid for even after canceling their subscription. In addition to Level
2 services, Level 3 ($15/year) subscribers can access rich archives
filled with post-news analysis, predictions, annotations and opin-
ions from experts but lose all access on cancelling their subscrip-
tion. Level 4 ($17/year) subscribers can view all articles that they
had access to before leaving, even after canceling subscription.

Secure multicast: In secure multicast [27], typically new mem-
bers joining the group cannot access content distributed prior to
their join time. Similarly, members leaving the group can no longer
access any new content. Thus access is dependant on when the
users join and leave the group.

Clearly, the “secure meeting room” metaphor suggests a smaller-
scale information sharing scenario whereas “subscription service”
indicates a potentially larger-scale. These examples illustrate two
important principles in the group-centric approach. The first prin-
ciple is “share but differentiate”. Sharing is enabled by joining and
adding information to a group. Yet, users’ access is differentiated
by the time at which they join and the time at which the requested
information is added to the group, as well as possibly by other at-
tributes. The second principle is the notion of “multiple groups”
with possibly overlapping users. The relationship between these
groups can be of any number of varieties familiar to computer sci-
entists. One well-known structure is that of a hierarchy, where users
at a higher level dominate those at the lower levels. Another com-
mon relationship is that of mutual exclusion where the same user is
prohibited from joining conflicting groups.

Our focus in this paper is on semantics of the basic group opera-
tions and their temporal interactions. We propose an abstract set of
group operations: Join and Leave for users, Add and Remove for
objects. Users may Join, Leave and re-Join the group. This is illus-
trated in figure 1. Similarly, objects may be Added, Removed and
re-Added to the group. Further each of these operations could be of
various types such as Lossy/Lossless, Restorative/Non-Restorative,
etc. For example, in Lossless Join, a joining user never loses ac-

Figure 1: User Membership States.

cess to objects authorized prior to joining the group. Similarly, in
Restorative Join, the joining user may regain access to objects au-
thorized during past membership period. In general, there may be
any number of such variations beyond those explicitly identified
in this paper. Temporal aspects of access control have been previ-
ously studied (e.g., [8]), where they are introduced as extensions to
prior models of role based access control. In g-SIS the temporal
interactions are so fundamental that they must be investigated and
understood before even the first model can be formulated.

We recognize the importance of authorization for these opera-
tions. It is clearly not sufficient for a security policy to specify the
semantics of Join, Leave, Add and Remove. A complete policy
must also specify the authorization for these operations. In sim-
ple cases, a distinguished group owner may be responsible for all
of these operations. More realistically the authorization will be
decentralized and distributed. The problem of decentralized autho-
rization and its administration has been investigated in the access
control literature for over three decades [14, 15, 21, 30, 31, 33]. We
believe that authorizations concerning the operational aspects that
bear on group membership is a more immediate and novel prob-
lem, and this will be the focus of this paper. Without a basic under-
standing of group operation semantics, we believe that it would be
premature to consider administrative models. Henceforth, we leave
the development of an administrative g-SIS model for future work.

In this paper we develop the foundations for a theory of Group-
Centric Information Sharing, characterize a specific sub-family of
models in this arena and identify several directions in which this
theory can be extended. The principal contributions of this pa-
per are as follows. We formalize the concept of Group-Centric
Information Sharing using Linear Temporal Logic (LTL) [22], by
specifying various properties. We first specify the Core Proper-
ties (Provenance, Persistence, etc.) that characterizes a group in
g-SIS. The core properties must be satisfied by any g-SIS model.
Next we identify several useful semantics of group operations and
thereby specify Membership and Membership Renewal Properties.
These properties are based on specific variations of group opera-
tions: Join, Leave, Add and Remove. Unlike core properties, they
need not be satisfied by all g-SIS models but suggest some useful
operational semantics for many applications. Finally, we specify
the authorization behavior for a family of g-SIS models and show
using model checking that these models satisfy the aforementioned
properties. In this paper, we confine our attention to the particular
authorization behavior with respect to read access in a single group
using LTL. Our future work involves extensions to write operations
and multiple groups.

The remainder of this paper is organized as follows. In section 2,
we discuss related work. In section 3, we discuss the formal g-SIS
language and various g-SIS properties. In section 4, we discuss
a family of g-SIS specifications and show by using model check-
ing that the specifications satisfy the Core Properties. We also re-
visit our metaphors and discuss how the group operations can ex-
press many scenarios. In section 5, we identify several directions
in which this work can be extended and conclude.



2. RELATED WORK
The traditional approach to information sharing, which we char-

acterize as Dissemination-Centric in this paper, focuses on attach-
ing attributes and policies to an object as it is disseminated from
producers to consumers in a system. These policies are sometimes
described as being “sticky” [5, 11, 24]. As an object is dissemi-
nated further down a supply chain the policies may get modified,
such modification itself being controlled by existing policies. This
mode of information sharing goes back to early discussions on
originator-control systems [3, 13, 23, 25] in the 1980’s and Dig-
ital Rights Management in the 1990’s and 2000’s. XrML [1] and
ODRL [2] are recent examples of policy languages developed for
this purpose. Group-Centric sharing differs in that it advocates
bringing the users and objects together to facilitate sharing. We en-
vision that Dissemination and Group-Centric sharing will co-exist
in a mutually supportive manner. For example, objects could be
added with “sticky” policies in a Group-Centric model. At a prag-
matic level, we believe Group-Centric and Dissemination-Centric
are significantly different approaches to information sharing.

The use of groups in access control goes back to earliest OS’s
(e.g., [28]) and is now commonplace in modern OS’s and direc-
tory services such as LDAP [40]. In [36], the authors discuss
user authorization schemes for dynamically defining membership
in groups. [29] discusses special kind of group hierarchies. In [7],
the authors provide a formal temporal authorization model that fo-
cuses on database management systems. Specifically, the model
extends traditional authorizations with the notion of temporal in-
tervals of their validity. In [4], the authors use a role-based delega-
tion framework for specifying policies for resource and information
sharing within and across organizations. The modern concept of
Role-Based Access Control [34] can be viewed as an evolution of
access control to simplify administration in organizations bringing
in additional concepts such as hierarchies and constraints [32].

Recently, information sharing challenges have been considered
in the context of Dynamic Coalition Problem or DCP (see [16, 26,
39] for example). DCP is concerned with the challenges involved
when a coalition is dynamically formed, for example, in response to
a crisis. Government, civilian and commercial organizations may
need to form a coalition (who may otherwise distrust each other)
and share information quickly to solve the problem at hand.

Our work differs from all these approaches in that we focus on
the operation semantics for the Group-Centric SIS problem. Fur-
ther, formal specification of g-SIS properties using LTL enables
us to automate verification using model checking. To the best of
our knowledge, this is the first effort towards developing a formal
model for the group-centric approach to SIS. At a policy level, the
closest work to group-centric sharing that can be found in the liter-
ature is in the area of Secure Multicast [27]. It will be evident later
that the g-SIS subsumes Secure Multicast policies.

3. FOUNDATIONS FOR G-SIS
In this section, we present a collection of core properties that

must be satisfied by a g-SIS model. After that, we discuss sev-
eral orthogonal aspects of candidate g-SIS operation semantics and
provide specifications for a specific family of these operation se-
mantics. We begin by defining the g-SIS language below.

3.1 g-SIS Language
We use Linear Temporal Logic to characterize g-SIS properties

and specifications. A brief overview of temporal operators used in
this paper is given in table 1. To formalize the LTL language we
use and its semantics, suppose U is a finite set of users, O is a fi-
nite set of objects, and R is a finite set of actions, such as read and

write. Let P be a set of predicates over sorts U ,O and/orR, and let
{A,B} be a partition of P . Predicates in A are called actions and
intuitively encode actions or events that occurred in the transition
to the current state. Predicates in B are used to encode aspects of
a given state, such as operations that are authorized or not autho-
rized. We let F be the set of atomic formulas obtained by applying
a predicate p ∈ P to a list of arguments of the appropriate num-
ber and sorts. LTL formulas are constructed from F by applying
logical connectives and temporal operators in the usual way.

For the purpose of this paper, a g-SIS language is required to
satisfy the following (we suggest that the language represented
here should be a sub-language of any g-SIS language designed
in the future.). It must include a collection of join-group events,
leave-group events, add-object events, and remove-object events:
A = {joini|1 ≤ i ≤ m} ∪ {leavei|1 ≤ i ≤ n} ∪ {addi|1 ≤
i ≤ p} ∪ {removei|1 ≤ i ≤ q}, B = {Authz}, and R = {r},
where r refers the right to exercise “read” operations. Also, an
atomic formula in a g-SIS language should be formed in the nat-
ural way: for all u ∈ U , o ∈ O, r ∈ R, joini(u), addi(o), . . . ,
Authz(u, o, r) ∈ F .

Formally, a state is a function from variable-free formulas F into
the set {True,False}. We use Σ to denote the set of all states. A
trace σ is an infinite sequence of states, that is, it is an ω-sequence
in Σ ω . In the following, we often wish to write sub-formulas that
state, for example, some type of join event occurs. It is therefore
convenient to introduce the following shorthands:

Join(u) = (join1(u) ∨ join2(u) ∨ ... ∨ joinm(u))

Leave(u) = (leave1(u) ∨ leave2(u) ∨ ... ∨ leaven(u))

Add(o) = (add1(o) ∨ add2(o) ∨ ... ∨ addp(o))

Remove(o) = (remove1(o) ∨ ... ∨ removeq(o))

The properties we consider treat the authorization a user has to
access an object independently of actions involving other users
and objects. Thus, it is often convenient to omit the param-
eters in all of the predicates. For instance, when we write
Authz → (Join ∧ (¬(Leave ∨ Remove) S Add)) we mean
∀u ∈ U.∀o ∈ O.Authz(u, o, r) → (Join(u) ∧ (¬(Leave(u) ∨
Remove(o)) S Add(o))). Note that Join, Leave, Add, Remove
and Authz, all refer to the same pair of u and/or o. In addition to
using these shorthands in formulas, we continue to use these words
to informally refer to intuitive notions of corresponding operations.

Well-Formed Traces.
We now introduce four formulas that define what we call well-

formed g-SIS traces.

A. An object cannot be Added and Removed and a user cannot Join
and Leave at the same time.1

τ0 = 2(¬(Add ∧ Remove) ∧ ¬(Join ∧ Leave))

B. For any given user or object, two types of operation cannot occur
at the same time.

τ1 = ∀i, j 2((i 6= j) → ¬(joini ∧ joinj))∧
∀i, j 2((i 6= j) → ¬(leavei ∧ leavej)) ∧
∀i, j 2((i 6= j) → ¬(addi ∧ addj))∧
∀i, j 2((i 6= j) → ¬(removei ∧ removej))

1Note that here and below we introduce names of the form τj for
each of the formulas for later reference. The equality introduces
shorthands for the respective formulas.



Table 1: Intuitive summary of temporal operators used in this paper
Future/Past Operator Read as Explanation

© Next (© p) means that the formula p holds in the next state.
2 Henceforth (2 p) means that the formula p will continuously hold in all future states starting

from the current state.
Future U Until (p U q) means that q will occur sometime in the future and p will hold at least

until the first occurrence of q.
W Unless (p W q) is a weaker form of (p U q). It says that p holds either until the next

occurrence of q or if q never occurs, it holds throughout.
-© Previous ( -© p) means that formula p held in the previous state.

Past ¨ Once (¨ p) means that formula p held at least once in the past.
S Since (p S q) means that q happened in the past and p held continuously from the

position following the last occurrence of q to the present.

C. If a user u joins a group, u cannot join again unless u first leaves
the group. A similar rule applies for other operations.

τ2 = 2(Join →© (¬Join W Leave)) ∧
2(Leave →© (¬Leave W Join)) ∧
2(Add →© (¬Add W Remove))∧
2(Remove →© (¬Remove W Add))

D. A Leave event cannot occur before Join. Similarly for objects.

τ3 = 2(Leave → ¨Join) ∧ 2(Remove → ¨Add)

The language we defined above allows us to develop g-SIS speci-
fications which formally define the precise conditions under which
authorization can hold. A g-SIS specification is syntactically cor-
rect if it is stated in terms of past joins, leaves, adds and removes
and satisfy the well-formedness constraints. We formally define the
requirements for the syntactic correctness of a g-SIS specification.

DEFINITION 3.1 (SYNTACTIC CORRECTNESS). A g-SIS
specification is syntactically correct if it is of the form:

γ = ∀u ∈ U.∀o ∈ O.2(Authz(u, o, r) ↔ ψ(u, o)) ∧
^

0≤i≤3

τi

in which ψ is an LTL formula constructed by using temporal op-
erators and predicates in A, and the conjunction τi specifies the
well-formedness requirements of a g-SIS trace.

3.2 Core g-SIS Properties
We begin with the Core properties, all of which must be sat-

isfied by any g-SIS specification.2 Next we specify a few useful
additional properties. We specify these properties with the assump-
tion that Join, Leave, Add and Remove are the only events that
influence authorization in g-SIS. If need be, these properties can be
extended to models involving additional aspects (e.g. attributes).

1. Persistence Properties: These properties consider the condi-
tions under which authorization may change.
Authorization Persistence: When a user u is authorized to
access an object o, it remains so at least until a group event
involving u or o occurs.3

ϕ0 = 2(Authz → (Authz W (Join ∨ Leave∨
Add ∨ Remove)))

2Note that each of these formulas define a safety property [37] in
the sense that any trace that does not satisfy the property can be
recognized as such by examining a finite prefix of the trace.
3As we will see later, authorization may no longer hold when cer-
tain variations of enabling events (e.g. Join, Add) occur.

Revocation Persistence: When a user u is not authorized to
access an object o, it remains so at least until a group event
involving u or o occurs.

ϕ1 = 2(¬Authz → (¬Authz W (Join ∨ Leave∨
Add ∨ Remove)))

A generalized statement of these properties may be “Autho-
rization does not change unless an authorization changing
event occurs.” With this generalization, we believe persis-
tence property is required of all access control systems. The
following properties are more specifically targeted at g-SIS.
They seek to recognize the additional authorizations enabled
by group membership vis-a-vis non-membership.

2. Authorization Provenance: Intuitively, a user will not be au-
thorized to access an object until a point at which both the
user and object are simultaneously group members. This is
formalized in ϕ2 below:

ϕ2 =(¬Authz W (Authz ∧ (¬Leave S Join)∧
(¬Remove S Add)))

Two important observations can be made from formula ϕ2.
First, if Authz holds in a given state then there was an over-
lapping period of membership between the user and object
at least once in a given trace. Next, authorization to access
an object cannot begin for the first time during a user’s non-
membership period.

3. Bounded Authorization: These properties require that autho-
rizations not increase during non-membership periods of
users and objects (note that authorizations may decrease).
Authorizations that hold during non-membership period
should have held at the time of Leave or Remove.

Bounded User Authorization: The set of all objects that a
user can access during non-membership periods is bounded
at Leave time. This set cannot grow until the user rejoins.

ϕ3 = 2((Leave ∧ ¬Authz) → (¬Authz W Join))

The above property states that additional authorizations can-
not be granted to a user after Leave time. Any object that
is accessible after Leave should have been authorized at the
time of Leave.

Bounded Object Authorization: The set of all users who can
access a removed object is bounded at Remove time, which
cannot grow until re-Add.

ϕ4 = 2((Remove ∧ ¬Authz) → (¬Authz W Add))



Figure 2: User Operations Illustration.

4. Availability: Availability specifies the conditions under which
authorization must succeed.

ϕ5 = 2(Join → ((Add → Authz) W Leave))

This property states that after a user joins a group, any ob-
ject that is added subsequently should be authorized. Obvi-
ously, the user should be a current member when the object
in question is added. Note that this authorization will persist
as guided by the Authorization Persistence Property (ϕ2).

We believe that properties 2 and 3 are truly core and founda-
tional and will apply to sophisticated g-SIS models beyond those
formalized in this paper. We suspect that property 4 may need to be
relaxed in situations where there is selective access within a group.
For instance, a user may be required to belong to a particular role
in addition to being a group member in order to access the object.
Hence adding an object may not always guarantee immediate ac-
cess. Finally, whether or not additional the core properties exist
remains an open question. Since these core properties are required
of any g-SIS model, a g-SIS specification is semantically correct
only if it satisfies all of these properties. We define this below:

DEFINITION 3.2 (SEMANTIC CORRECTNESS). A g-SIS
specification γ is semantically correct if:

γ ²
^

0≤i≤5

ϕi

Thus, in summary, a g-SIS specification must obey the well-
formedness requirements (syntactic correctness, definition 3.1) and
the core properties (semantic correctness, definition 3.2).

Next, we discuss Membership and Membership Renewal proper-
ties that are based on specific variations of group operations. Unlike
the core properties, a g-SIS specification is not required to satisfy
these properties. Instead, these properties define certain group op-
eration semantics that are useful for many applications.

3.3 Membership Properties
These properties characterize the semantics of authorizations en-

abled when a user joins or an object is added and those which are
disabled when a user leaves or an object is removed from the group.
In the following subsection (Membership Renewal Properties), we
consider properties when a user or an object is re-admitted.

Strict Join (SJ) Vs Liberal Join (LJ): In SJ, the joining user may
only access some or all of the objects added after Join time. LJ
additionally allows the user to access some or all of the objects that
were added prior to join time. Suppose that in figure 2 the second
Join (u1) is an SJ. Then u1 can access o4 and o5 but cannot access
o2 and o3. If the Join was an LJ instead of SJ, u1 can also access
o2 and o3. This can be formalized by requiring that joini, a type

Figure 3: Object Operations Illustration.

of Join, would be admitted as SJ only if it satisfies α0 stated in
table 2. In a g-SIS specification with LJ, there exists at least one
well-formed trace for which Authz does not satisfy α0.

Strict Leave (SL) Vs Liberal Leave (LL): In SL, the leaving user
loses access to all objects. In LL, the leaving user may retain access
to some or all of the objects authorized prior to Leave time. In
figure 2, on SL, u1 loses access to all group objects (o1 and o2)
authorized during the membership period. An LL will allow u1
to retain access to o2 (and possibly o1, depending on the type of
Remove). leavei, a type of Leave, would be admitted as SL only
if it satisfies α1 stated in table 2. In a g-SIS specification with LL,
there exists at least one well-formed trace that does not satisfy α1.

Strict Add (SA) Vs Liberal Add (LA): In SA, only some or all
of the users who joined before Add time can access. In LA, the
added object may also be accessed by some or all of the users that
join (e.g., LJ) later. If Add (o2) in figure 3 is an SA, only u1 can
access the object. Users u2 and u3, joining later, cannot access this
object. But on LA current user u1 and future users u2 and u3 may
access o2. addi, a type of Add, would be admitted as SA only if
it satisfies α2 stated in table 2. In a g-SIS specification with LA,
there exists at least one well-formed trace that does not satisfy α2.

Strict Remove (SR) Vs Liberal Remove (LR): In SR, the removed
object cannot be accessed by any user. In LR, some or all of the
users who had access at Remove time may retain access (of course
users joining later are not allowed to access the removed object—
this respects the Authorization Provenance core property). In fig-
ure 3, if Remove (o1) is an SR, every group user (including u1)
loses access to o1. If Remove (o1) is an LR, u1 can continue to ac-
cess o1. However u2 and u3 will not have access to o1. removei,
a type of Remove, would be admitted as SR only if it satisfies α3

stated in table 2. In a g-SIS specification with LR, there exists at
least one well-formed trace that does not satisfy α3.

3.4 Membership Renewal Properties
Membership Renewal Properties characterize what, if any, au-

thorizations from previous membership period(s) are enabled or
disabled when users re-join and subsequently leave the group. In
the meeting room metaphor, Alice may leave the room and re-enter
later. These properties are concerned with her authorizations from
her previous sessions in the room and its continuity when she leaves
the room again. As the name implies, these properties are applica-
ble only to returning users and are discussed below.

Unlike Membership Properties, these properties apply only to
users and not to objects since users may have authorizations from
past membership periods at re-Join time. Since the Renewal Prop-
erties are concerned about the status of such authorizations, a de-
cision needs to be made for the user at re-Join time. In contrast,
objects, being a passive entity, do not have past authorizations at
re-Add time and hence renewal decisions need not be made.

Lossless Vs Lossy Join: In Lossless Join, a re-joining user does
not lose authorization(s) held immediately prior to re-joining. A



Table 2: Summary of group membership semantics
Operation Explanation Property

Strict Join (SJ) Only objects added after join time can be accessed α0 = 2(Authz → ¨(Add ∧ (¬Leave S joini)))
Liberal Join (LJ) Can access objects added before and after join time There exists a well-formed trace that does not satisfy α0

Strict Leave (SL) Lose access to all objects on leave α1 = 2(Authz → (¬leavei S Join))
Liberal Leave (LL) Retain access to objects authorized before leave time There exists a well-formed trace that does not satisfy α1

Strict Add (SA) Only users who joined prior to add time can access α2 = 2(addi → (¬¨Join → (¬Authz W Add)))
Liberal Add (LA) Users who joined before or after add time may access There exists a well-formed trace that does not satisfy α2

Strict Remove (SR) All users lose access on remove α3 = 2(removei → (¬Authz W Add))
Liberal Remove (LR) Users who had access at remove time retain access There exists a well-formed trace that does not satisfy α3

Join operation that causes a user to lose some or all prior authoriza-
tions is called Lossy. Suppose in figure 2 u1 retains access to o2 at
the time of Leave (due to LL). When u1 re-joins subsequently, in
a Lossless Join (regardless of whether it is a SJ or LJ), access to
o2 will not be revoked. If access to o2 is revoked by re-joining the
group, the Join is Lossy. Formula β0 (table 3) characterizes Loss-
less Join. In a g-SIS specification with Lossy Join, there exists at
least one well-formed trace that does not satisfy the above property.

A Lossy Join is useful in scenarios when authorizations from
past membership and those from the new membership are in con-
flict of interest. For example, if a student registers for a course,
drops after the mid-term and re-registers the following semester,
he/she may be required to relinquish access to exercise solutions
and other materials from past enrollment. The student would be
given a Lossy Join in this scenario.

Non-Restorative Vs Restorative Join: In a Non-Restorative Join,
authorizations from past membership periods may not be explicitly
restored at the time of re-join. On the other hand, a Restorative
Join explicitly restores authorizations from past membership peri-
ods. Suppose in figure 2 when u1 leaves, SL is applied and SJ is
applied on re-join. A Restorative SJ in this scenario will allow u1
to re-gain access to o2 from past membership period. Note that the
notion of Restorative LJ is subtle but important. Suppose o1 was
removed with LR and an SL is applied at the time of Leave. In this
case, u1 will continue to access o1 until the time of Leave. If LJ is
applied on re-join, a Restorative LJ will allow u1 to re-gain access
to o1, but a Non-Restorative LJ will not.

Formalizing Non-Restorative Join is complicated because we
want our characterization to be independent of the exact semantics
of the Join operation in question. Intuitively, we want to require
that the Non-restorative Join does not add any authorizations that
it would not have added if the user had a different history. However
LTL does not enable one to compare different traces. The solution
we take is to consider two different users within a single trace. Be-
cause the two users can have different histories with the same trace,
this strategy enables us to formalize the property. We first state two
formulas ρ1 and ρ2 which will then be used to specify the property
β1 as shown in table 3.

In formula ρ1, users u1 and u2 both join the group at the same
time by means of the same type of Join. ρ2 says that if u1 is
authorized to access an object in the current state and u2 is not, this
should also be the case in the previous state (and vice-versa). The
Non-Restorative Join property is characterized by formula β1. It
states that if two users Join the group at the same time with the
same type of Join, then any difference in access at Join time is the
result of some operation prior to the current Join operation. Let
us use formula ρ2 to understand the intuition. Because both u1
and u2 Join at the same time with same type, any access that is

necessarily enabled by this Join for u1, would also be enabled for
u2. Any additional access that u1 may have that u2 does not have
could arise only because u1 had access to that object before joining
the group. This captures the fact that access is not restored from
past but is a consequence of the type of Leave operation applied to
the user when he/she left the group.

In Restorative Join, there exists at least one well-formed trace
that does not satisfy the Non-Restorative Join property. If a user
joins a group using Restorative Join, some or all of the accesses
to objects authorized during past membership period may be re-
stored. Note that this is in addition to the authorizations that
current Join may enable. The formula 2(Join ∧ ((¬Leave ∧
¬Remove) S (Leave ∧ -© Authz)) → Authz), for example,
characterizes a type of Restorative Join where all past authoriza-
tions are restored.

A Restorative Join is applicable in scenarios where an incentive
is provided for a user to re-join the group. On the other hand, in
subscription service scenarios, a Restorative and Non-Restorative
Join may be priced differently, which may decide what prior au-
thorizations to their past subscription materials will be restored.

Gainless Vs Gainful Leave: After re-joining the group, a sub-
sequent Leave operation could either be Gainless or Gainful. In
Gainless Leave, authorizations that never held during current mem-
bership period cannot be obtained by leaving the group. On
the other hand, a Gainful Leave allows new authorizations to be
granted at the time of Leave. Suppose that in figure 2 a Lossless
SJ is applied when u1 re-joins the group. Because of SJ, only o4
and possibly o5 can be accessed. If u1 leaves the group in the fu-
ture with LL, a Gainless LL will not grant any new authorizations
other than that to o4 and o5. A Gainful LL, for example, may addi-
tionally grant access to o3. A Gainful Leave is useful in scenarios
where an incentive is provided for a user to leave the group. This is
commonplace in voluntary retirement and severance packages.
β2 in table 3 characterizes Gainless Leave. This formula states

that if the user is authorized to access an object during non-
membership period then it should have been authorized during the
most recent membership period. In a g-SIS specification with Gain-
ful Leave, there exists at least one well-formed trace that does not
satisfy the Gainless Leave property.

Non-Restorative Vs Restorative Leave: In Non-Restorative
Leave, authorizations that the user had prior to joining the group
are not explicitly restored at Leave time. In Restorative Leave,
some or all of such authorizations are restored at Leave time. Sup-
pose in figure 2 u1 left the group with LL and re-joins with Lossy
SJ. In this case, u1 possibly loses access to both o1 and o2 at re-
join time. Later on, if u1 leaves with Gainful LL, a Restorative
Leave will allow u1 to re-gain access to o1 and o2 at the time of
leave, but a Non-Restorative leave will not.



Table 3: Summary of group membership renewal semantics

Operation Explanation Property
Lossless Join Authorizations prior to join time is not lost β0 = 2((Join ∧ ¬Remove ∧ -© Authz) → Authz)

Lossy Join Authorizations from prior to join may be lost There exists a well-formed trace that does not satisfy β0

Non-Restorative
Join

Authorizations from past membership periods not ex-
plicitly restored

ρ1 = joini(s1) ∧ joini(s2)

ρ2 =(Authz(s1, o, r) ∧ ¬Authz(s2, o, r)) →
-© (Authz(s1, o, r) ∧ ¬Authz(s2, o, r))

β1 = ∀i2(ρ1 ∧ ρ2)

Restorative Join Authorizations from past membership may be restored There exists a well-formed trace that does not satisfy β1

Gainless Leave Authorizations that never held during most recent mem-
bership period cannot be obtained

β2 = 2((Leave ∧ (¬Join U (Authz ∧ ¬Join))) →
-© ((¬Authz ∧ ¬Join) S (Authz ∧ (¬Join S Join))))

Gainful Leave New authorizations may be granted at Leave time There exists a well-formed trace that does not satisfy β2

Non-Restorative
Leave

Authorizations that the user had prior to joining the
group are not explicitly restored

β3 = 2(Leave ∧Authz → -© Authz)

Restorative Leave Authorizations from prior to join time may be restored There exists a well-formed trace that does not satisfy β3

In the meeting room metaphor, suppose Alice is re-invited as a
consultant on demand and is required to relinquish her past autho-
rizations due to a conflict of interest with new authorizations that
will be enabled by current membership. After Alice performs her
duties and leaves the group, it is natural that she will regain access
to objects for which she lost authorization when joining the group.
Formula β3 in table 3 characterizes Non-Restorative Leave.

In Restorative Leave, there exists at least one well-formed trace
that does not satisfy the Non-Restorative Leave Property. For ex-
ample, the formula 2((Leave ∧ ¬Remove ∧ -© ((¬Leave ∧
¬Remove) S (Join ∧ -© Authz))) → Authz) characterizes a
specific type of Restorative Leave where access to all objects au-
thorized prior to Join is restored.

4. THE π-SYSTEM SPECIFICATION
In this section, we discuss the construction of the specification

for a family of g-SIS models, called the π-system. The π-system
is a g-SIS specification that formally defines the conditions under
which authorization can hold. We successfully verify using a model
checker called NuSMV [12] that the π-system we develop is se-
mantically correct—that is, it satisfies the core g-SIS properties.

We also show that the π-system satisfies a subset of Membership
and Membership Renewal properties. To this end, the π-system
allows any variation of Membership operations (Strict/Liberal).
Thus, different users and objects may be given different types of
respective operations. For example, SJ for u1, LJ for u2, SA for
o1, LA for o2, etc. However, for Membership Renewal operations,
we confine our scope to Join operations that are of type Lossless
and Non-Restorative and Leave operations of type Gainless and
Non-Restorative. These specific types of renewal operations are
the most basic since they do not require us to treat past membership
authorizations explicitly. Further, the semantics of other renewal
operations are likely application dependant. For example, what
exact authorizations will be disabled at Join time in Lossy Join
depends on the application in question (similarly for Restorative
Join, Gainful Leave and Restorative Leave). Henceforth, for
convenience, we assume that SJ and LJ refer to operations of type
Lossless and Non-Restorative. Similarly, SL and LL refer to
Gainless and Non-Restorative operations.

REMARK 4.1. The π-system only allows group operations of
type indicated below:

∀i.Type(joini) ∈ {SJ,LJ}×{Lossless}×{Non-Restorative}
∀i.Type(leavei) ∈ {SL,LL}×{Gainless}×{Non-Restorative}
∀i.Type(addi) ∈ {SA,LA}

∀i.Type(removei) ∈ {SR,LR}
Furthermore, note that as per the definition of Strict Join (sec-
tion 3.3 and table 2), the user may access some or all objects that
are added after Join time. However, in the π-system, we will use
the following specific interpretation of Strict and Liberal operations
which effectively replaces “some or all” with “all”.

• On SJ, the joining user may access all the objects added af-
ter Join time. Objects added before Join time may not be
accessed. On LJ, the joining user may access all the current
objects added before and after Join time.

• On SL, the users lose access to all objects. On LL, access to
all the group objects authorized at the time of Leave may be
retained.

• On SA, all the users who joined prior to Add time may ac-
cess. Users joining later may not access. On LA, all the
users who joined prior to and after Add time may access.

• On SR, all the users lose access to the object. On LR, all the
users who had access at Remove time may retain access.

4.1 Construction of π-system
There are two scenarios to consider when a user requests access

to an object: (i) the user Join event occurred prior to object Add
event or (ii) the object Add event occurred prior to user Join event.
Intuitively, if the specification correctly addresses these two scenar-
ios, it would be complete. We now separately consider these two
scenarios. Formula λ1 addresses the scenario where the object is
added after the user joined the group (figure 4).

λ1 =((¬SL ∧ ¬SR) S ((SA ∨ LA) ∧ ((¬LL ∧ ¬SL)

S (SJ ∨ LJ))))



Figure 4: Formula λ1.

Since Join occurred prior to Add, regardless of whether the object
was LA’ed4 or SA’ed or whether the user was SJ’ed or LJ’ed, the
user should be authorized to access the object in both cases as per
our core Availability Property (ϕ5). Formula λ1 says that the user
has not been SL’ed and the object has not been SR’ed since it was
added with SA or LA. Further, when the Add occurred, the user
was a current member (that is, no SL or LL since SJ or LJ).

In figure 4, an SL or SR since object add time denies access to
the requested object. However, it is alright for an LL or LR to oc-
cur during that period. Recall that an LR authorizes current users
at remove time to retain access and LL authorizes a leaving user
to retain access to objects authorized during membership period.
Similarly, if the user was not a current member when the object
was added (for e.g., joined and left the group before the object was
added), authorization cannot hold as per our core provenance prop-
erty (formula ϕ2).

Scenario (ii) where an Add occurs prior to Join is more inter-
esting. As shown in figure 5, there are four possible cases. Let
us first consider cases (a) and (b) where the object is SA’ed to the
group. Recall that an SA’ed object can be accessed only by existing
users (that is, the users who joined the group prior to object Add).
Clearly, regardless of the type of Join, the user is not authorized to
access objects that were SA’ed prior to the user Join time. Thus
Authz cannot hold in cases (a) and (b).

Consider cases (c) and (d) where the object is LA’ed to the
group. In case (c), the object is LA’ed and the user is SJ’ed.
An SJ’ed user is authorized to access only those objects that were
added after join time. Thus (c) is also a failed case. Authorization
is successful in case (d) where both Add and Join are Liberal op-
erations. An LJ’ed user can access all current LA’ed objects and
any newly added object in the future (LA or SA). We can now
formulate λ2 as shown below.

λ2 =((¬SL ∧ ¬SR) S (LJ ∧ ((¬SR ∧ ¬LR) S LA)))

Figure 6 illustrates λ2. It says that the user has not been SL’ed
and the object has not been SR’ed since the user LJ’ed the group.
Further, at Join time, the object in question was still part of the
group (that is, it has not been LR’ed or SR’ed since it was added).
We can now formally specify the π-system.

DEFINITION 4.2 (π-SYSTEM). The π-system is given by:

π = 2(Authz ↔ λ1 ∨ λ2) ∧
^

0≤j≤3

τj

Note that π is a syntactically correct g-SIS specification by defi-
nition. π says that a user is authorized to access an object if and
only if λ1 or λ2 holds and the trace is well-formed. Note that this
definition is consistent with definition 3.1. We show that π is also
semantically correct in the following subsection.

4.2 Formal Analysis
In this section, we show that the π-system entails the Core and

Membership Renewal properties. Since Membership operations
4We use terminology of the form “LA’ed” to refer to the fact that
object o is Liberally Added in a state.

Figure 5: Cases when Add occurs prior to Join.

Figure 6: Formula λ2.

are mixed (i.e., both Strict and Liberal operations are allowed), a
single Membership property cannot be verified for this specifica-
tion. Later, we show the verification of Membership Properties in a
specification where the operations are fixed for all users and objects
in a group. We begin with the Entailment Theorem.

THEOREM 4.3 (ENTAILMENT THEOREM). The π-system
entails the Core Properties (ϕ0 to ϕ5) and Membership Renewal
Properties (β0 to β3):

π ² (
^

0≤q≤5

ϕq ∧
^

0≤r≤3

βr)

We utilize the model checker NuSMV [12] to prove this theo-
rem. Model checking is an automated formal analysis approach
that takes a finite model of a system and its properties written in
temporal logic formulas as input to verify if the properties hold in
the system. In the case that a property fails to hold, a model checker
produces a counterexample consisting of a trace that shows how the
failure can arise and can be used to correct the model or the prop-
erty specification.

A NuSMV model describes how variables can be modified in
each step of a system execution. The model of the π-system for
the purpose of our proof is very simple. Due to space constraints,
we do not show the code in this paper. A detailed proof can be
found in our technical report [19]. Here, the NuSMV model is
expressed in terms of events Join, Leave, Add and Remove (de-
clared as boolean variables) that are allowed to occur concurrently
in a non-deterministic manner. The theorem is expressed as an im-
plication having the π-system in the antecedent and the Core and
Membership Renewal properties as the consequent. NuSMV takes
the model and the LTL formula to verify if the formula holds in all
possible traces generated by the model. The output from NuSMV
in [19] shows that the LTL formula holds against the model. Thus
we verify the Entailment Theorem, i.e., the π-system satisfies the
Core and Membership Renewal properties.

The significance of the Entailment Theorem is two-fold. First, it
shows that any specification that one derives from the π-system is
guaranteed to be a g-SIS specification (i.e., it would satisfy the core
properties.) For example, one can derive the Most Restrictive g-
SIS specification by substituting all operations with Strict versions
in π. Such a specification is guaranteed to be admitted as g-SIS.
Next, the Core g-SIS properties are consistent with respect to π.
That is, the core properties can be satisfied by the π-system and



do not conflict with each other. In other words, the Core proper-
ties are enforceable. Further, note that the theorem proves that the
π-system is semantically correct (the semantic definition 3.2 of a
g-SIS specification is actually weaker). As mentioned earlier, the
Most Restrictive g-SIS specification is one where only Strict op-
erations are allowed. Since Liberal operations are not allowed in
such a specification, we substitute Liberal operations with “False”
in formulas λ1 and λ2 and thereby obtain the µ-system defined be-
low.

DEFINITION 4.4 (µ-SYSTEM). The µ-system is given by:

µ = 2(Authz ↔ ((¬SL ∧ ¬SR) S (SA ∧ (¬SL S SJ))))

∧
^

0≤i≤3

τi

Note that specification µ is a synctactically and semantically cor-
rect g-SIS specification since it is a specific form of π. Further,
since only Strict operations are allowed, µmust satisfy all the Strict
versions of Membership Properties (formulas α0 to α3).

THEOREM 4.5 (MOST RESTRICTIVE ENTAILMENT THEOREM).
The µ-system entails the Core Properties (ϕ0 to ϕ5), Membership
(α0 to α3) and Membership Renewal Properties (β0 to β3).

µ ² (
^

0≤j≤5

ϕj ∧
^

0≤k≤3

αk ∧
^

0≤l≤3

βl)

We take a similar approach to that of Theorem 4.3 to prove this the-
orem. Again, the proof is given in [19]. Note that with Strict and
Liberal variations of membership operations, there are 16 possible
specifications where these operations are fixed (i.e., same type) for
every user and object in the group. One can derive more specifica-
tions from the π-system where some of the membership operations
may vary while others remain fixed for various users and objects.

4.3 Application of π-system
We now discuss how the π-system applies to the scenarios dis-

cussed earlier in section 1.
Magazine Subscription: In general, user operations define the

semantics of most subscription models. ABS’s subscription models
would fall into one of the four categories: (SJ, SL), (SJ, LL), (LJ,
SL) and (LJ, LL). (SJ, SL) would be the Level 1 membership that
does not allow members to access archives. When the subscribers
stop paying the fee, they completely lose access to all objects. (SJ,
LL) would be Level 2 membership, which differs from Level 1 in
that it lets leaving members retain access to what they paid for.
(LJ, SL) would be Level 3 membership, however subscribers can
also access the archives during their membership period. Finally,
(LJ, LL) would be Level 4 membership which differs from Level 3
access in that leaving members retain access to what they paid for.

If ABS Corp. were to find some inappropriate content after pub-
lication, they can remove the article with SR. On the other hand,
ABS Corp. may decide to remove content that they do not want
their new subscribers to view. But the existing subscribers may
continue to access the removed article since they have already ‘paid
for the content. This is achieved by removing that article with LR.

From time-to-time, ABS Corp. may offer promotions only to
their current subscribers—such as discounted price for highly-rated
reports and other multimedia content. Such offers are added to the
group with SA. This way the offer is made available only to cur-
rent subscribers. Also, a Restorative Join would allow re-joining
subscribers to regain past accesses.

Collaborative Product Development: Re-visiting our earlier col-
laborative product design example between ABC and XYZ Corp.,

ABC can create a group and admit their engineers with LJ. Propri-
etary documents are made available to ABC engineers by adding
them with SA. Suppose incoming XYZ engineers are given an LJ,
SA objects added earlier cannot be accessed by them. After the
collaboration period, the respective engineers may leave the group
with LL so that access to newly developed design documents can
be retained. Note that our current Join semantics does not accom-
modate a scenario where an ABC engineer is admitted much later
and still allow access to SA objects added earlier. Specifically, this
requires a notion of a back-dated Join for the ABC engineer. In-
vestigating such useful additional semantics, such as back-dated
Join or suspending membership for brief period, is part of our fu-
ture work. In another scenario, if XYZ engineers were invited as
consultants on demand, they are given an SL so they cannot access
the design documents after leaving the group. If they were to be
re-invited later, a Restorative Join will allow them to access past
design documents in order to continue their collaboration.

5. FUTURE WORK AND CONCLUSION
Our work on developing single group read-only g-SIS models

will serve as a foundation for systematically extending this theory
in several directions. We are investigating extensions along three
dimensions: read-write g-SIS model, multiple groups and applica-
tion of Attribute-Based Access Control (ABAC) in g-SIS.

We strongly believe that information sharing, being distributed
in nature, should support versioning so different users may edit and
update an object at the same time without having to obtain a lock
or “check out” the object. Thus writing an object creates a new
version of that object. Versioning brings many interesting questions
such as if the core properties identified here are adequate and how
the inter-dependency between various versions can be handled.

Next, we need to investigate g-SIS models in the context of mul-
tiple groups with overlapping users. One natural relationship be-
tween groups is to impose a hierarchy similar to lattice based mod-
els such as Bell-LaPadula (BLP) [6], Chinese Wall [10], etc. and
study how temporal interactions in g-SIS relate to these models.

Finally, we need to investigate how specifications that are purely
based on temporal ordering of user and object events can be com-
plemented with ABAC. We believe attributes such as “roles” are
critical in many information sharing scenarios.

Our focus in this paper has been on specifying semantics of the
group operations. In general, there could be any number of vari-
ations beyond those identified in this paper. For example, there
could be post-dated join, promoting a join operation from SJ to
LJ, etc. One of our goals is to identify which operations are funda-
mental and which are for convenience and add no new expressive
power ([9, 38]). In the Policy, Enforcement and Implementation
(PEI) framework of [35], the models developed in this paper are at
the P layer. To implement g-SIS we need enforcement models such
as in [17] possibly requiring additional properties.

In this paper, we proposed a group-centric family of models for
Secure Information Sharing. We specified a core set of properties
that should be satisfied any g-SIS specification. We also identified
an additional set of properties in light of many variations of group
operations. We formally specified the properties using LTL making
them suitable to be verified by using automated techniques such as
model checking. Finally, we discussed the specification of a family
of g-SIS models and showed using NuSMV that the specification
satisfies the g-SIS properties. Ultimately, the value of the semantics
of g-SIS discussed in this paper will be determined by whether or
not these are found useful in practical systems of the future.
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