
Injecting RBAC to Secure a Web-based Work
ow System

Gail-Joon Ahn{, Ravi Sandhu{, Myong Kangkand Joon Parkk

{ISE Department, MS 4A4

George Mason University

Fairfax, VA 22030

fgahn,sandhug@isse.gmu.edu

kNaval Research Laboratory

Information Technology Division

Washington, DC, 20375

fmkang,jparkg@itd.nrl.navy.mil

Abstract

Web-based work
ow systems have recently received
much attention because they can support dynamic busi-
ness processes over heterogeneous computing systems.
Most existing web-based work
ow systems, however,
provide minimal security services such as authentica-
tion of users and network security. In this paper we
describes an experiment in injecting role-based access
control (RBAC) into an existing web-based work
ow
system. Speci�cally, we ensure that each task can only
be executed by users belonging to a speci�c role. In or-
der to achieve this, we de�ne a simpli�ed RBAC model
to meet our needs and describe the security architecture
to be applied to an existing web-based work
ow sys-
tem. We describe our implementation using commer-
cial o�-the-shelf (COTS) technology to demonstrate the
feasibility of this approach. Our implementation uses
X.509v3 certi�cates with role attribute, and employs a
user-pull style where the client requests a client certi�-
cate from the role-server and presents it to the work-

ow system. A major goal of our implementation is to
have minimal changes to the existing web server and no
changes to the browser. We also discuss alternative ar-
chitecture such as server-pull with LDAP (Lightweight
Directory Access Protocol).

1 INTRODUCTION

Since the earliest work in information security, it has
been understood that the greatest threat is from insid-
ers. This fact continues to be con�rmed even in the
Internet era of ubiquitous connectivity. Security of in-
sider access is achieved by enforcing least privilege, ad-
hering to organizational policy, enforcing separation of
duties, separating administration and access, and en-
forcing access control in terms of application abstrac-
tions (such as credit and debit operations) rather than
primitive reads and writes. Moreover, insider access is
often best determined by a user's roles and job functions
in the organization rather than by individual identity.
Role-based access control (RBAC) has become widely
accepted as the proven technology for this purpose.

Web technology has continued its rapid evolution,
most recently towards increasingly distributed applica-
tions. The marriage of web and work
ow system is
one of the results of this trend [Den96]. Several web-
based work
ow systems have been introduced [SJKB94,
EGL97, VW97]. These systems use web technology as
a user interface, a gateway to external applications,
messaging tool, or work
ow speci�cation tool. How-
ever, most existing web-based work
ow systems pro-
vide minimal security services such as authentication
of users. While the protection of transmitted data over
the network by means of protocols such as SSL has been
practiced, access control on work
ow activities has not
received much attention.

Huang and Atluri [HA99] introduced a web-enabled
work
ow management system called SecureFlow. This
work showed that the security speci�cation and enforce-

ment modules could be placed on top of existing work-

ow system to provide security with the notion of role-
based access control. This system relies on the work
ow
authorization model which uses the notion of an autho-
rization template to specify the static parameters of the
authorization.

Park and Sandhu [PS99] described how we can use
role information on the web using smart certi�cates.
Even though the application domain was not work
ow
systems per se, their work showed that role informa-
tion can be used to authorize web-based transactions
between a client and a web server. Unlike [HA99] the
authorization was carried out within a web server. The
implementation was platform-dependent using built-in
Windows NT group mapping mechanism. Here we fo-
cus on showing that the authorization can be achieved
in a platform-independent manner.

Our objective in this paper is to show how to in-
ject role-based access control into an existing web-based
work
ow system. We de�ne a simpli�ed RBAC model
to meet our needs and describe the security architecture
to be applied to an existing web-based work
ow sys-
tem. We demonstrate the feasibility of this approach by
implementing it using commercial o�-the-shelf (COTS)
technology. Our implementation uses X.509v3 certi�-
cates with role attribute and employs a user-pull style
where the client requests a client certi�cate from the
role-server and presents it to the work
ow system. A
major goal of our implementation is to have minimal
changes to the existing web server and no changes to
the browser.

The paper is organized as follows. Section 2 brie
y
discusses our security objectives. In section 3, we de-
scribe the RBAC model customized for our purpose.
Section 4 describes the security system architecture for
an existing web-based work
ow system. Section 5 dis-
cusses its implementation using COTS technology. In
section 6, we discuss alternative approaches. Section 7
concludes this paper.

2 SECURITY OBJECTIVES

A work
ow is an activity involving the coordinated ex-
ecution of multiple tasks performed by di�erent pro-
cessing entities [KA95]. These tasks could be manual
or automated in nature. A work
ow process is an au-
tomated organizational process involving both human
and automated tasks. A work
ow management system
(WFMS) is a set of tools that provide support for pro-
cess de�nition, work
ow enactment, and administration
and monitoring of work
ow processes [Hol95]. With the
emergence of web technology, web-based work
ow sys-

tems are being deployed over the enterprise computing
environment.

We can consider several security services for web-
based work
ow systems such as authentication of the
user, network security for data transport, and access
control. Using authentication services we can identify
a user who participates in web-based work
ow systems.
Once authentication is accomplished we need to en-
force that only authorized users can execute appropri-
ate tasks of the work
ow.

In this project our work
ow platform was the
NRL-University of Georgia (NRL-UG) [KFS+99]
web-based work
ow system built upon METEOR
WFMS [MPS+98]. This system implements client-
server interaction by means of HTTP, while server-to-
server interaction uses CORBA's IIOP protocol. A
work
ow consists of a number of tasks. Each task of
the work
ow can be carried out on a di�erent server,
and each server can be dedicated to a single task. Some
tasks require human intervention; others are carried out
automatically. Each human task must be restricted
to users belonging to a speci�c role in an organiza-
tion. The existing system had a simple authentication
functionality for security services but no authorization
whatsoever.

Our objective is to inject RBAC into the NRL-UG
work
ow system in a manner that avoids modi�cation
of the underlying work
ow system. The central goal is
to keep a clear boundary between the RBAC component
and the work
ow component while integrating these in
a seamless manner. In addition our implementation
seeks to have minimal changes to the existing web server
and no changes to the browser. In summary, we ensure
that each task can only be executed by users belonging
to a speci�c role.

3 THE RBAC MODEL

In order to enforce RBAC on our platform we adapt
the well-known RBAC96 model de�ned by Sandhu et
al [SCFY96]. Figure 1 shows roles and permissions that
regulate access to data and resources. Intuitively, a
user is a human being or an autonomous agent, a role
is a job function or job title within the organization
with some associated semantics regarding the authority
and responsibility conferred on a member of the role.
RBAC96 does not provide any interpretation of per-
missions. Permissions are simply treated as abstract
tokens. For our purpose, we de�ne a permission to be
authorization to execute a task in a work
ow system.
We may consider permissions and tasks with various no-
tions. Each web-based task server is associated with a

Role
Hierarchy

(RH)

Users
(U)

Roles
(R)

Permissions
(P)

User
Assignment

(UA)

Permission
Assignment

(PA)

Figure 1: A simpli�ed RBAC model

task and the authorization is enforced in terms of roles.
Each task can only be executed by users belonging to a
speci�c role. Roles are organized in a partial order �,
so that if x � y then role x inherits the permissions of
role y. Members of x are also implicitly members of y.
In such cases, we say x is senior to y. This simpli�ed
RBAC model has the following components and these
components are formalized from the above discussions.

� U is a set of users,

� R is a set of roles,

� P is a set of permissions, P = f(exec; t) j t 2 Tg,
where T is a set of tasks.

� UA � U � R, is a many-to-many user to role as-
signment relation,

� PA � P�R, is a many-to-many permission to role
assignment relation,

� RH � R � R, is partially ordered role hierarchies
(written as � in in�x notation)

A user can be a member of many roles and a role can
have many users. Similarly, a role can have many per-
missions and the same permissions can be assigned to
many roles.

4 SYSTEM ARCHITECTURE

Park [Par99] identi�ed two di�erent approaches for ob-
taining a user's attributes on the web called user-pull
and server-pull styles. These styles are shown in Fig-
ures 2 and 3. In user-pull style, the user pulls appro-
priate attributes from the attribute server and then

presents them to the web servers to gain access. In
server-pull style, each user presents only authentication
information to web servers, and each web server pulls
user's attributes from the attribute server as needed and
uses them for authorization. This latter style is more
convenient for users but less convenient for web servers
than user-pull style.

In this paper we focus on a user-pull style (Figure 2),
in which the client requests a client certi�cate from the
role server and present this certi�cate to the work
ow
system in order to execute tasks. In section 6 we brie
y
discuss how we can use server-pull style to meet our
demands as an alternative architecture.

The system architectures illustrated in Figures 2
and 3 have three components as follows: work
ow de-
sign tool, role server, and web-based work
ow system.

The work
ow design tool assists a work
ow de-
signer in designing work
ow applications. This encom-
passes speci�cation of information
ow and dependen-
cies among tasks, creating roles and role-hierarchies,
and assigning a role to each task. The design tool ex-
ports information regarding the role hierarchy to the
role server, and information regarding task-role assign-
ment and task dependencies to the work
ow system.

The role server has two major components{user-role
assignment and certi�cate server. The user-role as-
signment component maintains role hierarchies, assigns
users to roles, and generates and maintains the user-
role assignment database. Certi�cate server authen-
ticates clients, retrieves client's role information from
user-role assignment database, and issues certi�cates
with client's role information. The user-role assignment
component uses the exported role hierarchy from the
design tool.

The work
ow system consists of web-based task

Role Server

WF design tool WF system

User-role assignment

role-task assignment

role-hierarchy

user-role DB

Certificate server

role-hierarchy

T1

T2-2

T2-1

T3

Role-hierarchy

client

Authentication
information

Authorization
information

Workflow enforcement
information

Run-time
activity

Deployment -time
activity

Figure 2: Security Architecture for Secure Work
ow (WF) System: User-Pull Style

Role Server

WF design tool WF system

User-role assignment

role-task assignment

role-hierarchy

user-role DB

Certificate server

role-hierarchy

T1

T2-2

T2-1

T3

Role-hierarchy

client

Authentication
informationAuthorization

information

Workflow enforcement
information

Run-time
activity

Deployment -time
activity

Figure 3: Security Architecture for Secure Work
ow (WF) System : Server-Pull Style

servers. The central goal of our work is to enhance the
existing NRL-UG web servers to enforce authorization
in terms of roles so that a user can execute a task only
if the user holds the appropriate role. Once a user re-
quests resources to web servers, he/she presents his/her
certi�cate to the task server. The task server authorizes
a user's privileges with respect to the certi�cate with re-
spect to the role after the user is authenticated. If the
authorization check is successful the user is allowed to
execute the requested task. The conceptual process of
this authorization is described in Figure 4.

5 IMPLEMENTATION DETAILS

In our implementation of the user-pull architecture we
make use of previously existing components, modifying
them as appropriate to meet our objectives. The work-

ow design tool and work
ow system were previously
implemented by NRL and University of Georgia, respec-
tively. For role server component, we use the URA97
implementation previously done at GMU [SP98]. Thus
our implementation includes the preexisting compo-
nents as follows: Work
ow design tool (from Naval Re-
search Laboratory), Role server (from Laboratory for
Information Security Technology at GMU), and Work-

ow management system (from University of Georgia).

5.1 Work
ow Design Tool

The NRL work
ow design tool assists a work
ow de-
signer in performing the following functions.

� Create a work
ow domain,

� design work
ow applications specifying informa-
tion
ow and dependence among tasks,

� create roles and role hierarchies, and

� assign a role to each task.

All these functions are performed through graphical in-
terfaces. Based on this work
ow design, a speci�cation
for work
ow runtime is generated. The design tool ex-
ports information regarding the role hierarchy to the
role server, and information regarding task-role assign-
ment and task dependencies to the work
ow system. In
the NRL implementation role hierarchies are expressed
in XML (eXtensible Markup Language). The design
tool is integrated with GMU's role server as described
in next section.

5.2 Role Server

The role server has two major components: user-role
assignment and certi�cate server. The user-role as-
signment component maintains role hierarchies, assigns
users to roles, and generates and maintains the user-
role assignment database. Certi�cate server authen-
ticates clients, retrieves client's role information from
user-role assignment database, and issues certi�cates
with client's role information.

5.2.1 User-Role Assignment

The user-role assignment component was previously
implemented at GMU using a model called URA97
(user-role assignment '97) [SB97]. This implementa-
tion [SP98] has its own interface for de�ning a role hi-
erarchy. However, in this project we have integrated
the NRL design tool with GMU's URA97 implementa-
tion. As mentioned earlier, the graphical input from the
work
ow designer is converted to an XML representa-
tion of the role hierarchy. This XML representation is
then translated into the internal format of the GMU's
URA97 implementation. This role hierarchy is used
to populate a user-role database for use by the certi�-
cate server. In the current implementation all roles of
a user are explicitly assigned in the user-role database.
In other words the role hierarchy is simulated be ex-
plicit user-role assignment. This simpli�es the task of
the certi�cate server.

5.2.2 Certi�cate Server

The work
ow system contains web-based task servers.
Each task server authorizes client's privileges with re-
spect to the certi�cate in terms of role. This autho-
rization occurs during SSL establishment between client
and server. To facilitate this we have developed an en-
hanced certi�cate server built around COTS certi�cate
engines (speci�cally, Microsoft engines).

We use standard X.509v3 digital certi�cates. Exist-
ing COTS certi�cate engines do not support roles. We
developed a novel approach to insert role information
in the certi�cate, as shown in Figure 5. The client ac-
cesses the GMU-developed certi�cate server and pro-
vides authentication information (user name and pass-
word). After successful authentication the certi�cate
server sends username to role server, which maintains
client's information including roles assigned to client.
The role server picks up the proper information for the
client and generates a certi�cate enrollment form, which
is sent to certi�cate server. For the moment, we are
using the organization unit (OU) attribute in X.509v3

client

Web Server

resources

1. access the resource

3. read
resource

4. display resource

2.1 get client certificate
2.2 retrieve role information
2.3 check authorization status

Figure 4: Authorization on Work
ow servers

Certificate Server

Client

User-Role Database

Log

Certificate
Engine

1
2
3

4 5

8

9

11

6
7

10

 1. Client Certificate Request
2-3. Challenge-Response based on Password
4-5. Retrieving Role Information of a User
6-7. Creating Certificate Enrollment Form and
 Public-key Embeded
8-9. Issuing Client Certificate
 10. Downloding Client Certificate
 11. Logging Certificate Information

Figure 5: Certi�cate Issuing Procedures

certi�cate as the role information unit. According to
certi�cate engine con�guration, certi�cate server issues
the client certi�cate based on the given enrollment form
from role server. The certi�cate enrollment form which
is modi�ed for using role attribute is illustrated in Fig-
ure 6. This enrollment form embeds Javascript codes
which trigger certi�cate engine in Microsoft certi�cate
server.

5.3 Work
ow Server

So far we have discussed the design tool and role server,
describing how we can put role information in the client
certi�cates. Now we look at how we can use those cer-
ti�cates in task servers. In the NRL-UG work
ow sys-
tem, each task scheduler has a web server|a simple
Java implementation|as a task server.

Our goal is to show how we could use the client cer-
ti�cates with role information in the web server (task
server). The web server requests a proper certi�cate
from the client (for authentication during SSL nego-
tiation) and then retrieves role information from the
certi�cate to check if the client has required privileges.
In order to support this, we need a secure connection
(SSL) between the clients and task servers. Since we
do not want to change the web servers at this point,
we decided to use a reverse proxy server between the
clients and task servers (UG's web servers)1. A usual
proxy web server has client behind a �rewall and server
outside the �rewall. Reverse proxy reverses this rela-
tionship. It can be used outside the �rewall to rep-
resent a secure content server to outside client, pre-
venting unmonitored access to web server's data from
outside an organization. In order to achieve this, we
selected IAIK's Jigsaw-SSL, an implementation of SSL
on Jigsaw web server (developed by W3C) as our re-
verse proxy server to support security services between
the clients and task servers [WWWC99, faipcI99].

To use client certi�cates with role information in
Jigsaw-SSL, we modi�ed several classes in the original
package as below.

1. Get client certi�cate
X509Certificate[] certChain =

Certificate.getCertificateChain()

2. Get certi�cates content
certChain[0].getSubjectDN().toString()

3. Retrieve role information
getOUinfo(String s)

1There may exist other approaches. Our approach is one of

possible alternatives.

4. Compare this role with the required role
Role.equalsIgnoreCase()

We also modi�ed Jigsaw-SSL's source codes to build
proxy server supporting authorization functionality.
The proxy server retrieves client's role information and
compares it with expected roles. We have small modi�-
cations of web server to monitor incoming network traf-
�c because there is an insecure regular channel between
a proxy server and a task server while our implemen-
tation establishes a secure channel for communication
between a client and a proxy server. We developed new
Java class which can support IP (Internet Protocol) �l-
tering functionality so that we can monitor whether or
not all incoming requests are from our proxy server.
Figure 7 summarizes our implementation based on the
security architecture mentioned in section 4.

6 DISCUSSION

We �rst de�ned the security objectives of this work.
Based on this security objective, we formulated the sim-
pli�ed RBAC model to meet our needs. Given RBAC
model, we developed a security architecture. In order
to demonstrate feasibility of this architecture, we imple-
mented the prototype using COTS. Thus our research
followed four steps such as objectives, model, archi-
tecture, and mechanism corresponding to the OM-AM
framework [San00]. In this way we were able to success-
fully demonstrate the feasibility of injecting RBAC into
an existing web-based work
ow system using COTS
technology and minimal changes to a web server.

So far this project has developed a successful proto-
type, based on user-pull style, to show how role cer-
ti�cates can be used by Java-based and SSL-enabled
web-servers to verify authorization of users for tasks
by means of roles. Instead of exchanging role at-
tribute between clients and role server, we may con-
sider alternative architecture such as server-pull style
wherein the user goes directly to the work
ow system
and presents authentication credentials. The authoriza-
tion credentials for that user are then obtained by the
work
ow-server from the role-server. User information
such as a user's digital certi�cate is often fragmented
across the enterprise, leading to data that is redun-
dant, inconsistent, and expensive to manage. Direc-
tories are being viewed as the one of best mechanisms
to make enterprise information available to multiple dif-
ferent systems within an organization. Directories also
make it possible for organizations to access informa-
tion over the Internet. The trend towards directories
has been accelerated by the recent growth of the LDAP
(Lightweight Directory Access Protocol). We can re-

Figure 6: Certi�cate Enrollment Form

client

Certificate Server

Role Server

Task Server

Step 1

Step 5

Step 4

Step 2 Step 3

Proxy Server
Step 6

SSL

IP checking

Figure 7: Implementation Scenario

place role-server with directory-oriented role-server us-
ing LDAP for task-server to role-server communication.
This server-pull style is currently under study.

In addition, we need to investigate the security ar-
chitecture that can support more sophisticated security
objectives such as dynamic separation of duty. Also the
role information in an organization can be changed.

7 CONCLUSION

In this paper we developed models, architectures and
mechanisms for specifying and enforcing role-based au-
thorization models for web-based work
ow systems. We
also developed a proof-of-concept implementation to
demonstrate the practical feasibility of this technology.
Also another research direction was discussed. Even
though this work is applied to an existing web-based
work
ow system, we believe that this architecture can
be deployed into several application domains such as
large-scale collaboratory environments and electronic
commerce systems.

Acknowledgment

The work of Gail Ahn and Ravi Sandhu was partially
supported at GMU by NRL.

References

[Den96] Peter J. Denning. Work
ow in the WEB.
In Layna Fischer, editor, New tools for
New Times: Electronic Commerce. Fu-
ture Strategies, Inc., 1996.

[EGL97] Johann Eder, Herbert Groiss, and Wal-
ter Liebhart. The work
ow management
system Panta Rhei. In Asuman Dogac,
Leonid Kalinichenko, M. Tamer Ozsu, and
Amit Sheth, editors, Advances in Work-

ow Management Systems and Interoper-
ability, pages 129{144. NATO Advanced
Study Institute, 1997.

[faipcI99] Institute for applied information process-
ing and communications (IAIK). Jig-
saw SSL. In http://jcewww.iaik.tu-
graz.ac.at/Applications/jigsaw.htm, 1999.

[HA99] Wei-Kuang Huang and Vijayalakshmi
Atluri. SecureFlow: A secure web-based
work
owmanagement system. In Proceed-
ings of 4th ACM Workshop on Role-Based

Access Control, pages 83{94, Fairfax, VA,
October 1999. ACM.

[Hol95] D. Hollingsworth. The work
ow reference
model. Technical Report TC00-1003, The
Work
ow Management Coalition, Hamp-
shire, UK, January 1995.

[KA95] N. Krishnakumar and A. Aheth. Manag-
ing heterogeneous multi-system tasks to
support enterprose-wide operations. Dis-
tributed and Parallel Databases, 3(2):155{
186, April 1995.

[KFS+99] Myong H. Kang, Judith N. Froscher,
Amit P. Sheth, Krys J. Kochut, and
John A. Miller. A multilevel secure
work
ow management system. In Pro-
ceedings of the 11th Conference on Ad-
vanced Information Systems Engineering
(CAiSE'99), pages 271{285, Heidelberg,
Germany, June 1999.

[MPS+98] J. Miller, D. Palaniswani, A. Sheth,
K. Kochut, and H. Singh. WebWork:
METEOR's web-based work
ow man-
agement system. Journal of Intelli-
gent Information Systems, 10(2):185{215,
March/April 1998.

[Par99] Joon S. Park. Secure Attribute Services
on the Web. PhD Thesis, George Mason
University (Adviser: Ravi Sandhu), Au-
gust 1999.

[PS99] Joon S. Park and Ravi Sandhu. RBAC
on the web by smart certi�cates. In Pro-
ceedings of 4th ACM Workshop on Role-
Based Access Control, pages 1{9, Fairfax,
VA, October 1999. ACM.

[San00] Ravi Sandhu. Engineering authority and
trust in cyberspace: The OM-AM and
RBAC way. In Proceedings of 5th ACM
Workshop on Role-Based Access Control,
2000.

[SB97] Ravi Sandhu and Venkata Bhamidipati.
The URA97 model for role-based admin-
istration of user-role assignment. In T. Y.
Lin and Xiaolei Qian, editors, Database
Security XI: Status and Prospects. North-
Holland, 1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-
puter, 29(2):38{47, February 1996.

[SJKB94] H. Schuster, S. Jablonski, T. Kirsche, and
C. Bussler. A client/server architecture
for distributed work
ow management sys-
tems. In Proc. Parallel and Distributed
Information Systems Conf, Austin, TX,
1994.

[SP98] Ravi Sandhu and Joon S. Park. Decentral-
ized user-role assignment for web-based
intranets. In Proceedings of 3rd ACM
Workshop on Role-Based Access Control,
pages 1{12, Fairfax, VA, October 1998.
ACM.

[VW97] Gottfried Vossen and Mathias Weske.
The WASA approach to work
ow man-
agement for scienti�c applications. In
Asuman Dogac, Leonid Kalinichenko,
M. Tamer Ozsu, and Amit Sheth, editors,
Advances in Work
ow Management Sys-
tems and Interoperability, pages 145{165.
NATO Advanced Study Institute, 1997.

[WWWC99] The World Wide Web Consortium.
Jigsaw{the W3C's Web Server. In
http://www.w3c.org/jigsaw, 1999.

