
II-1

Copyright 1996 Association for Computing
Machinery. Permission to make digital/hard
copy of all or part of this work for personal or
classroom use is granted without fee pro-
vided that copies are not made or distributed
for profit or commercial advantage; the
copyright notice, the title of the publication,
and its date appear; and notice is given that
copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on
servers, or to redistribute to lists requires
prior specific permission and/or a fee.

ACM RBAC Workshop, MD, USA
© 1996 ACM 0-89791-759-6/95/0011 $3.50

(1) Rationale for the RBAC96 Family
of Access Control Models

Ravi Sandhu

George Mason University and SETA Corporation
ISSE Department, MS 4A4, George Mason University, Fairfax, VA 22030, USA
E-mail: sandhu@isse.gmu.edu

Abstract

A family of role-based access control (RBAC) models, referred to here as
the RBAC96 models, was recently published by the author and his
colleagues. This paper gives our rationale for the major decisions in
developing these models and discusses alternatives that were considered.

1.0 Introduction

The RBAC96 family of RBAC models was recently defined by the author
and his colleagues [SAND96b]. The scope and nature of our original
paper did not accommodate detailed discussion of the issues and
alternatives that were considered while developing these models. The
objective of this paper is to describe the rationale for the major design
decisions and to discuss alternate approaches that could have been taken.

The paper begins with a brief review of the RBAC96 models in
Section 2.0. This review is intended as a refresher and readers should be
familiar with the original paper [SAND96b] to establish the background
and context. In Section 3.0, we discuss various issues that arose in the
process of defining these models. Section 4.0 concludes the paper.

2.0 The RBAC Models

The family of RBAC96 models is summarized in Figure 1-1, The RBAC96
Model. This figure actually shows the most general model in this family.
For simplicity, we overload the term RBAC96 to refer to the family of
models as well as its most general member.

The top half of the figure shows roles and permissions in the system that
regulate access to the data and resources. The bottom half shows
administrative roles and administrative permissions. RBAC96 is based on
five sets of entities called users (U), roles (R), and permissions (P), and
their administrative counterparts called administrative roles (AR) and
administrative permissions (AP). It is required that administrative roles
and administrative permissions be respectively disjoint from the regular
(i.e., non-administrative) roles and permissions. Moreover regular
permissions can only be assigned to regular roles and administrative
permissions can only be assigned to administrative roles.

II-2

Figure 1-1. The RBAC96 Model

Intuitively, a user is a human being or an autonomous agent, a role is a job
function or job title within the organization with some associated
semantics regarding the authority and responsibility conferred on a
member of the role, and a permission is an approval of a particular mode
of access to one or more objects in the system. Administrative permissions
control operations which modify the components of RBAC, such as adding
new users and roles and modifying the user assignment and permission
assignment relations. Regular permissions on the other hand control
operations on the data and resources and do not permit administrative
operations. We loosely use the term role to include both regular and
administrative roles while making this distinction precise whenever
appropriate. Similarly for the term permission.

The user assignment (UA) and permission assignment (PA and APA)
relations of Figure 1-1 are many-to-many. A user can be a member of
many roles, and a role can have many users. Similarly, a role can have
many permissions, and the same permission can be assigned to many roles.
There is a partially ordered role hierarchy RH, also written as �, where x �
y signifies that role x inherits the permissions assigned to role y.
Inheritance along the role hierarchy is transitive and multiple inheritance is
allowed in partial orders. There is similarly a partially ordered
administrative role hierarchy ARH.

Each session in Figure 1-1 relates one user to possibly many roles.
Intuitively, a user establishes a session during which the user activates
some subset of roles that he or she is a member of (directly or indirectly by
means of the role hierarchy). The double-headed arrows from a session to
R and AR indicates that multiple roles and administrative roles can be

II-3

simultaneously activated. The permissions available to the user are the
union of permissions from all roles activated in that session. Each session
is associated with a single user, as indicated by the single-headed arrow
from the session to U. This association remains constant for the life of a
session. A user may have multiple sessions open at the same time, each in
a different window on the workstation screen for instance. Each session
may have a different combination of active roles. The concept of a session
equates to the traditional notion of a subject in access control. A subject
(or session) is a unit of access control, and a user may have multiple
subjects (or sessions) with different permissions active at the same time.

Finally, Figure 1-1 shows a collection of constraints. Constraints can apply
to any of the preceding components. An example of constraints is
mutually disjoint roles, such as purchasing manager and accounts payable
manager, where the same user is not permitted to be a member of both
roles.

The following definition formalizes the above discussion.

Definition 1. The RBAC96 model has the following components:

� U is a set of users;

� R and AR are disjoint sets of roles and administrative roles
respectively;

� P and AP are disjoint sets of permissions and administrative
permissions;

� UA I U × (R F AR), is a many-to-many user to role, and
administrative role, assignment relation;

� PA I P × R and APA I AP × AR, are respectively many-to-many
permission to role assignment and administrative permission to
administrative role assignment relations;

� RH I R × R and ARH I AR × AR, are respectively partially ordered
role and administrative role hierarchies (written as � in infix notation);

� S is a set of sessions;

� user : S � U, is a function mapping each session s to the single useri

user(s) and is constant for the session's lifetime;i

� roles : S � 2 is a function mapping each session s to a set of rolesRFAR
i

roles(s) I { r
 (}r1 � r)[(user(s), r1) � UA]} (which can change withi i

time) so that session s has the permissions F {p
 (}r2 � r)[(p,i r�roles(si)

r2) � PA F APA]}; and

� There is a collection of constraints stipulating which values of various
components of the RBAC model are allowed or forbidden.

II-4

Figure 1-2. The RBAC96 Family

3.0 Rationale for the RBAC96 Models

This section describes our rationale for resolving various issues that arose
during development of the RBAC96 models. We also discuss alternatives
that were considered.

3.1 A Family of Models

The decision to develop a family of models rather than a single all-
encompassing model was made early in the project. It is evident that the
RBAC96 model described in the previous section is complex and has
multiple facets. The end result shown in Figure 1-1 was actually
developed incrementally and would be difficult to construct in one single
step. Our initial efforts at characterizing the multidimensional aspects of
RBAC are discussed in [SAND94b].

The RBAC96 family shown in Figure 1-2, The RBAC96 Family, consists
of RBAC with respect to regular roles and permissions on the left and
RBAC with respect to administrative roles and permissions on the right.
The left and right components of Figure 1-2 respectively relate to the top
and bottom halves of Figure 1-1, and are similarly mirror images of each
other. Looking at the left half of Figure 1-2, we have RBAC , the base0

model, at the bottom, indicating that it is the minimum requirement for
RBAC. RBAC and RBAC both include RBAC , but add independent1 2 0

features to it. RBAC adds the concept of role hierarchies (situations1

where roles can inherit permissions from other roles). RBAC adds2

constraints (which impose restrictions on acceptable configurations of the
different components of RBAC). RBAC and RBAC are incomparable to1 2

one another. The consolidated model, RBAC , includes RBAC and3 1

RBAC and, by transitivity, RBAC .2 0

While developing RBAC96, we were driven by the fact that the main
motivation for RBAC, and its main advantage, is to facilitate
administration of permissions. This led us to ask how RBAC can be used
to manage RBAC itself. We feel that the use of RBAC for managing
RBAC will be an important factor in the success of RBAC. It seemed
natural to us to structure the administrative RBAC models in the same way
as the regular RBAC models. The top half of Figure 1-1 can range in

II-5

sophistication across RBAC , RBAC , RBAC , and RBAC . The bottom0 1 2 3

half can similarly range in sophistication across ARBAC , ARBAC ,0 1

ARBAC , and ARBAC , as shown in the right-hand side of Figure 1-2 (the2 3

A denotes administrative). In general, we would expect the administrative
model to be simpler than the RBAC model itself. Thus, ARBAC can be0

used to manage RBAC , but there seems to be no point in using ARBAC3 3

to manage RBAC .0

In the RBAC96, family we treat role hierarchies and constraints as being
two independent extensions to RBAC . Strictly speaking, a role hierarchy0

can be considered as a constraint. The constraint is that a permission
assigned to a junior role must also be assigned to all senior roles. Or
equivalently, the constraint is that a user assigned to a senior role must also
be assigned to all junior roles. So in some sense, RBAC is redundant and1

is subsumed by RBAC . However, we felt it is appropriate to recognize2

the existence of role hierarchies in their own right. The concept of role
hierarchies occurs very frequently in the literature and is natural to
simplifying administration.

3.2 Users and Sessions

The distinction between a user and a session is a fundamental aspect of
RBAC and consequently arises in RBAC . A user is a human being, or0

other intelligent agent, capable of autonomous activity in the system. To
support the principle of least privilege a user should be allowed to login to
a system with only those roles appropriate for a given occasion.

Many systems will turn on all permissions of a user irrespective of what
the user wishes to accomplish in a particular session. Thus, a user who has
powerful permissions (or roles) that are used only rarely when needed
finds that these permissions are turned on all the time. It is possible to set
up separate accounts, one in which the usual permissions are turned on and
another in which the powerful permissions are turned on. Assigning
multiple accounts to the same user introduces problems with respect to
auditing, accountability, and constraints such as separation of duties. It is
not a desirable general-purpose solution but can be used in the short term
to simulate RBAC on existing platforms.

In RBAC , the distinction between users and sessions is useful only if0

users exercise discipline regarding the roles they normally invoke. With
constraints, it may not be possible for a user to activate all their roles
simultaneously. Consider a constraint that stipulates two roles which can
be assigned to the same user but cannot be simultaneously activated in a
session. For instance, a user may be qualified to be a pilot and a navigator
but at any time can activate at most one of these roles. In presence of such
constraints, a user cannot establish a single session with all the user's roles
activated. Changing the roles activated in a session is a security-sensitive
act and should be acknowledged to the security system via a so-called
trusted path which guarantees that the user is making the request rather
than some program acting on the user's behalf. Such changes can be
regulated by constraints in RBAC . For instance, certain roles may not be1

dynamically added but can only be acquired when a session is created.
RBAC allows dynamic changing of roles in a session because of two0

reasons. From a conceptual viewpoint, constraints belong in RBAC and1

II-6

higher, and should not be present in RBAC . We could still define RBAC0 0

to disallow all changes in a session's roles. We felt this is impractical and
too restrictive for a base model.

An important property of a session is that the user associated with a
session cannot change. In many applications, there are long-lived sessions
where one user hands over to another without a logout and login. This
preserves the integrity of the computing activity being performed in the
session. We feel this problem is an artifact of existing system
architectures. Continuity of activity across multiple security sessions
should be possible in properly engineered systems. Also our models are
conceptual models seeking to capture what needs to be achieved. In
implementations on specific platforms, we will need to simulate the
requirements with the mechanisms available.

The RBAC96 models do not address the issues of idle session termination
and lockout. In practice, this is an important issue. In our conceptual
framework, termination and lockout is most easily modeled as a constraint
and belongs in RBAC . As a practical matter, it would be hard to1

effectively do RBAC without bringing in at least a small number of0

constraints of this nature.

Although we did not anticipate this in our construction of RBAC96, the
distinction between users and sessions and the ability to constrain roles
that can be simultaneously activated in a single session turns out to be
critical for simulating lattice-based access controls by means of roles
[SAND96b].

3.3 Permissions

It is difficult to identify the nature of permissions precisely in an abstract
general purpose model such as RBAC96. Permissions tend to be
implementation dependent. In lattice-based access control models
[SAND93], it is possible to abstract the essential operations into read and
write. This is because these models are focussed on one-directional
information flow in a lattice of security labels.

RBAC models are policy neutral. Hence, the nature of permissions has to
be open ended. In applying RBAC to a particular system, the
interpretation of permissions is among the most important steps to be
performed.

We deliberately decided to exclude so-called negative permissions from
RBAC96. Negative permissions deny rather than confer access. They are
used in some discretionary access control models to disallow a user from
obtaining a permission from some alternate source. The use of constraints
in RBAC is a much more useful mechanism to achieve the same result.
The literature on negative permissions is fraught with problems concerning
their interaction and relative strength with respect to positive permissions.
In the presence of role hierarchies, this could become very complicated
and arcane. We would be very reluctant to add negative permissions into a
complex model such as RBAC96.

II-7

The scope of RBAC is also consciously limited to classical permissions.
Sequencing or temporal dependencies between permissions are important
in emerging applications such as workflow [THOM94]. We decided to
limit the scope of RBAC to exclude these for two reasons. Firstly, these
are not yet well understood and much further basic research is required for
this purpose. Secondly, RBAC must have a well-delineated scope
otherwise it will be an amorphous concept which can be taken to include
all kinds of security and authorization issues.

3.4 Administrative Model

In large systems, the number of roles can be in the hundreds or thousands.
Managing these roles and their interrelationships is a formidable task that
often is highly centralized and delegated to a small team of security
administrators. Because the main advantage of RBAC is to facilitate
administration of permissions, it is natural to ask how RBAC can be used
to manage RBAC itself. We believe that the use of RBAC for managing
RBAC will be an important factor in the success of RBAC.

RBAC96 makes a clear distinction between permissions and administrative
permissions and likewise between roles and administrative roles. In the
philosophy of RBAC, the administrative model itself is policy neutral but
does facilitate formulation and articulation of administrative policy. This
is an important area for research and for the future of RBAC. Effective
decentralized management of permissions within parameters established by
central authority will be required to implement enterprise-wide information
systems.

3.5 Model Conformance

What does it mean for a system to conform to RBAC96? RBAC96 is best
viewed as a family of reference models which play a dual role. On one
hand, RBAC96 provides a framework for analyzing the capabilities of
existing systems to assess how well and how extensively they can support
RBAC. RBAC96 also provides guidance to vendors and developers
regarding access controls to be implemented in future systems. It is not
necessary for a system to completely conform to RBAC before it includes0

features of RBAC or RBAC . Many existing systems do not distinguish1 2

between users and sessions. We would say these systems have aspects of
RBAC , RBAC , and RBAC , but are also missing other aspects of0 1 2

RBAC . Other systems have hard-wired constraints, such as a session can0

only have one role at a time. Such systems cannot accommodate RBAC ,0

because they do too much without any choice in the matter.

4.0 Conclusion

In this paper we have discussed design decisions made by the author and
his colleagues in developing the RBAC96 models. Additional discussion
is contained in the original paper [SAND96a] and we have focussed on
issues which were not adequately discussed there. We feel that other
access control modeling efforts can benefit from our approach of
developing a family of models. We found it very useful to think about
RBAC without the complications of constraints and hierarchies. 0

II-8

Similarly, it was useful to think about hierarchies without considering
constraints and vice versa. Finally, there is need to perform further
research within the framework of RBAC96 to refine and develop this
family of models, but we do not expect the framework itself to change very
much.

Acknowledgments

This research is partly supported by contract 50-DKNB-5-00188 from the
National Institute of Standards and Technology at SETA Corporation and
by grant CCR-9503560 from the National Science Foundation at George
Mason University.

References

[SAND93] Ravi S. Sandhu, "Lattice-based access control [SAND96b] Ravi S. Sandhu, "Role hierarchies and
models," IEEE Computer 26(11):9-19, November 1993. constraints for lattice-based access controls," In Elisa

[SAND94b] Ravi S. Sandhu, Edward J. Coyne, Hal L. in Computer Security, Springer-Verlag, Rome, Italy,
Feinstein, and Charles E. Youman, "Role-based access 1996. To appear as Lecture Notes in Computer Science,
control: A multi-dimensional view," In Tenth Annual Computer Security - ESORICS96.
Computer Security Application Conference, pages 54-62,
Orlando, FL, 5-9 December 1994. [THOM94] Roshan Thomas and Ravi S. Sandhu,

[SAND96a] Ravi S. Sandhu, Edward J. Coyne, Hal L. authorizations," In IEEE Computer Security Foundations
Feinstein, and Charles E. Youman, "Role-based access Workshop 7, pages 66-79, Franconia, NH, June 1994.
control models," IEEE Computer, 29(2):38-47, February
1996.

Bertino, editor, Proc. European Symposium on Research

"Conceptual foundations for a model of task-based

