
Proceedings of 3rd ACM Workshop on Role-Based Access Control, Fairfax, Virginia, October 22-23, 1998

An Oracle Implementation of the PRA97 Model

for Permission-Role Assignment�

Ravi Sandhu and Venkata Bhamidipati

Laboratory for Information Security Technology and

Information and Software Engineering Department

George Mason University

Abstract

In role-based access control (RBAC) permissions are as-
sociated with roles, and users are made members of ap-
propriate roles thereby acquiring the roles' permissions.
Using RBAC to manage RBAC provides additional ad-
ministrative convenience. ARBAC97 is an administra-
tive model recently proposed by Sandhu et al [SBC+97].
In this paper we demonstrate the implementation of
one of the components of ARBAC97 which deals with
permission-role assignment and is called PRA97. Al-
though PRA97 is quite di�erent from that built into the
Oracle database management system, we demonstrate
how to use Oracle stored procedures to implement it.

1 INTRODUCTION

Role-based access control (RBAC) has recently received
considerable attention as a promising alternative to tra-
ditional discretionary and mandatory access controls.
In RBAC permissions are associated with roles, and
users are made members of appropriate roles thereby
acquiring the roles' permissions. This greatly simpli�es
management of permissions. Roles are created for the
various job functions in an organization and users are
assigned roles based on their responsibilities and quali�-
cations. Users can be easily reassigned from one role to
another. Roles can be granted new permissions as new

�This work is partially supported by grant CCR-9503560 from
the National Science Foundation at the Laboratory for Informa-
tion Security Technology at George Mason University.
All correspondence should be addressed to Ravi Sandhu, ISE

Department, Mail Stop 4A4, George Mason University, Fairfax,
VA 22030, sandhu@isse.gmu.edu, www.list.gmu.edu.

applications and systems are incorporated, and permis-
sions can be revoked from roles as needed. Role-role
relationships can be established to lay out broad policy
objectives.
Using RBAC to manage RBAC provides additional

administrative convenience. Sandhu et al [SBC+97] re-
cently introduced a comprehensive model for role-based
administration of RBAC called ARBAC97 (administra-
tive RBAC '97). ARBAC97 has three components.

� URA97 for user-role assignment

� PRA97 for permission-role assignment

� RRA97 for role-role assignment

Assigning permissions to roles is typically the province
of application administrators. Thus a banking applica-
tion can be implemented so credit and debit operations
are assigned to a teller role, whereas approval of a loan
is assigned to a managerial role. Assignment of actual
individuals to the teller and managerial roles is a per-
sonnel management function. Assigning roles to roles
has aspects of user-role assignment and role-permission
assignment. Role-role relationships establish broad pol-
icy. Control of these relationships would typically be
relatively centralized in the hands of a few security ad-
ministrators.
The main contribution of this paper is to show how

PRA97 can be implemented in Oracle. The PRA97
model for permission-role assignment is a dual of the
URA97 model for user-role assignment developed by
Sandhu and Bhamidipati [SB97]. An Oracle implemen-
tation of URA97 is described in [SB98]. Although con-
ceptually PRA97 and URA97 are duals, the implemen-
tation of PRA97 is more complicated and challenging
because Oracle permissions are stored in multiple in-
ternal tables and di�erent permissions have di�erent
characteristics.
The rest of this paper is organized as follows. We

brie
y review the PRA97 model in section 2. In sec-

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS
U

USERS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

ADMINISTRATIVE

AUA

� U , a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP , disjoint sets of (regular) permissions and administrative permissions
S, a set of sessions

� UA � U �R, user to role assignment relation
AUA � U �AR, user to administrative role assignment relation

� PA � P �R, permission to role assignment relation
APA � AP �AR, permission to administrative role assignment relation

� RH � R�R, partially ordered role hierarchy
ARH � AR �AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

� user : S ! U , maps each session to a single user (which does not change)

roles : S ! 2R[AR maps each session si to a set of roles and administrative roles roles(si) � fr j (9r0 �
r)[(user(si); r

0) 2 UA [AUA]g (which can change with time)

session si has the permissions [r2roles(si)fp j (9r
00 � r)[(p; r00) 2 PA [APA]g

� there is a collection of constraints stipulating which values of the various components enumerated above are
allowed or forbidden.

Figure 1: Summary of the RBAC96 Model

tion 3 we describe our implementation of PRA97 in
Oracle. Section 4 concludes the paper.

2 THE PRA97 ADMINISTRATIVE

MODEL

PRA97 is de�ned in context of the well-known RBAC96
model [SCFY96]. For convenience, RBAC96 is sum-
marized in �gure 1. PRA97 is de�ned in two steps:
granting permissions to a role and revoking permissions
from a role. It is a precise dual of the URA97 model
for user-role assignment [SB97, SB98]. For convenience,
we de�ne PRA97 completely here without reference to
URA97.

2.1 PRA97 GRANT MODEL

In the simplest case permission-role assignment can be
completely centralized in a single chief security o�-
cer. This is readily implemented in existing systems
like Oracle. However, our goal is to decentralize the
permission-role assignment. The key concept of PRA97
is to impose restrictions on what permissions can be as-
signed to a role by whom. We achieve this by means of
prerequisite conditions.

De�nition 1 A prerequisite condition is a boolean ex-
pression using the usual ^ and _ operators on terms of
the form x and x where x is a regular role (i.e., x 2 R).
A prerequisite condition is evaluated for a permission
p by interpreting x to be true if (9x0 � x)(p; x0) 2 PA

and x to be true if (8x0 � x)(p; x0) 62 PA. For a given
set of roles R let CR denote all possible prerequisite
conditions that can be formed using the roles in R. 2

De�nition 2 The PRA97 model controls permission-
role assignment by means of the relation can-assignp �
AR�R � 2R. 2

The meaning of can-assignp(x; y; Z) is that a member
of the administrative role x (or a member of an admin-
istrative role that is senior to x) can assign a permission
whose current membership, or non-membership in regu-
lar roles satis�es the prerequisite condition y to regular
roles in range Z.
To appreciate the motivation behind the can-assignp

relation consider the role hierarchy of �gure 2 and the
administrative role hierarchy of �gure 3. Figure 2 shows
the regular roles that exist in a engineering department.
There is junior-most role E to which all employees in the
organization belong. Within the engineering depart-
ment there is a junior-most role ED and senior-most
role DIR. In between there are roles for two projects
within the department, project 1 on the left and project

Administrative Role Prerequisite Condition Role Range

DSO DIR [PL1, PL1]
DSO DIR [PL2, PL2]
PSO1 PL1 ^ QE1 [PE1, PE1]
PSO1 PL1 ^ PE1 [QE1, QE1]
PSO2 PL2 ^ QE2 [PE2, PE2]

PSO2 PL2 ^ PE2 [QE2, QE2]

Table 1: Example of can-assignp

Administrative Role Role Range

DSO (ED, DIR)
PSO1 [QE1, QE1]
PSO1 [PE1, PE1]
PSO2 [QE2, QE2]
PSO2 [PE2, PE1]

Table 2: Example of can-revokep

2 on the right. Each project has a senior-most project
lead role (PL1 and PL2) and a junior-most engineer role
(E1 and E2). In between each project has two incom-
parable roles, production engineer (PE1 and PE2) and
quality engineer (QE1 and QE2).
Figure 2 su�ces for our purpose but this structure

can, of course, be extended to dozens and even hun-
dreds of projects within the engineering department.
Moreover, each project could have a di�erent structure
for its roles. The example can also be extended to mul-
tiple departments with di�erent structure and policies
applied to each department.
Figure 3 shows the administrative role hierarchy

which co-exists with �gure 2. The senior-most role is
the senior security o�cer (SSO). Our main interest is
in the administrative roles junior to SSO. These consist
of two project security o�cer roles (PSO1 and PSO2)
and a department security o�cer (DSO) role with the
relationships illustrated in the �gure.
For sake of illustration we de�ne the can-assignp re-

lation shown in table 1. The PSO1 role has partial
responsibility over project 1 roles. Let Alice be a mem-
ber of the PSO1 role and BACKUP ANY TABLE be a
permission assigned to PL1. Alice can assign the per-
mission to either QE1 or PE1 but not to both. If Bob is
a member of DSO role he can add a permission to PL1
or PL2 if the permission is already assigned to DIR.
Role ranges are speci�ed in PRA97 by means of the

familiar closed and open interval notation.

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Figure 2: An Example Role Hierarchy

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

Figure 3: An Example Administrative Role Hierarchy

[x; y] = fr 2 R j x � r ^ r � yg
(x; y] = fr 2 R j x > r ^ r � yg
[x; y) = fr 2 R j x � r ^ r > yg
(x; y) = fr 2 R j x > r ^ r > yg

2.2 PRA97 REVOKE MODEL

We now turn to consideration of the PRA97 revoke
model. The objective is to de�ne a revoke model that
is consistent with the philosophy of RBAC. The revo-
cation in PRA97 is independent of assignment. If Al-
ice by means of some administrative role can revoke a
permission from a role say Bob. The revocation takes
place independent of how that permission was assigned
to Bob. The granting or revoke of permission is done
for functional reasons and application needs and not
merely at the discretion of administrators.

De�nition 3 The PRA97 model controls permission -
role revocation by means of the relation can-revokep �
AR� 2R. 2

The meaning of can-revokep(x; Y) is that a member of
the administrative role x (or a member of an adminis-
trative role that is senior to x) can revoke membership
of a permission from any regular role y 2 Y . We say
Y de�nes the range of revocation. For example look at
table 2.
Similar to URA97 we have two notions of revocation

in PRA97 called weak and strong .

2.2.1 Weak revocation

De�nition 4 Let us say a permission P is an explicit

member of role x if (P,x)2 PA, and that p is an implicit
member of role x if for some x0 <x, (P,x0)2 PA. 2

Note that P can simultaneously be explicitly and im-
plicitly assigned to a role. Weak revocation has an im-
pact only on explicit membership. It has the straight-
forward meaning stated below.

De�nition 5 [Weak Revocation Algorithm]

1. Let Alice have a session with administrative roles
A = fa1; a2; : : : ; akg, and let Alice try to weakly
revoke permission P from role x.

2. If P is not an explicitly granted to x this operation
has no e�ect, otherwise there are two cases.

(a) There exists a can-revokep tuple (b; Y) such
that there exists ai 2 A; ai � b and x 2 Y .

In this case P's explicit assignment from x is
revoked.

(b) There does not exist a can-revokep tuple as
identi�ed above.

In this case the weak revoke operation has no
e�ect.

2

Suppose Alice who is a member of PSO1 role wants to
weakly revoke a permission from PE1 role. The revoke
will go through if the permission is explicitly assigned
to PE1 role.

2.2.2 Strong Revocation

The strong revocation algorithm is expressed in terms of
weak revoke by the following all-or-nothing transaction.

1. Let Alice have a session with administrative roles
A = fa1; a2; : : : ; akg, and let Alice try to strongly
revoke P from role x.

2. Find all roles y � x and P is a member of y.

3. Weak revoke P from all such y as if Alice did this
weak revoke.

4. If any of the weak revokes fail then Alice's strong
revoke has no e�ect otherwise all weak revokes suc-
ceed.

Suppose Alice who is a member of PSO1 role wants to
weakly revoke a permission from PE1 role. The revoke
will go through if the permission is explicitly assigned
only to PE1 role. However the revoke will fail if the
permission was also explicitly assigned to role E, as the
role is not in PSO1's revocation range.

3 IMPLEMENTING PRA97 IN

ORACLE

3.1 Oracle Related Features

Permissions in Oracle are of two types: system privi-
leges and object privileges. System privileges are per-
missions at the database level, for example, create table
system privilege authorizes creation of tables. There
are over 60 distinct system privileges. Object privileges
authorize actions on a speci�c object of a schema (ta-
ble, view, procedure, package etc.). Typical examples
of object privileges are select rows from a table, delete
rows, execute procedures etc.
Who can grant or revoke privileges from roles? The

answer depends on various issues such as whether it is
a system or an object privilege, and whether the ob-
ject is owned by the user, etc. In order to grant or

Admin Role

Pre Condition

Min_Int

Min Role

Max Role

Max_Int

CAN_ASSIGNP

Pre Condition

And set name

Not set name

CAN_ASSIGN2

CAN_ASSIGN4

Not set name

Not roles

CAN_ASSIGN3

And set name

And roles

Figure 4: Entity-Relation Diagram for can-assign Relation

revoke a system privilege the user should have the ad-
min option on that privilege or the user should have the
GRANT ANY PRIVILEGE system privilege. In order
to grant or revoke an object privilege a user should own
that particular object or the user should have grant op-
tion on the object if it is owned by someone else.

Oracle provides a programmatic approach to manipu-
late database information using procedural schema ob-
jects called PL/SQL (Procedural Language/SQL) pro-
gram units. Procedures, functions and packages are
di�erent types of PL/SQL objects. PL/SQL extends
the capabilities of SQL by providing some programming
language features such as conditional statements, loops
etc.

A stored program unit runs with the privileges of the
user who owns it and not the user who is executing it.
This feature gives great
exibility in enforcing security.
For example suppose we want a user to perform some
operations on a database but we do not want to grant
privileges explicitly. Then one can write a procedure
embedded with necessary operations, and grant execute
privileges on the procedure to the user.1

1The privileges that are exercised in a procedure should have
been explicitly granted to the user who owns the procedure. Priv-
ileges obtained by the owner via a role cannot be referenced in a
procedure.

3.2 Implementation of PRA97

To implement PRA97 we de�ne Oracle relations which
encode the can-assignp and can-revokep relations of
PRA97. The can-assignp relation of PRA97 is imple-
mented in Oracle as per the entity-relation diagram of
�gure 4. We assume that the prerequisite condition is
converted into disjunctive normal form using standard
techniques. Disjunctive normal form has the following
structure.

(: : : ^ : : : ^ : : :) _ (: : : ^ : : : ^ : : :) _ : : : _ (: : : ^ : : : ^ : : :)

Each . . . is a positive literal x or a negated literal x.
Each group (: : : ^ : : : ^ : : :) is called a disjunct.

For a given prerequisite condition can-assign2 has a
tuple for each disjunct (indicated by the double-headed
arrow from can-assignp to can-assign2). All positive
literals of a single disjunct are in can-assign3, while
negated literals are in can-assign4. In our scheme the
can-assignp relation shown in table 1 is represented as
table 3 (this example only has a single disjunct for each
prerequisite condition). For example, consider the �rst
row for PSO1 in table 1. It is represented by the �rst
row for PSO1 in table 3(a) which references the disjunct
C2 in table 3(b). C2 in turn references the positive
literal set ASET2 in table 3(c) and the negative literal
set NSET2 in table 3(d).

The can-revokep relation of PRA97 is represented by
a single Oracle relation. For example table 2 is repre-
sented as shown in table 4.

AR PC Min Int Min Role Max Role Max Int

DSO C1 [PL1 PL1]
DSO C1 [PL2 PL2]
PSO1 C2 [PE1 PE1]
PSO1 C3 [QE1 QE1]
PSO2 C3 [PE2 PE2]
PSO2 C4 [QE2 QE2]
.

(a) can-assign

PC and set name not set name

C1 ASET1 null
C2 ASET2 NSET2
C3 ASET2 NSET3
C4 ASET3 NSET4
C5 ASET3 NSET5
.

(b) can-assign2

and set name and roles

ASET1 DIR
ASET2 PL1
ASET3 PL2
.

not set name not roles

NSET2 QE1
NSET3 PE1
NSET2 QE2
NSET3 PE2
.

(c) can-assign3 (d) can-assign4

Table 3: Oracle can-assign Relations for PSO1 from Table 1

AR Min Int Min Role Max Role Max Int

DSO (ED DIR)
PSO1 [PE1 PE1]
PSO1 [QE1 QE1)
PSO1 [PE2 PE2]
PSO1 [QE2 QE2)

Table 4: Oracle can-revoke Relation

We de�ne a special user called Rolemanager who
owns all the relations of tables 3 and 4. Roleman-
ager decides the content of these relations. He also has
the DBA2 role. The user Rolemanager should also be
granted with select privileges on some database internal
tables owned by the user SYS.
In addition we have a set of accompanying proce-

dures and a package to perform the grants and revokes.
We have two procedures to perform the assign opera-
tion, one for assignment of system privileges and other
for assignment of object privileges. Similarly we have
two procedures for weak revoke, and another two proce-
dures for strong revoke. The package consists of several
functions which contain the routines to check whether
requirements are met or not. To grant or revoke a per-
mission an administrator has to call a procedure and
provide required parameters. The details of the proce-
dure calls are given below.

3.2.1 Granting Permissions to a Role

When a privilege is being assigned to a role the
user calls the appropriate procedure depending upon
whether it is a system privilege or it is a schema object
privilege. The procedure calls are give below.

� grant syspriv (role, tprivilege, arole)

� grant objpriv (role, tprivilege, object, schema,
arole)

The parameters role and tprivilege specify what priv-
ilege should be granted to the role. The parame-
ter arole speci�es the administrative role that should
be applied.3 The parameters object and schema in
grant objpriv specify the the object name and schema4

to which the object belongs.
When the procedure is executed, it checks if the user

has the arole turned on. If the arole is not turned on
an error message is generated and execution stops. Af-
ter this initial check is performed the procedure gets
the tuples from can-assignp which correspond to arole
and all its junior roles and checks whether any of them
satisfy the range check and prerequisite conditions. If
any of the tuple satis�es the condition we perform the
grant.

2DBA is a prede�ned role in Oracle and it has all the system
privileges assigned to it.

3Oracle does not provide a facility for a stored procedure to
determine which roles have been turned on in a given session.
To circumvent this limitation we explicitly require the parameter
arole to specify which admnistrative role should be used for the
requested operation. More generally, arole should be a set. Our
implementation can be easily extended to do this.

4We require that the schema user who owns the objects should
grant all the privileges on the object to Rolemanager with grant
option.

In order to check whether the user has activated arole
we use Oracle's built in function IS ROLE ENABLED.
To check whether the role is in the speci�ed range for
one of the relevant can-assignp tuples (in case of revoke
it will be from can-revokep) we use Oracle CONNECT
BY clause in our queries. By using CONNECT BY
clause, one can traverse a tree structure corresponding
to the role hierarchy in one direction. One can start
from any point within the role hierarchy and traverse it
towards junior or senior roles. But there is no control on
the end point of the traversal. Speci�c branches or an
individual node of the tree can be excluded by hard cod-
ing their values. Such hard coding is not appropriate for
a general purpose stored procedure. In our implementa-
tion we overcome this problem by performing multiple
queries and intersecting them to get the exact range.
We speci�cally do not hard code any parameters in our
queries. In order to check if the prerequisite condition is
satis�ed or not we perform queries against Oracle inter-
nal tables (objauth$, sysauth$ and obj$ etc.) In order
to modularize our implementation we have developed a
package which performs the necessary checks involved.
All the procedures call this package to do the veri�-
cation. The package contains several functions. Each
one is designed to perform certain tasks, for example
we have a function called is role in porder to check
whether role is in speci�ed range or not. This function
returns the results to the calling PL/SQL unit. Simi-
larly there are other functions to perform other neces-
sary checks.
Our implementation is convenient for the DBA since

the stored procedures and packages we provide are
generic and can be reused by other databases. The
DBA only needs to de�ne the roles and administrative
roles, and con�gure the can-assignp and can-revokep re-
lations. Our implementation is available in the public
domain for other researchers and practitioners to ex-
periment with.

3.2.2 Revoking Permissions from a role

The procedures that perform the revoke operation are
give below.

� weak revoke syspriv (role, tprivilege, arole)

� weak revoke objpriv (role, tprivilege, object,
schema, arole)

� strong revoke syspriv (role, tprivilege, arole)

� strong revoke objpriv (role, tprivilege, object,
schema, arole)

The parameters are same as that of granting procedures
but the operation changes from assignment to revoking

from the role. Chaecking the authorization for the op-
eration is similar to that for the grant operation.
In case of strong revoke we get all the roles which are

junior to the role speci�ed and see if the privilege being
revoked is assigned to them. We follow all or nothing
semantics so the revoke will go through only if all the
junior roles which have the privilege fall in the range of
administrative role.5

4 CONCLUSION

In this paper we described the PRA97 model for as-
signing permissions to roles and revoking permissions
from roles and and showed how the model can be im-
plemented in Oracle. PRA97 is a component of AR-
BAC97 [SBC+97]. It can deployed as an individual
component or it can deployed along with other compo-
nents of ARBAC97. In conjunction with earlier work we
currently have implementations of PRA97 and URA97
in Oracle. Given our success in implementing PRA97
and URA97 in Oracle, it should be possible to imple-
ment RRA97 which has been recently de�ned [SM98].

References

[SA98] Ravi Sandhu and Gail-Joon Ahn. Decentral-
ized group hieraches in unix: An experiment
and lessons learned. In Proceedings of 21st

NIST-NCSC National Information Systems

Security Conference, Arlington, VA, Octo-
ber 5-8 1998.

[SB97] Ravi Sandhu and Venkata Bhamidipati. The
URA97 model for role-based administration
of user-role assignment. In T. Y. Lin and
Xiaolei Qian, editors, Database Security XI:

Status and Prospects. North-Holland, 1997.

[SB98] Ravi S. Sandhu and Venkata Bhamidipati.
Role-based administration of user-role as-
signment: The URA97 model and its Oracle
implementation. The Journal Of Computer

Security, 1998. in press.

[SBC+97] Ravi Sandhu, Venkata Bhamidipati, Ed-
ward Coyne, Srinivas Ganta, and Charles
Youman. The ARBAC97 model for role-
based administration of roles: Preliminary
description and outline. In Proceedings of

5In some papers [SA98] two forms of strong revoke have been
identi�ed. These are called drop and continue. If one of the weak
revokes fails the drop option stipulates that strong revocation has
no e�ect, whereas with the continue option those weak revokes
that are authorized will be performed.

2nd ACM Workshop on Role-Based Access

Control, Fairfax, VA, November 6-7 1997.
ACM.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-

puter, 29(2):38{47, February 1996.

[SM98] Ravi Sandhu and Qamar Munawer. The
RRA97 model for role-based administration
of role hierarchies. In Proceedings of 13th

Annual Computer Security Application Con-

ference, Scotsdale, AZ, December 7-11 1998.

