
II-71

Figure 11-1(a). Taxonomy of RBAC Models Figure 11-1(b). Taxomony of ARBAC Models

Copyright 1996 Association for Computing
Machinery. Permission to make digital/hard copy
of all or part of this work for personal or classroom
use is granted without fee provided that copies are
not made or distributed for profit or commercial
advantage; the copyright notice, the title of the
publication, and its date appear; and notice is
given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific
permission and/or a fee.

ACM RBAC Workshop, MD, USA
© 1996 ACM 0-89791-759-6/95/0011 $3.50

(11) NetWare 4 as an Example of
Role-Based Access Control

Jeremy Epstein, Cordant, Inc., and Ravi Sandhu, George Mason University

jepstein@cordant.com, 11400 Commerce Park Drive, Reston VA 22091

sandhu@isse.gmu.edu, Department of Information and Software Systems Engineering,
Fairfax, VA 22030

1.0 Introduction

In [SAND96a], the second author describes a taxonomy of role-based
access control (RBAC) models, divided into four classes shown in
Figure 11-1(a), Taxonomy of RBAC Models. A complementary set of
models is used for administrative role-based access control (ARBAC), as
shown in Figure 11-1(b), Taxonomy of ARBAC Models. In this position
paper, we describe how the RBAC and ARBAC models can be partially
implemented using unmodified NetWare 4 servers.

2.0 NetWare Access Control Policies

NetWare includes two major types of objects with separate but interrelated
security policies. NetWare Directory Services (NDS) objects represent
abstractions such as users, roles, groups, and computers, while file system
objects provide a traditional hierarchical file system. Both file and NDS
objects are supported by sophisticated access control mechanisms that
allow assignment of rights to users, groups, and other entities. In addition,
they allow rights assignments to be inherited in a hierarchical fashion.
Most importantly, they allow assignment of access rights in a granular
fashion: rights to a file or directory can be controlled independently from

 The tree structure does not include anything akin to a “hard” link in a UNIX file system. However, objects of1

class Asias can be used to provide a symbolic link-like capability.

II-72

Figure 11-2. Sample NDS Structure

the ability to change file or directory access rights. That is, a user can,
through a role, be granted the ability to read, write, create, or delete files
without having any ability to share those files with others.

2.1 NDS Object Access Control Policy

NDS is an X.500-like system for managing data that represents an
organization's assets. Every object in NDS has a class, which is defined in
the schema. The schema contains approximately 20 built-in classes (e.g.,
User, Organization), and can be extended by authorized users. Depending
on the class of an object, it will have one or more attributes, also known as
properties. Attributes are used to store information about some aspect of
an object. For example, an object of class User has attributes to represent
the person's name, home directory, login script, etc. Some attributes are
security relevant (e.g., those relating to passwords) while others are not
(e.g., the user's telephone number).

NDS objects are organized in a tree, much as many file systems organize
files and directories into a tree . NDS objects are either container objects,1

which correspond to directories in a file system, or leaf objects, which
correspond to files in a file system. Whether an object is a container or
leaf object is determined by its class, as defined in the NDS schema.
Figure 11-2, Sample NDS Structure, shows an NDS structure that might
represent an organization. Objects are named by their complete path to the
root, starting at the leaf. For example, Sally.Finance.Acme is the complete
name of the left-most node in the tree.

Users log in to NetWare servers by providing the name of their NDS User
object. When presented with the proper password (and meeting other
restrictions, such as an unexpired account), the user is logged in, and his or

 “Security equivalence” is a misnomer. Security equivalences are neither transitive nor reflexive.2

II-73

her security equivalence list, which is used in calculating access rights, is2

computed as follows:

� All users are security equivalent to the pseudo-object named [Public].

� Users are security equivalent to all container objects in the path from
their User object to the root of the tree, designated [Root], including
both themselves and [Root].

� Users are security equivalent to those objects to which they are
explicitly made security equivalent by the administrator.

All rights in NDS are passed through security equivalence. Group
membership is just one example of security equivalence, but does not play
any special role (contrary to what is stated in [SCHA94]).

Note that users cannot choose a subset of security equivalences to be used
for a session: they gain all security equivalences. Thus, a given user may
be represented by several NDS User objects to reflect different uses of the
system (e.g., as an administrator or as an ordinary user). The user would
select which NDS User object to use, depending on the task to be
accomplished.

While NDS can be configured in many different ways, typical
configurations allow administrative users (but not ordinary users) to create
and delete NDS objects in one or more containers. Administrative users
can usually modify the attributes of NDS objects that they are responsible
for. Non-administrative users may be able to modify some of the attributes
of their User objects, such as the Login Script or Telephone Number
attributes.

2.1.1 NDS Object Access Control Algorithm

Every NDS object has an Access Control List (ACL), which is stored as an
attribute of the NDS object. An ACL is a list of triples, where the
elements of the triple are as follows:

� The subject name, which is either the name of an NDS object (e.g., a
specific User, Group, or Organization), or a pseudo-ID such as [Root],
[Public], or [Inherited Rights Filter] (abbreviated IRF).

� Protected attribute, which for NDS object rights calculation is the
reserved symbol [Entry Rights].

� Access rights, which is zero or more of Supervisor, Create, Delete,
Rename, and Browse. The Supervisor right implies all other rights.

An object O1's rights to object O2 is computed as follows:

� For each object O' to which O1 is security equivalent, compute the
rights for O' to O2 by searching from the root of the tree toward O2.

 Add or Delete Self is one right, not two (i.e., the word “or” does not indicate there are two rights).3

II-74

R, which is initially empty, represents the object rights O' has to O2.
For each node N along the path, perform the following steps:

- If N's ACL includes an entry with the subject name [Inherited
Rights Filter] and a protected attribute of [Entry Rights], then
remove all access rights from R except those listed in the IRF.

- If N's ACL contains an entry with the subject name of O' and a
protected attribute of [Entry Rights], then set R to the access
rights for the entry.

� Union the value of R calculated in the first step for each O' together,
yielding the rights of O1 to O2.

This algorithm allows setting an ACL at one location in the NDS tree and
allowing the rights to flow down using inheritance. For example, in
Figure 11-1, if Edward.Acme has the Supervisor right to the Acme object,
then he will have the Supervisor right (and therefore all rights) to all
objects in the NDS tree (unless they are blocked with an IRF). If
Sally.Finance.Acme is made security equivalent to Edward.Acme, then she
will also have the Supervisor right to all objects. An alternate method is to
assign Admin.Acme the Supervisor right to Acme, and make
Edward.Acme security equivalent to Admin.Acme. In this case,
Sally.Finance.Acme would not gain the Supervisor right to Acme unless
she is security equivalent to Admin.Acme (i.e., she does not obtain the
rights transitively through Edward.Acme).

Note that groups are simply a particular case of security equivalence in this
scheme: assigning rights to an NDS Group object and making NDS User
objects security equivalent to the Group object is no different than
assigning rights to any other class of NDS object and establishing security
equivalence of NDS user object to object of that other class.

2.1.2 NDS Attribute Access Control Algorithm

The ACL for an NDS object is also used for NDS attributes, with the
following changes:

� The protected attribute can be either the name of a specific attribute
(e.g., Home Directory) or the pseudo-attribute [All Properties Rights].

� The access rights are zero or more of Supervisor, Compare, Add or
Delete Self, Read, and Write. Note that the Supervisor attribute right3

is different from the Supervisor object right.

An object O1's rights to attribute A of object O2 is computed as follows:

1. For each object O' to which O1 is security equivalent, compute the
rights for O' to all attributes of O2 by searching from the root of the
tree toward O2. R, which is initially empty, represents the attribute
rights O' has to O2. For each node N along the path, perform the
following steps:

II-75

a. If N's ACL includes an entry with the subject name [Inherited
Rights Filter] and a protected attribute of [All Properties Rights],
then remove all access rights from R except those listed in the
IRF.

b. If N's ACL contains an entry with the subject name of O' and a
protected attribute of [All Properties Rights], then set R to the
access rights for the entry.

2. For node O2 only, perform the following steps:

a. If O2's ACL includes an entry with the subject name [Inherited
Rights Filter] and a protected attribute of A, then remove all
access rights from R except those listed in the IRF.

b. If O2's ACL contains an entry with the subject name of O' and a
protected attribute of A, then set R to the access rights for the
entry.

3. Union the value of R calculated in steps 1 and 2 for each O' together,
yielding the rights of O1 to attribute A of O2.

4. For each object O' to which O1 is security equivalent, determine
whether O' has the Supervisor object right to O2 by searching from the
root of the tree toward O2. S, which is initially false, represents
whether O' has the Supervisor object right to O2. For each node N
along the path, perform the following steps:

a. If N's ACL includes an entry with the subject name [Inherited
Rights Filter], a protected attribute of [Entry Rights], and the IRF
does not include the Supervisor right, then clear S.

b. If N's ACL contains an entry with the subject name of O', a
protected attribute of [Entry Rights], and the access rights include
the Supervisor right, then set S.

5. If the value of S for any of the values of O' computed in step 4 is set,
then O1 has all rights to attribute A of O2, regardless of the results of
step 3.

There are certain attributes, which are flagged in special ways, that are not
modified by the ACL. For example, attributes may be marked as Read-
Only, which precludes modification to the attribute, even if the user has
adequate rights. Other attributes are marked as Public-Read, which is
equivalent to the ACL entry <[Public], A, Read> (where A is the name of
the attribute). Attributes are marked as Read-Only or Public-Read as part
of the attribute definition, and not as part of the ACL for the object.

An important aspect of the above policy is that rights to individual
attributes are not inherited, but rights to all attributes (as represented by the
symbol [All Properties Rights]) are inherited. Thus, a user could be given
the Read and Write rights to [All Properties] at the root of the NDS tree,
which would provide access to all lower objects (unless modified by IRFs
or subsequent trustee assignments), but giving the Read and Write rights to
the Telephone Number attribute at the root would only affect access to the
attribute of that particular object.

 There is no “protected attribute” field in a trustee list entry, whereas there is in an NDS ACL entry.4

 The Access Control right allows changing the trustee list, except to add an entry with the Supervisor right. Note5

that there is no Executive right, because users execute programs on workstations over which the server has no
control. Similarly, there is no “setuid” concept as in UNIX for protected subsystems.

 The IRF for a file cannot block inheritance of the Supervisor right.6

II-76

2.2 File System Object Access Control Policy

Files in a NetWare file system are organized in a hierarchical tree, much as
any traditional file system. Files are organized into volumes, which
typically represent disk drives. File system rights rely on many of the
same concepts as NDS rights: security equivalence, inheritance, and
inherited rights filters. The file system access control policy is similar, but
not identical, to the NDS object and NDS attribute policy. Every file
system object (file or directory) may have a trustee list, which is equivalent
to an ACL. Elements of a trustee list are pairs , where the first element is4

the subject name and the second element is the access rights (zero or more
of Supervisor, Read, Write, Create, Erase, Modify, File Scan, or Access
Control). Any NDS object with at least one right to a file system object is5

called a trustee of the object, indicating that it has (partial) responsibility
for the data contained in the file or directory. An object O1's rights to a
file or directory F is computed as follows:

� For each object O' to which O1 is security equivalent, compute the
rights for O' to F by searching from the root of the volume toward F.
R, which is initially empty, represents the object rights O' has to F.
For each node N along the path, perform the following steps:

- If N's trustee list includes an entry with the subject name
[Inherited Rights Filter], then remove all access rights from R
except those listed in the IRF .6

- If N's ACL contains an entry with the subject name of O', then
set R to the access rights for the entry, unless R already contains
the Supervisor right, in which case R is unchanged.

� Union the value of R calculated in the first step for each O' together,
yielding the rights of O1 to F.

Just as inheritance is used to assign rights in a relatively small number of
locations in NDS, so too can it be used in the file system. For example,
assigning the single trustee entry <[Public], {Read, File Scan}> to the
\PUBLIC directory will allow all users access to all files in that directory
(and all subdirectories) without assigning any rights to individual files in
the directory.

Note that because of inheritance, rights are typically not assigned at the
root of a volume, because that would provide rights to the whole volume
(unless blocked by an IRF).

3.0 Using NetWare for RBAC

II-77

NetWare 4 can be used to enforce portions of the RBAC0, RBAC1,
ARBAC0, and ARBAC1 policies described in [SAND96a]. The objects to
be protected for RBAC0 and RBAC1 are files and directories, while the
objects to be protected for ARBAC0 and ARBAC1 are NDS objects. We
do not believe that NetWare can be used for implementation of role
constraints (RBAC2 and ARBAC2) and, therefore, it cannot be used for
the consolidated model (RBAC3 and ARBAC3), which presumes the
presence of role constraints.

3.1 RBAC0: Base Model

RBAC0 provides basic RBAC features. The objects we wish to protect
using RBAC0 are files and directories in the file system. The users of
RBAC0 are equivalent to users in NetWare, and the permissions are the
NetWare file rights (Supervisor, Read, Write, Create, Erase, Modify, File
Scan, and Access Control). Roles can be implemented using any NDS
object, although the Organizational Role object is most suitable for the
purpose because of its name.

3.1.1 What Can be Done

RBAC0 calls for a many-to-many relationship between roles and users and
between roles and permissions. In NetWare, users may be security
equivalent to an arbitrary number of other objects, and objects may have
an arbitrary number of users that are security equivalent to them. This
allows us to establish a many-to-many relationship between users and
roles. Similarly, the same permission (right) can be assigned to any
number of roles and vice versa.

The essence of RBAC0 in NetWare is the ability to assign access rights
independently from access control rights. That is, a role could have the
ability to create, delete, read, and write files in a directory without the
ability to grant others access to that directory. This would be done by not
assigning the Access Control right to the role. In turn, user’s rights are
limited by the roles to which they are security equivalent.

3.1.2 What Cannot be Done

As noted above, NetWare has no concept of sessions operating in different
roles as called for in RBAC0. Users obtain those rights associated with all
objects to which they are security equivalent. Thus, there is no capability
for dynamic activation and deactivation of roles during a session; a user
must log out from one NetWare User account and log in as a different one
to change their role. This is a weakness of NetWare, as it forces users to
either have their maximum rights available at all times or to maintain
multiple accounts, each of which is used for a different purpose (e.g., user
or administrator).

A client operating system could maintain a mapping of user identities to
roles and transparently log the user in and out as necessary. For example,
the user might present a name and a role, and the client would map that to
an NDS User object. Similarly, given sufficient client operating system
support, users could have multiple windows each of which is logged in to a

 Commercial database systems (e.g., ORACLE) that run on NetWare use this technology.7

II-78

NetWare server as a different user ID, thus presenting the facade of having
multiple concurrent sessions. We are unaware of any implementation of
this mechanism. In addition, maintaining multiple synchronized identities
would be administratively cumbersome.

3.1.3 Possible Extensions

NetWare has no concept of a granularity below files. For example, it
might be desirable to have RBAC to records in a database. This can be
accomplished by extending the NetWare server using NetWare Loadable
Modules (NLMs), which extend the server operating system . Additional7

messages could be defined between clients and servers to provide access to
database records. Such messages could rely on the authentication services
provided by NetWare and could "piggy-back" by using the existing access
controls to enforce RBAC on a row or column basis.

3.2 RBAC1: Role Hierarchies

The purpose of role hierarchies is to allow structuring of rights as they are
typically done in an organization to reflect authority and responsibility.
NetWare's rights inheritance coupled with NDS hierarchy works well for
such a concept. Container objects, which are used for grouping NDS
objects, can be trustees of a file just as any other NDS object. Because
users are security equivalent to all containers they are transitively
contained in, assigning rights to a container assigns those rights to all users
(and other NDS objects) in that container.

However, NDS containers are inverted with respect to the usual
organizational model that individuals near the top (i.e., root) have more
authority and responsibility and authority than individuals closer to the
bottom (i.e., the leaves).

A second difficulty with mapping NetWare access controls to RBAC1 is
the notion of transitivity. [SAND96a] suggests that access controls should
be transitive, so a Vice President would obtain not only those rights
assigned to the Department Head role, but also transitively the rights
associated to the Engineer role. However, security equivalence is not
transitive, so this concept must be implemented administratively (e.g.,
either by assigning the Vice President role all of the rights of Department
Head and Engineer roles, or by making each instance of a user who is a
Vice President security equivalent to all three roles). [SAND96a] also
describes the notion of inheriting rights from multiple roles. This is done
easily in NetWare by making a User object security equivalent to an
arbitrary number of other NDS objects.

NetWare does not meet the proposed requirement of role hierarchies being
partial orders. Partial orders are reflexive, transitive, and anti-symmetric.
NetWare's security equivalence mechanism provides reflexivity and anti-
symmetry, but not transitivity.

II-79

As with RBAC0, RBAC1 includes the concept of sessions that can be used
for a role. RBAC1 extends the concept further by requiring that users be
able to assume any subset of the roles to which they are authorized, given
the hierarchical nature of roles. This is impossible in NetWare, short of
creating a separate user account for each unique combination of roles that
a user might wish to exercise.

3.3 ARBAC0: Administrative Base Model

The notion of ARBAC0 is identical to that of RBAC0, except that it is
concerned with administrative controls rather than access to files and
directories. Just as NetWare's file access control policy can be used to
provide roles with access to files and directories, so can the NDS access
control policy be used to provide roles with access to NDS objects and
their attributes. For example, by providing a role with the Supervisor
object right to a container, individuals security equivalent to that role can
administer objects within the container, subject to access blocked by IRFs.
The role-based administrative access can be divided at an arbitrarily fine-
grained level. For example, a Telephone-Manager role could be defined
that has the Read and Write rights to the Telephone Number attribute of all
NDS objects. However, to do this, the role would have to be listed on the
ACL for every object in the NDS tree, because attribute-specific rights are
not inherited.

3.4 ARBAC1: Administrative Role Hierarchies

The relationship of ARBAC1 to RBAC1 is the same as ARBAC0 to
RBAC0. Just as hierarchies of users can be established to provide access
to file system objects, so too can hierarchies be used for access to NDS
objects. As with RBAC1, though, the lack of transitivity in the security
equivalence mechanism limits the ability to meet the criteria established in
[SAND96a].

4.0 Examples

In this section we provide several examples of how the NetWare
mechanisms can be used to implement an RBAC policy.

4.1 File System Examples

Consider the NDS structure as shown previously in Figure 11-2 and the
file system structure as shown in Figure 11-3, Sample File System
Structure.

II-80

Figure 11-3. Sample File System Structure

Table 11-1, Sample File System Trustee Assignments, shows sample
trustee assignments for this configuration. Recall that all users are
automatically security equivalent to each container in which their user
object is located and that users obtain the union of rights available to each
object to which they are security equivalent. Thus, with no additional
assignments, users Alice and Bob will have File Scan, Create, Read, and
Write rights to all files and directories in \MKTG\EUROPE (by virtue of
being security equivalent to Europe.Marketing.Acme, which is a trustee of
the directory). Similarly, users Cheryl and David will have the File Scan,
Create, Read, and Write rights to all files and directories in \MKTG\ASIA
(by virtue of being security equivalent to Asia.Marketing.Acme, which is a
trustee of the directory). Alice, Bob, Cheryl, and David will all have the
File Scan, Create, Read, and Write rights to all files in
\MKTG\COMMON (by virtue of being security equivalent to
Marketing.Acme). Note that none of these assignments allow the users to
propagate permissions, because no one has the Access Control or
Supervisor right. Without any explicit security equivalences, no one has
rights to \MKTG\FORECAST.

Table 11-1. Sample File System Trustee Assignments

File/Directory Name Trustee Rights

\MKTG Mktg-Mgr.Marketing.Acme Supervisor

\MKTG\EUROPE Europe.Marketing.Acme File Scan, Create, Read, Write

Mgr.Europe.Marketing.Acme Access Control

\MKTG\ASIA Asia.Marketing.Acme File Scan, Create, Read, Write

Mgr.Asia.Marketing.Acme Access Control

\MKTG\COMMON Marketing.Acme File Scan, Create, Read, Write

\MKTG\FORECAST Mgr.Europe.Marketing.Acme File Scan, Read, Write

Mgr.Asia.Marketing.Acme File Scan, Read, Write

II-81

Now assume that Bob.Europe.Marketing.Acme is made security equivalent
to Mgr.Europe.Marketing.Acme, and similarly Cheryl.Asia.Marketing is
made security equivalent to Mgr.Asia.Marketing.Acme. By this
assignment, each will obtain the Access Control right to the respective
\MKTG\EUROPE or \MKTG\ASIA directory, and the File Scan, Read,
and Write rights to the \MKTG\FORECAST directory. If Bob goes on
vacation, Cheryl can be made security equivalent to
Mgr.Europe.Marketing.Acme and will instantly obtain the rights usually
exercised by Bob. Note that it is not sufficient for Cheryl to be made
security equivalent to Bob, because Bob is not directly a trustee, and
security equivalence is not transitive.

By making Edward.Acme security equivalent to Mktg-
Mgr.Marketing.Acme, he will obtain the Supervisor right to the marketing
portion of the file system. Note that no one has access to the root of the
file system tree: because of inheritance, access to the root is rarely granted.

In an analogous fashion, we could assign rights to the \FINANCE portion
of the file system. There is, of course, no reason why objects in
Finance.Acme could not have rights to files in \MKTG, or vice versa.

Thus, by using security equivalence and inheritance, a small number of
access control assignments are sufficient for controlling a large file system
tree. Using Organizational Role and Organizational Unit objects as
trustees simplifies the management of the file system, which is a key goal
of RBAC.

4.2 NDS Examples

Again consider the NDS structure as shown previously in Figure 11-2.
Table 11-2, Sample NDS Trustee Assignments, shows sample ACL
assignments for this configuration. With these trustee assignments, all
users in Finance.Acme will have the Browse right to the Finance container,
while all users in Marketing.Acme will have the Browse right to the
Marketing container. The Finance organization has an administrator who
has the Supervisor right to that portion of the NDS tree, while the
Marketing organization has a less powerful administrator with Create and
Delete rights, but not the Supervisor right. In addition, the organization as
a whole has an administrator who has the Supervisor right to the entire
tree.

Table 11-2. Sample NDS Trustee Assignments

Object Name Trustee Rights

Finance.Acme Finance.Acme Browse

Manager.Finance.Acme Supervisor

Marketing.Acme Marketing.Acme Browse

Mktg-Mgr.Marketing.Acme Create, Delete

Acme Admin.Acme Supervisor

By making Edward.Acme security equivalent to Admin.Acme, he will
obtain the Supervisor right to the whole tree. If Sally.Finance.Acme is
made security equivalent to Manager.Finance.Acme, then she will have the

II-82

Supervisor right to the Finance part of the NDS tree. Using an Inherited
Rights Filter, Admin.Acme could be blocked from having any rights in
Finance.Acme, thus allowing only Sally to administer those portions of the
tree.

Because of security equivalence, any user can take over administration of
the tree simply by being made security equivalent to Admin.Acme (or
Manager.Finance.Acme, for that portion of the tree). As in the file system
examples, because security equivalence is not transitive, it is not sufficient
to make a user security equivalent to Sally, because her rights are not
assigned directly, but rather come from security equivalence.

Thus, using assignment of rights to Organizational Unit and Organizational
Role objects, we can configure access rights in the NDS tree with a bare
minimum of configuration settings.

5.0 Conclusions

RBAC can be partially implemented using existing commercial products.
The inability to provide some of the features suggested by the [SAND96a]
family of models suggests that perhaps a finer-grained distinction of
features would be desirable, rather than an all-inclusive definition of
meeting a given set of RBAC criteria. By analogy, this is similar to
defining a security target using the ITSEC [ITSEC91] or the proposed
Common Criteria [COMM96] and comparing a product to the target,
rather than using a one-size-fits-all approach to security as in the Orange
Book [DOD85].

NetWare provides many useful features for implementing RBAC. It would
be significantly more useful if it provided the ability for users to select
sessions by selecting at login time what objects they want to be security
equivalent to (as a subset of their authorized set), and transitivity in
security equivalence.

6.0 References

[COMM96] Common Criteria Editorial Board, Common [SCHA94] M. Schaefer, G. Grossman, and J. Epstein,
Criteria for Information Technology Security Evaluation, “Using a Semiformal Model 2C a C2 Better,”
Version 1.0, January 1996. Available from: Proceedings of the 17th National Computer Security
http://csrc.nist.gov/nistpubs/cc/read_me.ccl. Conference, Baltimore, MD, 11-14 October 1994,

[DOD85] U.S. Department of Defense, Trusted Computer
Systems Evaluation Criteria, DOD 5200.28-STD,
Washington, DC, December 1985.

[ITSEC91] Information Technology Security Evaluation
Criteria (ITSEC), Provisional Harmonised Criteria,
Version 1.2, Luxembourg: Office for Official
Publications of the European Communities, June 1991.

[SAND96a] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman, “Role-Based Access
Control,” IEEE Computer, 29:2, February 1996, 38-47.

153-164.

