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Abstract

Separation of duty (SOD) is a fundamental technique
for prevention of fraud and errors, known and practiced
long before the existence of computers. It is discussed
at several places in the literature, but there has been lit-
tle work on specifying SOD policies in a systematic way.
This paper describes a framework for specifying separa-
tion of duty and conict of interest policies in role-based
systems. To specify these policies, we need an appropri-
ate language. We propose an intuitive formal language
which uses system functions and sets as its basic ele-
ments. The semantics for this language is de�ned by
its translation to a restricted form of �rst order pred-
icate logic. We show how previously identi�ed SOD
properties can be expressed in our language. More-
over, we show there are other signi�cant SOD proper-
ties which have not been previously identi�ed in the
literature. Unlike much of the previous work, this pa-
per deals with SOD in the presence of role hierarchies.
Our work shows that there are many alternate formula-
tions of even the simplest SOD properties, with varying
degree of exibility and assurance. Our language pro-
vides us a rigorous foundation for systematic study of
SOD properties.
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1 INTRODUCTION

As a security principle, separation of duty (SOD) is
a fundamental technique for prevention of fraud and
errors, known and practiced long before the existence
of computers. It is used to formulate multi-user con-
trol policies, requiring that two or more di�erent users
be responsible for the completion of a transaction or
set of related transactions. The purpose of this princi-
ple is to minimize fraud by spreading the responsibility
and authority for an action or task over multiple users,
thereby raising the risk involved in committing a fraud-
ulent act by requiring the involvement of more than one
individual. A frequently used example is the process of
preparing and approving purchase orders. If a single
individual prepares and approves purchase orders, it is
easy and tempting to prepare and approve a false order
and pocket the money. If di�erent users must prepare
and approve orders, then committing fraud requires a
conspiracy of at least two, which signi�cantly raises the
risk of disclosure and capture.
Although separation of duty is easy to motivate and

understand intuitively, so far there is no formal basis
for expressing this principle in computer security sys-
tems. Several de�nitions of SOD have been given in
the literature. For the purpose of this paper we use the
following de�nition.

Separation of duty reduces the possibility
for fraud or signi�cant errors (which can cause
damage to an organization) by partitioning of
tasks and associated privileges so cooperation
of multiple users is required to complete sensi-
tive tasks.

Our objective in this paper is to study SOD in context
of role-based access control (RBAC) [SCFY96]. RBAC
has become a well-accepted and well-known approach
for authorization and access control in modern systems.



We assume the reader is familiar with basic RBAC con-
cepts and their underlying motivation. We have the
following de�nition for interpreting SOD in role-based
environments.

Role-Based separation of duty ensures
SOD requirements in role-based systems by
controlling membership in, activation of, and
use of roles as well as permission assignment.

There are several papers in the literature over the
past decade which deal with separation of duty (as dis-
cussed in the next section). During this period various
forms of SOD have been identi�ed. Attempts have been
made to systematically categorize these de�nitions. No-
tably, Simon and Zurko [SZ97] provide an informal
characterization, and Gligor et al. [GGF98] provide a
formalism of this characterization. However, this work
has signi�cant limitations. It omits important forms
of SOD including session-based dynamic SOD needed
for simulating lattice-based access control and Chinese
Walls in RBAC [San93, San96]. It also does not deal
with SOD in the presence of role hierarchies. More-
over, as will see, there are additional SOD properties
that have not been identi�ed in the previous literature.
In this paper we take a di�erent approach to under-

stand SOD. Rather than simply enumerating di�erent
kinds of SOD we propose a formal language for speci-
fying di�erent SOD properties. This language uses sys-
tem functions and sets as its basic elements. It also has
two non-deterministic functions which are introduced
to replace explicit quanti�ers. For ease of reference
we call this language RSL99 (Role-based Separation of
duty Language 1999).
The rest of the paper is organized as follows. Sec-

tion 2 reviews previous work on separation of duty. Sec-
tion 3 de�nes the speci�cation language RSL99 includ-
ing the basic elements and notation which are used to
express separation of duty properties following by syn-
tax and semantics of RSL99 in section 4. Section 5 dis-
cusses how role-based SOD properties can be expressed
in RSL99. Section 6 concludes the paper.

2 PRIOR WORK ON SOD

In this section, we discuss prior work on separation of
duty which is a foundational principle in computer se-
curity.
Clark and Wilson [CW87] called attention to separa-

tion of duty as one of the major mechanisms to counter
fraud and error while ensuring the correspondence be-
tween data objects within a system and the real world
objects they represent. The Clark-Wilson scheme in-
cludes the requirement that the system maintain the

separation of duty requirement expressed in the access
control triples. It calls for certi�cation by the security
o�cer that these tuples provide adequate separation. It
is therefore a static concept that is realized at design
time.

Dynamic separation of duty provides greater exibil-
ity by allowing a user to carry out conicting opera-
tions, but only on distinct objects. Sandhu introduced
notation for dynamic separation of duty in Transaction
Control Expressions [San88]. Roles were used to spec-
ify who can issue which transaction steps. In Sandhu's
model each user executing a step in a transaction had
to be di�erent. To enforce this, the history of the execu-
tion of each transaction sequence had to be maintained.
The constraints specifying the roles that could execute
each step were associated with an object. These con-
straints turned into the history specifying which user
executed each step on that object. A weighted voting
syntax allowed the speci�cation of multiple person au-
thorizations on a particular step on a particular object.

Baldwin [Bal90] introduced Named Protection Do-
mains (NPDs) as a named, hierarchical grouping of
database privileges and users. To help enforce sep-
aration of duty, a user could have only one of these
NPDs activated at any time. The security adminis-
trator determined which NPDs could be activated, but
there were no further restrictions on the graph of NPDs
(other than it be acyclic). Thus, one activatable NPD
could contain multiple activatable and non-activatable
NPDs. While the activation restriction meant that a
user could be in only one role (NPD) at a time, the
security administrator could set up arbitrarily complex
roles.

A number of new issues around separation of duty
was raised by Nash and Poland's paper [NP90] of a
portable security device used in the commercial world.
Nash and Poland also proposed the notion of object
based separation of duty, which forced every transac-
tion against an object to be by a di�erent user. They
suggested using Sandhu's Transaction Control Expres-
sions [San88] to maintain the history of an object's
transactions.

Ferraiolo et al. [FCK95, FBK99] de�ned three kinds
of separation of duty in their formal model of RBAC.
The �rst two were static separation of duty and dy-
namic separation of duty. These variants were pre-
sented in previous work. The third kind was opera-
tional separation of duty which introduced the notion
of a business function and the set of operations required
for that function; a business function resembles the no-
tion of task and task unit introduced by Thomas and
Sandhu [TS94]. The formal de�nition of operational
separation of duty stated that no role can contain the



permissions to execute all of the operations necessary
to a single business function. This forces all business
functions to require at least two roles to be used for
their completion. The informal description of oper-
ational separation of duty assumes the roles involved
have disjoint memberships (static separation of duty),
so that no single person has access to all the operations
in a business function.
Kuhn's paper [Kuh97] focussed on the time when ex-

clusion is introduced, and the degree to which two roles
conict. As far as time is concerned, mutual exclusion
can be de�ned at role authorization time, or at run
time. As he observed, these correspond to static and
dynamic separation of duties respectively. Kuhn also
distinguished between complete and partial mutual ex-
clusion of roles.
Simon and Zurko [SZ97] enumerated di�erent kinds

of separation of duty such as static separation of duty
(or strong exclusion), dynamic separation of duty (or
weak exclusion), and object-based separation of duty.
Simon and Zurko's enumeration of kinds of conict of
interest also includes four more kinds which all have
to do with complex tasks involving several interrelated
steps, say in a workow management system. They
tried to enumerate all the variations of SOD that have
been called out in one source or another but their de-
scription of SOD was informal.
Gligor et al. [GGF98] enumerated several forms of

SOD properties using �rst order predicate logic which
causes di�culties to understand the properties. They
missed the important SOD properties in RBAC such
as session-based SOD and SOD in role hierarchies. To
constrain sessions, we should consider each session of a
set of sessions as well as a set of sessions. Also, SOD
should be applied with the role hierarchies.
Nyanchama and Osborn [NO99] discussed a taxon-

omy of conict of interest types such as user-user con-
icts and privilege-privilege conicts. They also dis-
cussed such conicts in great detail with respect to their
role graph model.

3 ROLE-BASED SOD LANGUAGE
(RSL99)

In this section we de�ne a new formal language for
specifying SOD properties in role-based systems. The
language is described here informally and intuitively.
Formal syntax and semantics are given in next sec-
tion. To develop this language, we need a model for
role-based systems. A general RBAC model, commonly
called RBAC96 [SCFY96, San97] has become a widely
cited reference in this arena. For the most part, RSL99
components are built upon RBAC96. This model is

illustrated in the top part of �gure 1.

Our work also builds upon SOD properties analyzed
in [SZ97] and formalized in [GGF98]. Even though their
work is state-of-art there are several shortcomings. As
we address those shortcomings, we introduce the mo-
tivation for our work. Their work does not have the
notion of role hierarchies. Also, it misses the concept
of session-based SOD which deals with SOD property
in a single session. This form of dynamic SOD is useful
for simulating lattice-based access control and Chinese
Walls in RBAC [San93, San96]. Conicting users and
privileges are also not dealt with. From these obser-
vations, we are led to identify other signi�cant SOD
properties which have not been previously identi�ed in
the literature.

In this section we introduce the basic elements on
which RSL99 is based and introduce notation and de�-
nitions that will be used in the rest of this paper. Also,
we introduce the basic constructs of our speci�cation
language RSL99. We will show in subsequent sections
how these constructs can be used to specify the various
separation of duty properties.

The rest of this section is organized as follows. Sec-
tion 3.1 introduces the basic elements and system func-
tions which are from RBAC96 model. Section 3.2 intro-
duce the basic elements and non-deterministic system
functions which are newly proposed functions in this
work. These non-deterministic functions are the core
concept of this work. They eliminate use of explicit
quanti�ers resulting in an intuitive language.

3.1 Basic Elements and System Func-
tions: from RBAC96

The basic elements on whichRSL99 is based and system
functions that will be used in the rest of this paper are
de�ned in �gure 1. Figure 1 also shows the RBAC96
model which is the context for these de�nitions.

RSL99 has six entity sets called users (U), roles (R),
objects (OBJ), operations (OP), permissions (P), and ses-
sions (S). These are interpreted as in RBAC96. A user is
a human being. A role is a named job function within
the organization that describes the authority and re-
sponsibility conferred on a member of the role. Ob-
jects are passive entities that contain or receive infor-
mation. An operation is an executable image of a pro-
gram, which upon execution causes information ow
between objects. A permission is an approval of a par-
ticular mode of operation to one or more objects in the
system.

A session is a mapping between a user and an acti-
vated subset of the set of roles the user is assigned to.
The function user gives us the user associated with a
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� U = a set of users, fu1; :::; ung; R= a set of roles, fr1; :::; rng;

� OP = a set of operations, fop1; :::; opng; OBJ = a set of objects, fobj1; :::; objng;

� P = OP � OBJ, a set of permissions, fp1; :::; png; and

� S = a set of sessions, fs1; :::; sng.

{ user : S ! U, a function mapping each session si to the single user.

{ roles : S ! 2R, a function mapping the set S to a set of roles R.
roles(si) � fr 2 R j (user (si); r) 2 UAg

� RH � R � R is a partial order on R called the role hierarchy or role dominance relation, written as �.

� UA � U � R, a many-to-many user-to-role assignment relation.

� PA � P � R = OP � OBJ � R, a many-to-many permission-to-role assignment relation.

� user : R ! 2U, a function mapping each role ri to a set of users.
user(ri ) = fu 2 U j (u; ri ) 2 UAg

� roles : U [ P ! 2R, a function mapping the set U and P to a set of roles R.
roles� : U [ P [ S ! 2R, extends roles in presence of role hierarchy

roles(ui) =fr 2 R j (ui ; r) 2 UAg roles�(ui) =fr 2 R j (9 r
0

� r)[(ui ; r
0

) 2 UA]g

roles(pi) = fr 2 R j (pi ; r) 2 PAg roles�(pi) = fr 2 R j (9 r
0

� r)[(pi ; r
0

) 2 PA]g

roles(si) = de�ned above roles�(si ) = fr 2 R j (9 r
0

� r)[r
0

2 roles(si)]g

� sessions : U ! 2S, a function mapping each user ui to a set of sessions.

� permissions : R ! 2P, a function mapping each role ri to a set of permissions.
permissions� : R ! 2P, extends permissions in presence of role hierarchy

permissions(ri ) = fp 2 P j (p; ri) 2 PAg permissions�(ri) = fp 2 P j (9 r � ri)[(p; ri ) 2 PA]g

� operations : R � OBJ ! 2OP, a function mapping each role ri and object obji to a set of operations.
operations(ri ; obji) = fop 2 OP j (op; obji ; ri ) 2 PAg

Figure 1: Basic Elements and System Functions : from RBAC96 Model



session and roles gives us the roles activated in a ses-
sion. Both functions do not change during the life of a
session. (This is a slight simpli�cation from RBAC96
which does allow roles in a session to change.)
Hierarchies are a natural means for structuring roles

to reect an organization's lines of authority and re-
sponsibility. Mathematically, these hierarchies are par-
tial orders. A partial order is a reexive, transitive,
and antisymmetric relation, so that if y � x then role
x inherits the permissions of role y , but not vice versa.
The user assignment relation UA is a many-to-

many relation between users and roles. Similarly the
permission-assignment relation PA is a many-to-many
relation between permissions and roles. Users are au-
thorized to use the permissions of roles to which they
are assigned. This is the essence of RBAC.
The remaining functions de�ned in �gure 1 are built

from the sets, relations, and functions discussed above.
In particular note that user and roles can have dif-
ferent types of arguments so we are overloading these
symbols. Also the de�nition of roles� is carefully for-
mulated to reect the role inheritance with respect to
users and sessions going downward and with respect to
permissions going upward. In other words a permission
in a junior role is available to senior roles, and activa-
tion of a senior role makes available permissions of ju-
nior roles. This is well-accepted concept in the RBAC
literature. Using a single symbol roles� simpli�es our
notation so long as we keep this duality of inheritance
in mind.
In RSL99, for simplicity, we assume that role hier-

archies, UA, and PA do not change. We consider one
snapshot in a system at a time and SOD properties are
applied only to that snapshot.

3.2 Basic Elements and
Non-deterministic Functions:
beyond RBAC96

Additional elements and system functions used in
RSL99 are de�ned in �gure 2. For mutually disjoint or-
ganizational roles such as those of purchasing manager
and accounts payable manager, the same individual is
generally not permitted to belong to both roles. We de-
�ned these mutually disjoint roles as conicting roles.
We assume that there is a collection CR of sets of roles
which have been de�ned to conict.
The concept of conicting permissions de�nes conict

in terms of permissions rather than roles. Thus the per-
mission to issue purchase orders and the permission to
issue payments are conicting, irrespective of the roles
to which they are assigned. We denote sets of conict-
ing permissions as CP. As we will see de�ning conict

in terms of permissions o�ers greater assurance than
de�ning it in terms of roles. Conict de�ned in terms
of roles allows conicting permissions to be assigned to
the same role by error (or malice). Conict de�ned in
terms of permissions eliminates this possibility.
In the real world, conicting users should be also con-

sidered. For example, for the process of preparing and
approving purchase orders, it might be company policy
that members of the same family should not prepare
the purchase order, and also be a user who approves
that order. This kind of SOD property is not discussed
in [GGF98, SZ97]. The concept is mentioned in [NO99]
but in a general way without identi�cation of speci�c
properties in this class. We denote sets of conicting
users as CU.
RSL99 has two non deterministic func-

tions, oneelement and allother (�rst introduced by
Chen and Sandhu [CS95]). These are introduced to re-
place explicit quanti�ers. The elimination of explicit
quanti�ers from our language keeps it simple and intu-
itive. The oneelement(X) function allows us to get one
element xi from set X. We usually write oneelement

as OE. Multiple occurrence of OE(X) in a single RSL99
statement all select the same element xi from X. With
allother(X) we can get a set by taking out one ele-
ment. We usually write allother as AO.
These two non-deterministic functions are related by

context, because for any set S , fOE(S )g [ AO(S ) = S ,
and at the same time, neither is a deterministic func-
tion. In order to illustrate how to use these two func-
tions to specify SOD properties, we take the require-
ment of static separation of duty property which is
the simplest variation of SOD. For the moment assume
there is no role hierarchy.

Requirement: No user should be assigned to
two conicting roles. In other words, conict-
ing roles can not have common users. We can
express this requirement as below.
Expression: OE(OE(CR)) 2 roles(OE(U)) =)
AO(OE(CR)) \ roles(OE(U)) = �

OE(OE(CR)) means a conicting role which is an ele-
ment of set OE(CR) and roles(OE(U)) returns all roles
which are assigned to a single user OE(U). AO(OE(CR))
means conicting roles excluding one role which is from
OE(OE(CR)). We can interpret the above expression as
saying that if a user has been assigned to one conicting
role, that user cannot be assigned to any other conict-
ing role. We can also specify this property in many
di�erent ways using RSL99 such as jroles(OE(U)) \
OE(CR) j � 1 or user(OE(OE(CR))) \ user(AO(OE(CR)))
= �

RSL99 system functions do not include a time or



� CR = a collection of conicting role sets, fcr1; :::; crng, where cri = fri ; :::; rkg � R

� CP = all conicting permission sets, fcp1; :::; cpng, where cpi = fpi ; :::; pkg � P

� CU = all conicting user sets, fcu1; :::; cung, where cui = fui ; :::; ukg � U

� oneelement(X) = xi , where xi 2 X

� allother(X) = X - fOE(X)g

Figure 2: Basic Elements and Non-deterministic Functions: beyond RBAC96 Model

state variable in their structure. So we assume that
each function considers the current time or state. For
example, if we use sessions function in the expression,
this function maps a user ui to a set of current sessions
which are established by user ui .
As a general notational device we have the following

convention.

� For any set valued function f de�ned on set X,
We understand f (X) = f (x1) [ f (x2) [ ::: [ f (xn),
where X=fx1; x2; x3; :::; xng.

4 FORMAL SYNTAX AND
SEMANTICS OF RSL99

We now give the formal syntax and semantic of RSL99.
For the syntax we use usual BNF. For semantics of
RSL99 we identify a restricted form of �rst order pred-
icate logic which corresponds exactly to RSL99.

4.1 The Syntax

The syntax of RSL99 is de�ned by the syntax diagram
and grammar given in �gure 3. The rules take the form
of ow diagrams. The possible paths represent the pos-
sible sequence of symbols. Backus Normal Form (BNF)
is also used to describe the grammar of RSL99 as shown
in the bottom of �gure 3. The symbols of this form are:
::= meaning \is de�ned as" and j meaning \or". Also
we denote oneelement and allother as OE and AO re-
spectively. We assume that the type of arguments of
functions should follow the function descriptions pre-
sented in section 3.

4.2 Formal Semantics

Next, we discuss the formal semantics for RSL99. Any
property written in RSL99, called RSL99 expression,
can be translated to an expression which is written in
a restricted form of �rst order predicate logic which we

call RFOPL. The syntax of RFOPL is described at the
end of this section. The translation algorithm we devel-
oped, namely Reduction, converts a RSL99 expression
to an RFOPL expression. This algorithm is outlined
in �gure 4(a). Reduction algorithm eliminates AO func-
tion(s) from RSL99 expression in the �rst step. Then
we translate OE terms iteratively into an element intro-
ducing universal quanti�ers from left to right. If we
have nested OE functions in RSL99 expression, trans-
lation will be started from innermost OE terms. The
analysis of the running time depends on the number of
OE term. Therefore, this algorithm can translate RSL99
expression to RFOPL expression in time O(n) suppos-
ing that the number of OE term is n.
For example, the following RSL99 expression can be

converted to RFOPL expression according to the se-
quences below.
� RSL99 expression:
OE(OE(CR)) 2 roles(OE(U)) =)

AO(OE(CR)) \ roles(OE(U)) = �

� RFOPL expression:

1. OE(OE(CR)) 2 roles(OE(U)) =) (OE(CR) �
fOE(OE(CR))g) \ roles(OE(U)) =�

2. 8 cr 2 CR: OE(cr) 2 roles(OE(U)) =) (cr�fOE(cr)g)\
roles(OE(U)) = �

3. 8 cr 2 CR, 8 r 2 cr : r 2 roles(OE(U)) =) (cr � frg) \
roles(OE(U)) = �

4. 8 cr 2 CR, 8 r 2 cr , 8u 2 U: r 2 roles(u) =) (cr �
frg) \ roles(u) = �

The resulting RFOPL expression will have the fol-
lowing general structure.

1. The RFOPL expression has a (possibly empty) se-
quence of universal quanti�ers as a left pre�x, and
these are the only quanti�ers it can have. We call
this sequence the quanti�er part.

2. The quanti�er part will be followed by a predicate
separated by colon (:), i.e., universal quanti�er part
: predicate
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Figure 3: Syntax of Language



Reduction Algorithm

Input: RSL99 expression ; Output: RFOPL expression

Let Simple-OE term be either OE(set), or OE(function(element)).
Let set be an element of set-name set, function be an element of function-name set.
� set-name =fU, R, OP, OBJ, P, S, CR, CU, CP, T, HU, HS, cr, cu, cpg
� function-name =fuser, roles, roles�, sessions, permissions, permissions�, operationsg
1. AO elimination

replace all occurrences of AO(expr) with (expr - fOE(expr)g);

2. OE elimination
While There exists Simple-OE term in RSL99 expression

choose Simple-OE term;
call reduction procedure;

End

Procedure reduction

case (i) Simple-OE term is OE(set)
create new value x ;
put 8 x 2 set to right of existing quanti�er(s);
replace all occurrences of OE(set) by x ;

case (ii) Simple-OE term is OE(function(element))
create new value x ;
put 8 x 2 function(element) to right of existing quanti�er(s);
replace all occurrences of OE(function(element)) by x ;

End

(a) Reduction Algorithm

Construction Algorithm

Input: RFOPL expression ; Output: RSL99 expression

1. Construction RSL99 expression from RFOPL expression
While There exists quanti�er in RFOPL expression

choose the rightmost quanti�er 8 x 2 X;
pick values x and X from the chosen quanti�er;
replace all occurrences of x by OE(X);

End

3. Replacement of AO
if there is (expr - fOE(expr)g) in RFOPL expression
replace it with AO(expr);

(b) Construction Algorithm

Figure 4: Reduction and Construction



3. The predicate has no free variables or constant
symbols. All variables are declared in the quan-
ti�er part, e.g., 8 r 2 R, 8u 2 U : r 2 roles(u).

4. The order of quanti�ers is determined by the se-
quence of OE elimination. In some cases this or-
der is important so as to reect the nesting of OE
terms in the RSL99 expression. For example, in
8 cr 2 CR, 8 r 2 cr ,8u 2 U : predicate; the set cr
which is used in the second quanti�er must be de-
clared in a previous quanti�er as an element, such
as cr in the �rst quanti�er.

5. predicate follows most of rules in the syntax of
RSL99 except term syntax in �gure 3. Figure 5
shows the syntax which predicate should follow to
express term. In �gure 5, element means that any
element which belongs to set described in �gure 3.

The above discussion de�nes the syntax of RFOPL.
A complete formal de�nition can be given from these
observation and is omitted for simplicity.

4.3 Soundness and Completness

Next we discuss the algorithm Construction that con-
structs a RSL99 expression from a RFOPL expression
which has the syntax given above. The algorithm is de-
scribed in �gure 4(b). Firstly, this algorithm repeatedly
chooses the rightmost quanti�er in RFOPL expression
and constructs the corresponding OE term by eliminat-
ing the variable of that quanti�er. After all quanti�ers
are eliminated the algorithm constructs AO terms ac-
cording to the formal de�nition of AO function. The
running time of algorithm obviously depends on the
number of quanti�ers in RFOPL expression.
For example, the following RFOPL expression can

be converted to RSL99 expression according to the se-
quences described below.
�RFOPL expression:

8 cr 2 CR, 8 r 2 cr , 8u 2 U, 8 s 2 sessions(u) :
r 2 roles(s) =) (cr � frg) \ roles(s) = �

�RSL99 expression :

1. 8 cr 2 CR; 8 r 2 cr ; 8 u 2 U:
r 2 roles(OE(sessions(u)) =) (cr � frg) \
roles(OE(sessions(u))=�

2. 8 cr 2 CR; 8 r 2 cr :
r 2 roles(OE(sessions(OE(U)))) =) (cr � frg) \
roles(OE(sessions(OE(U))))=�

3. 8 cr 2 CR: OE(cr) 2 roles(OE(sessions(OE(U)))) =)
(cr � fOE(cr)g) \ roles(OE(sessions(OE(U))))=�

4. OE(OE(CR)) 2 roles(OE(sessions(OE(U)))) =)
(OE(CR)-fOE(OE(CR))g) \ roles(OE(sessions(OE(U))))
= �

5. OE(OE(CR)) 2 roles(OE(sessions(OE(U)))) =)
AO(OE(CR)) \ roles(OE(sessions(OE(U))))=�

We introduced two algorithms, namelyReduction and
Construction, that can reduce and construct RSL99 ex-
pression. We now introduce theorems regarding trans-
lation between RSL99 and RFOPL expressions. Let
R(expr) denote the RFOPL expression translated by
Reduction algorithm. Let C(expr) denote the RSL99
expression constructed by Construction algorithm. The
relationship between RSL99-RFOPL translations above
is represented by the following theorems.

Theorem 1 Given RSL99 expression �, � can be
translated into RFOPL expression �. Also � can be
reconstructed from �.

C(R(�)) = �

Proof Sketch: It su�ces to consider the case where
� has no AO in it. If � has no OE in it, this theorem
is obviously correct. Given �, we reduce the OE term
from it, replacing it with a variable. During this re-
placement, we also put quanti�ers from left to right in
�. The construction algorithm reverses this translation
from right to left. A formal inductive proof based on
this argument can be given. 2

Theorem 2 Given RFOPL expression �, � can be
translated into RSL99 expression �. Also �

0

which is
logically equivalent to � can be reconstructed from �.

R(C(�)) = �
0

Proof Sketch: In case � does not have any quanti�er
in it, this theorem is obviously true. Otherwise, dur-
ing construction of � from �, we choose the rightmost
quanti�er in � and replace the element of that quanti�er
with OE term. Given the constructed expression �, we
reduce the OE term from it, replacing it with a variable.
This variable might be di�erent from � becauseWhile-

End loop in reduction algorithm has non-deterministic
choice for reduction of OE term. And the arrangement
of quanti�ers might also be di�erent from � but it does
not a�ect the structure of RFOPL expression �

0

be-
cause the reduction of OE term is always from the inner
most one �rst. Finally we can get �

0

which is logically
equivalent to �. A formal inductive proof based on this
argument can be given. 2

Theorem 1 establishes soundness of RSL99 and theo-
rem 2 establishes its completeness relation to RFOPL.

5 SOD PROPERTIES

SOD is a well-known principle for preventing fraud by
identifying conicting roles|such as Purchasing Man-
ager and Accounts Payable Manager|and ensuring
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Figure 5: Syntax of restricted FOPL expression

that the same individual can belong to at most one con-
icting role. Static SOD applies to the user-assignment
relation and dynamic SOD applies to the activated roles
in session(s). In this section, we show how RSL99 can
be used to specify the various separation of duty prop-
erties.

5.1 Static SOD

Static SOD (SSOD) is the simplest variation of SOD.
In table 1 we show our expression of several forms of
SSOD. These include new forms of SSOD which have
not previously been identi�ed in the literature. This
demonstrates how RSL99 helps us in understanding
SOD and discovering new basic form of it.

Property 1 is the most straightforward property.
The SSOD requirement is that no user should be as-
signed to two roles which are conicting each other.
In other words, it means that conicting roles can-
not have common users. RSL99 can clearly express
this property. This property is the classic formulation
of SSOD which is identi�ed by several papers includ-
ing [GGF98, Kuh97, SCFY96]. It is a role-centric prop-
erty.

Property 2 follows the same intuition as property 1,
but is permission-centric. Property 2 says that a user
can have at most one conicting permission acquired
through roles assigned to the user. Property 2 is a
stronger formulation than property 1 which prevents
mistakes in role-permission assignment. This kind of
property has not been previously mentioned in the lit-
erature. RSL99 helps us discover such omissions in pre-
vious work. In retrospect property 2 is an \obvious
property" but there is no mention of this property in
over a decade of SOD literature. Even though property
2 allows more exibility in role-permission assignment
since the conicting roles are not prede�ned, it can also
generate roles which cannot be used at all. For exam-
ple, two conicting permissions can be assigned to a

role. Property 2 simply requires that no user can be
assigned to such a role or any role senior to it, which
makes that role quite useless. Thus property 2 prevents
certain kinds of mistakes in role-permissions but toler-
ates others.

Property 3 eliminates the possibility of useless
roles with an extra condition, jpermissions�(OE(R)) \
OE(CP) j � 1. This condition ensures that each role can
have at most one conicting permission without consid-
eration of user-role assignment.

With this new condition, we can extend property 1
in presence of conicting permissions as property 4. In
property 4 we have another additional condition that
conicting permissions can only be assigned to conict-
ing roles. In other words, non-conicting roles cannot
have conicting permissions. The net e�ect is that a
user can have one conicting permissions via roles as-
signed to the user.

Property 4 can be viewed as a reformulation of prop-
erty 3 in a role-centric manner. Property 3 does not
stipulate a concept of conicting roles. However, we
can interpret conicting roles to be those that hap-
pen to have conicting permissions assigned to them.
Thus for every cpi we can de�ne cri = fr 2 R j
cpi \ permissions(r) 6= �g. With this interpretation,
properties 2 and 4 are essentially identical. The view-
point of property 3 is that conicting permissions get
assigned to distinct roles which thereby become con-
icting, and therefore cannot assigned to the same user.
Which roles are deemed conicting is not determined a
priori but is a side-e�ect of permission-role assignment.
The viewpoint of property 4 is that conicting roles
are designated in advance and conicting permissions
must be restricted to conicting roles. These proper-
ties have di�erent consequences on how roles get de-
signed and managed but essentially achieve the same
objective with respect to separation of conicting per-
missions. Both properties achieve this goal with much
higher assurance than property 1. Property 2 achieves



Properties Expressions

1. SSOD-CR j roles�(OE(U)) \ OE(CR) j � 1
2. SSOD-CP j permissions(roles�(OE(U))) \ OE(CP) j � 1
3. Variation of 2 (2) ^ j permissions�(OE(R)) \ OE(CP) j � 1
4. Variation of 1 (1) ^ j permissions�(OE(R)) \ OE(CP) j � 1

^ permissions(OE(R)) \ OE(CP) 6= �=)OE(R) \ OE(CR) 6= �

5. SSOD-CU (1) ^ j user(OE(CR)) \ OE(CU) j � 1
6. Yet another variation (4) ^ (5)

Table 1: Static Separation of Duty

this goal with similar high assurance but allows for the
possibility of useless roles. Thus, even in the simple sit-
uation of static SOD, we have a number of alternatives
o�ering di�erent degrees of assurance and exibility.

Property 5 is a very di�erent property and is also new
to the literature. With a notion of conicting users, we
identify new forms of SSOD. Property 5 says that two
conicting users cannot be assigned to roles in the same
conicting role set. This property is useful because it is
much easier to commit fraud if two conicting users can
have di�erent conicting roles in the same conicting
role set. This property prevents this kind of situation
in role-based systems. A collection of conicting users
is less trustworthy than a collection of non-conicting
users, and therefore should not be mixed up in the same
conicting role set. This property has not been previ-
ously identi�ed in the literature.

We also identify a composite property which includes
conicting users, roles and permissions. Property 6
combines property 4 and 5 so that conicting users
cannot have conicting roles from the same conict set
while assuring that conicting roles have at most one
conicting permission from each conicting permission
sets. This property supports SSOD in user-role and
role-permission assignment with respect to conicting
users, roles, and permissions.

5.2 Dynamic SOD

In RBAC systems, a dynamic SOD (DSOD) property
with respect to the roles activated by the users requires
that no user can activate two conicting roles. In other
words, conicting roles may have common users but
users can not simultaneously activate roles which are
conicting each other. From this requirement we can
express user-based Dynamic SOD as property 1. We
can also identify a Session-based Dynamic SOD prop-
erty which can apply to the single session as property 2.
We can also consider these properties with conicting
users such as property 1-1 and 2-1. Additional anal-

ysis of dynamic SOD properties based on conicting
permissions can also be pursued as was done for static
SOD.

5.3 History-based SOD

The concept history-based SOD has also been identi�ed
in the literature [GGF98]. With suitable extensions to
handle time and history, RSL99 can specify these prop-
erties. Space limitations preclude further discussion of
this issue here.

6 CONCLUSION

In this paper we have introduced an intuitive for-
mal language RSL99 which allows us to systematically
study SOD properties in role-based systems. We have
given a formal syntax and semantics for RSL99 and
have demonstrated its soundness and completeness. We
have shown that RSL99 allows us to investigate nuances
of static SOD and dynamic SOD in a way that has
not been possible so far. This has led to formulation
of static SOD properties that have not identi�ed in a
decade of literature on SOD.
We have barely begun exploring SOD properties by

means of RSL99. In future work we expect to use
RSL99 to advance our understanding of SOD in diverse
forms at a rapid pace.
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