
II-39

Copyright 1996 Association for Computing
Machinery. Permission to make digital/hard
copy of all or part of this work for personal or
classroom use is granted without fee pro-
vided that copies are not made or distributed
for profit or commercial advantage; the
copyright notice, the title of the publication,
and its date appear; and notice is given that
copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on
servers, or to redistribute to lists requires
prior specific permission and/or a fee.

ACM RBAC Workshop, MD, USA
© 1996 ACM 0-89791-759-6/95/0011 $3.50

(7) Constraints for Role-Based Access
Control

Fang Chen and Ravi S. Sandhu

George Mason University, Fairfax, VA
fchen@issc.gmu.edu

1.0 Introduction

Role-based access control (RBAC) has been discussed a lot in recent days,
for example [SAND96a..MOHA94]. Although there are many variations,
there is some consensus about the basic architecture. That is, all
permissions are assigned to roles, rather than directly to users, and roles
are then assigned to users. When a user creates a session, the session gets
all permissions of the roles the user activates for it. For convenient role
management, roles can be structured in hierarchies whereby senior roles
are more powerful, having more permissions, than junior roles. Another
important aspect of RBAC is constraint enforcement. In this paper we
investigate a practical way for a Database Administrator (DBA) or
Security Officer to specify constraints. For brevity, we use SCS to stand
for Security Constraint Specifiers, which can be either DBAs or Security
Officers.

The basic idea to apply constraints is to lay out higher level organizational
policy. A typical example is that of mutually disjoint roles. Once certain
roles are declared to be mutually exclusive, there need not be so much
concern about the assignment of individual users to roles. The latter
activity can then be delegated and decentralized without fear of
compromising overall policy objectives of the organization.

Constraints can be specified at either system level or application level,
with or without being event triggered (i.e., the occurrence of certain events
causes certain constraints to be applied. The general approach to
specifying constraints should nonetheless be common to all these cases.

To specify constraints, one needs appropriate languages as well as some
system functions. The language should be simple and intuitive, so it can
easily be used without much training. Also, the language should have
flexibility and richness to address most security requirements. At the same
time, the language needs a formal foundation so as to be unambiguous and
precise.

There are several ways to specify constraint. One was to treat them as
invariants that should hold at all times, another is to treat them as
preconditions for functions such as adding a role to a user. The former has
theoretical advantage but is less efficient in real systems, partially due to
using quantifiers like ~ and }. For the latter, the problem is how to specify
a constraint that can be shared by several objects, rather than each object
having its own specific constraints.

II-40

In ongoing work at George Mason University (GMU), we are developing
techniques to specify constraints that can both be used as preconditions
shared by several objects and serve as system-wide invariants. Some
simple conversions from invariants to preconditions may be used to
enforce these constraints.

2.0 RBAC Structure

We are not going to discuss which RBAC structure is the best for
addressing security policy, because our major focus here is on constraints.
However, RBAC structure is the foundation that must be well defined
before SCS can specify constraints, whether the constraints are system-
level or application-level.

Here we give our own RBAC structure for purpose of our later discussion.
This RBAC structure can also have many of variations. We give only one
here to illustrate how to specify constraints without loss of generality.

Our RBAC structure includes role, permission, user, and session, which
are given in object-oriented style.

2.1 Role

We define a class Role with attributes as follows:

� Role-id, identifying the role

� Permission set (PS), containing references to all permissions objects
assigned to this role

� User set (US), containing references to all user objects holding this
role

� Parent role set (PRS), containing references to all direct senior roles

� Child role set (CRS), containing references to all direct junior roles

The class Role also has functions such as implies “etc.” as add/delete/
change parent role, add/delete/change child role, add role to user, and
remove role from user.

2.2 Permission

The class Permission is defined with the following attributes:

� Permission-id, identifying the permission

� Operations, defining the action of the permission

� Target list, specifying parameters as objects on which operations
apply

II-41

� Role set (RS), containing references to all role objects holding this
permission

The functions within class permission can be add permission to role,
remove permission from role, and others.

2.3 User

Class User has attributes as follows:

� User-id, identifying the user

� Role set (RS), containing references to all role objects hold by the
user

� Session set (SS), containing references to all active session objects of
the user

This class has no functions directly associated with it because the
appropriate functions are defined for the Role and Session classes. Strictly
speaking, all of our classes should have create and delete functions, but
these can be ignored for our present purpose.

2.4 Session

The attributes in class Session are as follows:

� Session-id, identifying the session

� User, referencing the user object submitting this session

� Role set (RS), containing references to all role objects taken by this
session

Relevant functions can be add role to session, drop role from session, and
others.

2.5 Discussion

Although the RBAC system could be quite complicated, the RBAC system
state is, nonetheless, decided by all those attribute sets in the RBAC
structure, i.e., RS, US, SS, PS, PRS, and CRS. Any change in these sets
will lead to an RBAC state change. Constraints in RBAC give restrictions
to RBAC states, known as invariants, as well as to state changes, known as
preconditions.

One may argue that attributes such as user-id should also be included in
the RBAC state. However, compared with those attribute sets, user-id is
less significant for the entire RBAC state. Similarly, for session-id, of
course, we can, if required, define a general RBAC state which includes all
attributes in the RBAC structure.

II-42

3.0 Specifying Constraints in RBAC

In this section we outline a practical way to specify constraints. The
specified constraints can both be used as preconditions shared by several
objects and also serve as invariants. Some simple conversions from
invariants to preconditions may be used to enforce these constraints. For
the convenience of description, we first define several global functions.

3.1 Global Functions

The global functions defined here are to be used in specifying constraints.
These functions are defined with overloading.

� Role-set: permission � role-set, i.e., mapping a permission to the
permissions RS attribute

� Role-set: permission-set � role set, i.e., F role-permission � permission-set

set(permission)

� Role-set: user� role set, i.e., mapping a user to the user's RS attribute;

� Role-set: user-set� role-set, i.e. ,F role-set(user)user-set

� Role-set: session� role-set, i.e., mapping a session to the session's RS
attribute

� Role-set: session-set� role-set, i.e.,F role-set(session)session � session-set

Similarly, we can define functions such as permission-set and user-set.
Also, we have the following:

� Parent-role-set: role � role-set, i.e., mapping a role to the role's PRS
attribute

� Parent-role-set: role-set � role-set, i.e.,F parent-role-set(role)role � role-set

� Parent-role-set-at: role, number � role-set, i.e.,
parent � role � set(...parent � role � set(role)...)

 number

� Parent-role-set-up: role, number � role-set, i.e., F1�i�number

parent-role-set-at(role, i)

� Parent-role-set-up: role � role-set, i.e., parent-role-set-at(role, i)

We can have functions such as child-role-set, child-role-set-at, and
child-role-set-down. Also, we can define function permission-set-down to
give all permissions a role can have, both directly and indirectly.

II-43

3.2 Language for Specifying Constraints

The language we use to specify constraints is based on set theory. The
basic components are as follows:

� Set description for role-set, permission-set, user-set

� Set operator: union (F), intersection (�), difference (�)

� Relation operator: g, G, I, H, J, �, Õ

� Logic operator: and (Y), or (Z), not (¬), implication (�)

� Function: set element count (�), global functions, system functions,
security officer defined functions, and non-deterministic functions

Two new related non-deterministic functions, oneelement and allother, are
introduced to replace explicit quantifies.

� Oneelement: set YY element, i.e., get one element from set

� Allother: set YY set, i.e., get set by taking out one element

They are related by context, because for any set {oneelement(s)} Fs

allother(s) = s, and at the same time, neither is a deterministic function. In
the next subsection, we use several examples to illustrate how to use these
two functions to specify constraints.

3.3 Examples

3.3.1 Conflicting Roles for Some Users

� Role set: R = {r , r , ... , r }1 2 n

� User set: U = {u , u , ... , u }1 2 m

� Check-condition: oneelement(R) � role-set(oneelement(U)) �
allother(R) � role-set(oneelement(U)) = L

This condition can be an invariant because functions “oneelement” and
“allother” are non-deterministic, so their values are implicitly quantified
over the entire set. It can also be used as a precondition when a role, say,
r is to be assigned to a user, say u . Only the right hand of the implication1 1

is used as the precondition, which can be shared by all role objects in R for
all user objects in U. For this specific case, R � { r } will substitute1

“allother(R)”, and u will substitute “oneelement(U).” (The descriptions1

for the following cases are similar to this one.)

3.3.2 Conflicting Roles for Sessions of Some Users

� Role-set: R = {r , r , ... , r }1 2 n

� User-set: U = {u , u , ... , u }1 2 m

II-44

� Check-condition: oneelement(R) �
role-set(session-set(oneelement(U))) �
allother(R) � role-set(session-set(oneelement(U))) = L

3.3.3 Prerequisite Roles for Some Roles with Respect to
Some Users

� Role set: R ={ r , r , ... , r }1 11 12 1p

� Role set: R ={ r , r , ... , r }2 21 22 2q

� User set: U = {u , u , ... , u }1 2 m

� Check-condition: oneelement(R) � role-set(oneelement(U)) � R I2 1

role-set(oneelement(U))

3.4 Discussion

The relationship between invariants and preconditions is one to many,
because to keep one invariant satisfied, different operations should have
different preconditions. In example 3 above, if we want to add r to u ,21 1

we need to check whether R I role-set(u); however, if we want to remove1 1

r from u , we need to check if R � role-set(u) = L.11 1 2 1

Although there are many different operations, the essential point for
specifying constraints is to take care of RBAC system state changes. In
other words, whenever an attribute set is to be changed, for any possible
constraint (invariant) Ct, the following issues have to be considered:

� Whether Ct applies to this change

� How to check Ct for this potential change, i.e., how to convert Ct to a
precondition for this state update

The basic changes to an RBAC state are:

� Add an item to an attribute set

� Delete an item from an attribute set

Any other change can be seen as a sequence of these two basic ones.

However, one may wish to do two state changes at the same time, with
legal initial and final states, i.e., satisfying all constraint (invariants), but
not the intermediate state. For example, a system may require that exactly
one manager must exist at any time. In this case, if we need to change
manager from one user to another using either delete-add or add-delete, the
intermediate state is illegal. Therefore, we have to either introduce a
transaction concept or expand basic RBAC state changes to more
complicated ones. Unfortunately, with the former, using precondition will
become impossible, while with the latter, more work has to be done to
convert invariants to preconditions. This issue is left for future research.

II-45

4.0 Logical Foundation

Any constraint (invariant) written in our language can be easily translated
to a first-order predicate logic-based language. The rule to convert a
constraint Ct to such a language is as follows:

� If function oneelement(S) or allother(S) appears in Ct, convert Ct to
~s � S (Ct)

� Replace oneelement(S) with s

� Replace allother(S) with (S � {s})

For example:

oneelement(R) � role-set(oneelement(U)) � allother(R) �
role-set(oneelement(U)) = L

can be converted to

~r � R ~u U (r � role-set(u) � (R � { r}) � role-set(u) = L)

Therefore, it is clear that all constraints written in our language can also be
written in a first-order predicate logic-based language. However, in
general, a constraint written in first-order predicate logic is not always easy
to be taken as a precondition for an operation in RBAC. Our language, to
some extent, forces constraints to be written in a way that is easier to be
treated as a precondition.

Can all useful constraints be written using our language? This is a hard
question, because in general, constraints are open to all aspects. However,
any specific constraint can be seen as a condition consisting of several
components, some of which are RBAC state related, while others are not.
For example, some system may require inclusion of date or time
information into constraints, which, of course, is not RBAC state related.
Therefore, the original question can be converted to the one that is, with
the given RBAC structure and facilities (global functions), can all useful
RBAC state-related constraints be written using this language?

We must emphasize that even global functions are open to SCS. Although
we can provide most necessary global functions, we may not be able to
take care of all their specific needs. Therefore, we should allow SCS to
add more global functions they need by themselves. From this view point,
our language is a very open one.

5.0 Conclusion

In this paper, we outline our recent progress on constraints for RBAC,
which can be summarized as follows:

� Define an RBAC structure

� Provide a set of overloaded global functions

II-46

� Propose a new language with two new non-deterministic functions to
specify constraints

� Discuss the logic foundation problem underlying the new language

This entire language development needs substantial further work.
Consequently, our description is preliminary and tentative at this point.

References

[FERR92] David F. Ferraiolo, Richard Kuhn, “Role-based [TING92] T. C. Ting, S. A. Demurjian, and M. Y. Hu,
Access Controls.” Proceedings of the 15th NIST-NCSC “Requirements Capabilities and Functionalities of User-
National Computer Security Conference, Baltimore, MD, Role Based Security for an Object-Oriented Design
13-16 October 1992, 554-563. Model,” Database Security V: Status and Prospects,

[MOHA94] Imtiaz Mohammed, David M. Dilts, “Design 275-296.
for Dynamic User-Role-Based Security,” Computer and
Security, 13(8), 1994, 661-671.

[SAND96a] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman, “Role-Based Access
Control.” IEEE Computer, 29:2, February 1996, 38-47.

C. Landwehr and S. Jajodia (Eds.), North-Holland, 1992

