
Proceedings of IEEE Symposium on Security and Privacy, Oakland, California, May 8-10, 1995

The Semantics and Expressive Power of the MLR Data Model

Fang Chen and Ravi S. Sandhu�

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030-4444

Abstract

In this paper, we de�ne the Multilevel Rela-
tional (MLR) data model for multilevel relations with
element-level labeling. This model builds upon prior
work of numerous authors in this area, and integrates
ideas from a number of sources. A new data-based
semantics is given to the MLR data model which com-
bines ideas from SeaView, belief-based semantics and
LDV model, and has the advantages of both eliminat-
ing ambiguity and retaining upward information ow.
The resulting model is simple, unambiguous and pow-
erful. It has �ve integrity properties and �ve operation
statements for manipulating multilevel relations. In
order to support this integration, we introduce several
new concepts as well as rede�ne several old ones. The
expressive power of the MLR model is also discussed in
this paper, and is compared with several other models.
We also address some issues in converting the MLR
model to tuple-level labeling, including both scheme
mapping and operation interpretation.

1 Introduction

There are many MLS relational data models in the
literature, for example SeaView [3, 7], LDV [4], and
those proposed by Sandhu-Jajodia [12, 13], Jajodia-
Sandhu [5, 6], Smith-Winslett [14], etc. We do not
believe that any of these models is right or wrong. To
us, they are just di�erent. We would like to reconcile
these di�erences by unifying as much as we can, to es-
tablish a simple, unambiguous and powerful multilevel
relational data model.

�The work of both authors is partially supported by the Na-
tional Security Agency through contract MDA904-94-C-6119.
We are indebted to Blaine Burnham, Dorothy Darnauer and
Darrel Sell for their support and encouragement in making this
work possible.

In this paper, we de�ne the Multilevel Rela-
tional (MLR) data model for multilevel relations with
element-level labeling. A new data-based semantics
for both data and operations is also given. MLR is
substantially based on the data model proposed by
Sandhu and Jajodia [13]. However, we integrate many
ideas from SeaView, LDV as well as belief-based se-
mantics [14]. To complete this integration, several new
concepts are introduced and several old ones are rede-
�ned.

The MLR data model is a simple, unambiguous and
powerful model. It contains �ve integrity properties
and �ve operation statements for manipulating multi-
level relations. Moreover, it retains upward informa-
tion ow and has no semantic ambiguity.

The expressive power of the MLR model is dis-
cussed in depth by comparing it with several other
models. Also, by converting the scheme and opera-
tions to tuple-level labeling data model, we can see
that the MLR data model can be grounded on most
of the current commercial multilevel database prod-
ucts, as long as some tools are developed to support
this conversion. Note that tuple-level labeling is a nat-
ural approach for DBMS vendors, because the tuple is
the basic storage and retrieval unit in typical DBMS
implementations.

We have developed proofs of soundness, complete-
ness and security for the MLR model. These proofs
respectively show that any of the provided operation
statements will keep the database state legal (i.e., sat-
isfying all integrity properties), every legal database
state can be constructed, and the MLR data model is
secure, in that all information ow is upwards in the
security lattice. The proofs are omitted here because
of lack of space, and are given in [2].

The rest of this paper is organized as follows. In
section 2 we explain why we want to integrate sev-
eral models to establish the MLR data model. In sec-
tions 3 and 4 we de�ne the basic model and give the
data semantics. The expressive power of the model

is discussed in section 5. Section 6 addresses the data
manipulationoperations of the model. Section 7 shows
how these manipulation operations can be converted
to tuple-level labeling model. In section 8, we summa-
rize our major contributions.

2 Motivation

As mentioned earlier, MLR is substantially based
on the data model proposed by Sandhu and Jajodia
[13]. Many aspects of that model can be traced back to
the SeaView work [3]. The most signi�cant di�erence
is the requirement that there can be at most one tuple
in each access class for a given entity. This gives us
the simplicity of tuple-level labeling, combined with
the exibility of element-level labeling. There are also
several other subtle, but very important di�erences in
the precise formulation of various properties.

However, there are still some problems left unsolved
in the Sandhu-Jajodia model of [13]. Two major prob-
lems are semantic ambiguity and operational incom-
pleteness. Also, the No Entity Polyinstantiation In-
tegrity property of [13] may cause some downward in-
formation leakage.

To illustrate the semantic ambiguity problem, con-
sider the following relation SOD(SHIP, OBJ, DEST)
where SHIP is the primary key and the security clas-
si�cations are assigned at the granularity of individ-
ual data elements. OBJ and DEST are abbreviations
for OBJECTIVE and DESTINATIONS, respectively.
TC is an abbreviation for TUPLE-CLASS. The label
in the TC attribute applies to the entire tuple. ENT
is an abbreviation for Enterprise.

SHIP OBJ DEST TC

Ent U Spying S Talos U S
Ent U Exploration U Talos U U

What is the data accepted by TS-subjects? In the
Sandhu-Jajodia model, absence of a TS-tuple means
there is no additional data at this level. However,
there are both U- and S-tuples existing in this relation.
Do TS-subjects take the values from S-tuple or U-
tuple? Is there any necessity to force them to choose
the higher one? Are there situations in which a TS-
subject should accept values from the U-tuple rather
than the S-tuple?

Taking another more general example, let M1 and
M2 be incomparable labels whose least upper bound
is S and greatest lower bound is U. Consider

SHIP OBJ DEST TC

Ent U Mining M1 Talos U M1

Ent U Spying M2 Talos U M2

Ent U Exploration U Talos U U

Which OBJ value is accepted by S-subjects? Mining
or Spying or even Exploration? Again, is it necessary
to force them to accept data from any speci�c level?

As for the operational incompleteness problem,
again let M1 and M2 be incomparable labels whose
least upper bound is S and greatest lower bound is
U. How can a tuple whose individual classi�cation at-
tributes are at, say, U, M1, and M2 be instantiated by
an S-subject? In other words, how can an S-subject
add tuples like the following.

SHIP OBJ DEST TC

Ent U Mining M1 Sirius M2 S

In order to solve these problems we need to inte-
grate ideas from several models to establish the new
MLR data model. There will be no semantic ambigu-
ity, no operational incompleteness, and no downward
information leakage in the MLR data model.

3 The Basic Model

First we formally de�ne the basic model. Then we
give a data interpretation to the model as a part of
the data semantics. After that we discuss the practi-
cability of the model.

3.1 Model De�nition

A multilevel relation consists of the following two
parts.

De�nition 3.1 [RELATION SCHEME] A mul-
tilevel relation scheme is denoted by R(A1; C1;
A2; C2; : : : ; An; Cn; TC), where each Ai is a data at-
tribute over domain Di, each Ci is a classi�cation
attribute for Ai, and TC is the tuple-class attribute.
The domains of Ci are speci�ed by a range [Li;Hi],
Hi � Li, which de�nes a sub-lattice of access classes
ranging from Li up to Hi. The domain of TC is
[ni=1([Li;H]), where H is system high. 2

De�nition 3.2 [RELATION INSTANCE] A re-
lation instance, denoted by r(A1; C1; A2; C2;
: : : ; An; Cn; TC), is a set of distinct tuples of the form
(a1; c1; a2; c2; : : : ; an; cn; tc), where each ai 2 Di and
ci 2 [Li;Hi] or ai = null and ci 2 [Li;Hi] [null, and
tc � lubfci j ci 6= null : i = 1 : : :ng. Here lub denotes
the least upper bound. 2

We assume that there is a user-speci�ed apparent
primary key AK consisting of a subset of the data
attributes Ai. In general AK will consist of multi-
ple attributes. In order to simplify our notation, we
use A1 as synonymous to AK, i.e., A1 and AK both
denote the apparent primary key. We also assume
that the relation scheme is itself unclassi�ed (or, more
generally, classi�ed at the greatest lower bound of Li,
i = 1 : : :n). A tuple whose tuple class is c is said to be
a c-tuple, while a subject whose clearance is c is said
to be a c-subject. Similarly, each Ai can also be seen
as a group of attributes having identical classi�cation
level.

There are two subtle di�erences in these de�nitions,
relative to [13]. Firstly, the domain of TC is di�erent
from that in [13], which is [lubf Li : i = 1 : : :ng, lubf
Hi : i = 1 : : :ng]. Secondly, the model of [13] does
not allow classi�cation attributes to be null. These
changes are primarily for the INSERT semantics (sec-
tion 6.2), because now

SHIP OBJ DEST TC

Ent U Exploration U null null U

can be inserted into the relation even in case that the
domain of the classi�cation attribute for DEST needs
to be limited to [S, TS].

Also, in MLR every relation has only one relation
instance at any time. Subjects at di�erent levels have
di�erent views of the instance. Previous models have
de�ned a relation as having a di�erent relation in-
stance at each level. This modi�cation is simply for
convenience of semantic description.

Same as [13], we de�ne tc � lubfci j ci 6= null :
i = 1 : : :ng, by which

SHIP OBJ DEST TC

Ent U Exploration U Talos U S
Ent U Exploration U Talos U U

is allowed and has di�erent meanings from

SHIP OBJ DEST TC

Ent U Exploration S Talos S S
Ent U Exploration U Talos U U

In fact, the former one says S-subjects borrow from
U-subjects the data currently owned by U-subjects,
and the data could be changed by U-subjects; whereas
the latter one means S-subjects have their own data
for OBJ and DEST, which could not be changed by U-
subjects, and the value equivalence in OBJ and DEST
is just by coincidence. The data interpretation is fully
discussed in section 3.2.

The following de�nition is directly taken from the
standard relational data model.

De�nition 3.3 [DATABASE STATE] A database
is a collection of relations. A database state is a col-
lection of all relation instances of a database at a par-
ticular time. 2

3.2 Data Interpretation

The intuitive ideas of our data-based semantics are
as follows.

1. The data accepted by subjects at one level con-
sist of two parts: the data owned by them and the
data borrowed from lower-level subjects. The lat-
ter one can be changed by the lower-level subjects
who are owning them.

2. The data a subject can see are those accepted by
subjects at its level or at the levels below it.

3. For an entity, c-tuple contains all the data ac-
cepted (either owned or borrowed) by c-subjects.
Absence of a c-tuple means the existence of the
entity is not accepted by c-subjects.

These ideas come from combining belief-based se-
mantics and LDV model. In sections 4 and 6 we will
see how these ideas lead to a complete semantics of a
data model.

We now give a formal description of the
above intuitive ideas. For all instances r(A1; C1;
A2; C2; : : : ; An; Cn; TC) and for all tuples t 2 r, the
data are interpreted as follows.

1. Apparent Primary Key A1 and its Classi�cation
Attribute C1

� t[A1; C1] identi�es the entity and also gives
the class level of the entity.

� t[C1] = c1 means the entity is created by
a c1-subject and can only be deleted by c1-
subjects.

2. Tuple-Class Attribute TC

� t[TC] = tc with t[C1] = c1 means that

{ t is added by a tc-subject and all data
in t are accepted by tc-subjects.

{ t can only be seen by subjects with level
c0 � tc. In other words, all a c0-subject
can see are tuples t0 with t0[TC] � c0.

{ t can be deleted either by tc-subjects, or
by c1-subjects in cases such as the entire
entity is deleted.

� When t[TC] = t[C1], t is the base tuple of the
entity, which means all tuples t0 2 r such
that t0[A1; C1] = t[A1; C1] are based on t,
and t can only be deleted when the entire
entity is to be deleted.

3. Data Attribute Ak and Classi�cation Attribute
Ck (2 � k � n)

� t[Ak; Ck] with t[Ck] = ck and t[TC] = tc
indicates that

{ the data t[Ak] accepted by tc-subjects is
currently owned by ck-subjects.

{ t[Ak; Ck] can be maintained either by
ck-subjects or by tc-subjects.

� When t[Ck] < t[TC], t[Ak] 6= null is
borrowed from the t0[Ak] of t0 which has
t0[A1; C1] = t[A1; C1] ^ t0[TC] = t0[Ck] =
t[Ck], and is subject to change when
t0[Ak; Ck] is changed or t0 is deleted.

4. Null Value

� t[Ak; Ck] =[null, ck] (ck < tc) means for at-
tribute Ak, tc-subjects are expecting to bor-
row data owned by ck-subjects, however, no
data is currently owned by them.

� Both t[Ak; Ck] =[null, null] and t[Ak; Ck]
=[null, tc] means for Ak no data is available
at level tc. The [null, null] case applies when
tc =2 [Lk;Hk].

3.3 Practicability

As we have seen, the data-based semantics takes
the following ideas from belief-based semantics: For
an entity, absence of a c-tuple means the entity is not
accepted by c-subjects. In other words, in order to
reference an entity, c-subjects should add a c-tuple
of the entity into the relation �rst, even though all
the data accepted by c-subjects are belonging to the
subjects below c. Actually, this is the crucial point to
eliminate semantic ambiguity.

This requirement would be quite acceptable if 95%
entities had di�erent data at di�erent levels. Unfortu-
nately, often only, say, 5% entities will have secret data
at levels higher than unclassi�ed; which means for the
other 95% entities, high level tuples just repeat unclas-
si�ed data. If there are m levels higher than unclas-
si�ed, in order to reference unclassi�ed data at every

level, all these data are logically repeated m times.
A naive implementation would not just waste space
but also waste labor time, because the repetition is
explicitly done by subjects at each level.

By this consideration, we are forced to think about
some practical issues of the physical model under this
reasonable logical model. Fortunately there are sev-
eral techniques that can be used to deal with these
problems.

To avoid wasting space we can physically (not
logically) expand the tuple-class attribute TC to
be a tuple-class attribute set, containing several
levels whose data are exactly the same in all
A1; C1; : : : ; An; Cn. Hence, instead of keep sev-
eral repeated tuples in the database, we can phys-
ically just keep one tuple and indicate all lev-
els that accept it in the TC set. For exam-
ple, (a1; c1; : : : ; an; cn; ftc1; : : : ; tcmg) can stand for
(a1; c1; : : : ; an; cn; tc1); : : : ; (a1; c1; : : : ; an; cn; tcm).

Saving labor time can be achieved by allowing sub-
jects, or the database administrator, to set some de-
faults. For example, c-subjects can set defaults such
as for all entities in R, all data owned by c0-subjects
(c0 < c) are accepted. This is to say, whenever a c0-
subject insert an entity into R, a c-tuple of the entity
will be automatically created and all data of the c-
tuple are borrowed from c0-subjects (possibly, we can
just put c into the TC set of the c0-tuple). For single
level relations, i.e., for any i; j such that 1 � i; j � n,
Li = Lj = Hi = Hj, this approach could be very use-
ful. For example, a single level relation could be used
to keep common knowledge such as the city name,
location, area, climate, etc, which can be used by sub-
jects at any level.

It is easy to see that there are many variations of
these two basic approaches. Physical issues may also
depend on the storage strategies used to construct the
DBMS. Since the MLR model is a logical data model,
further discussion about physical issues is outside the
scope of this paper. Our objective here is to simply
make the feasibility argument sketched out above.

4 Integrity Properties

There are �ve integrity properties in the MLR data
model, in which Entity Integrity and Foreign Key In-
tegrity are taken from the original SeaView model;
Polyinstantiation Integrity and Referential Integrity
are signi�cantly rede�ned by us; and Data-Borrow In-
tegrity is newly introduced.

In particular, the Polyinstantiation Integrity given
here is much more general than that of either SeaV-

iew or Sandhu-Jajodia model, in that it takes care of
both entity polyinstantiation and element polyinstan-
tiation.

4.1 Entity Integrity

The Entity Integrity property was �rst proposed
by SeaView, and has stayed unchanged in most work
since then.

Property 1 [Entity Integrity (EI)] Let AK be the
apparent primary key of R. An instance r of a multi-
level relation R satis�es entity integrity if and only if
for all t 2 r

1. Ai 2 AK) t[Ai] 6= null,

2. Ai; Aj 2 AK) t[Ci] = t[Cj] (i.e., AK is uni-
formly classi�ed), and

3. Ai =2 AK) t[Ci] � t[CAK] (where CAK is de-
�ned to be the classi�cation of the apparent pri-
mary key). 2

The �rst requirement was exactly the de�nition of
entity integrity from the standard relational model,
and ensures that no tuple in r has a null value for any
attribute in AK. The second requirement says that all
attributes in AK have the same classi�cation in a tu-
ple. This will ensure that AK is either entirely visible,
or entirely null at a speci�c access class c. The �nal
requirement states that in any tuple the class of the
non-AK attributes must dominate CAK . This rules
out the possibility of associating non-null attributes
with a null primary key.

4.2 Polyinstantiation Integrity

Polyinstantiation Integrity has been required by
many models. The de�nition given here is much more
general than previous ones. It is the �rst one that
concerns both entity polyinstantiation and element
polyinstantiation in a uni�ed manner.

Property 2 [Polyinstantiation Integrity (PI)]
An instance r of a multilevel relation R satis�es
polyinstantiation integrity if and only if for 1 � i � n,

1. A1; TC ! Ci

2. A1; C1; Ci ! Ai. 2

The second requirement is the original polyinstanti-
ation integrity required by both SeaView and Sandhu-
Jajodia model, which says the real primary key of the
relation is A1; C1; C2; : : : ; Cn. The �rst requirement is
derived from the following two (as well as the second
one above).

� A1; TC ! C1;

� A1; C1; TC ! Ai; Ci.

Here, the latter is called tuple-class polyinstantiation
integrity in [10]1, which says that every entity in a
relation can have at most one tuple for every access
class; whereas the former is newly introduced and is
to be discussed in detail.

In fact, this new property can also be called as en-
tity polyinstantiation integrity. The intuitive idea of
this property is that there could be several entities in
a relation with the same AK value, but subjects at
any security level can accept at most one entity with
that AK value. For example,

SHIP OBJ DEST TC

Ent U Spying TS Talos U TS
Ent S Mining S Rigel S S
Ent U Exploration U Talos U U

is allowed, because at each level, either TS, S or U,
subjects only accept one entity with AK value being
Ent. However,

SHIP OBJ DEST TC

Ent S Spying S Rigel S S
Ent U Mining S Talos U S
Ent U Exploration U Talos U U

is not allowed, because there are two entities with the
same AK value Ent, (Ent, S) and (Ent, U), accepted
at level S. S-subjects could choose either of them, but
not both, to avoid semantic confusion.

This is very di�erent from the No Entity Polyin-
stantiation Integrity of [13]. In our case, there can
be no downward information leakage, because entity
polyinstantiation is allowed across security levels, and
therefore no insertion will be rejected due to existing
entity polyinstantiation at higher level. Also, there is
no ambiguity, because no entity polyinstantiation is
allowed in what is accepted by subjects at any partic-
ular security level.

4.3 Data-Borrow Integrity

The newly introduced Data-Borrow Integrity is a
key property of our data-based semantics. Allowing
data-borrow ensures that the MLR data model can
retain upward information ow. Changes to data at a
lower level can be automatically propagated to higher
levels. The integrity property can be expressed as fol-
lows.

1It has been misexpressed at many places as A1;C1; TC !

Ai, which is obviously too weak.

Property 3 [Data-Borrow Integrity (DBI)] An
instance r of a multilevel relation R satis�es data-
borrow integrity if and only if for all t 2 r and
1 � i � n, if t[Ai] 6= null ^ t[Ci] < t[TC], there
exists t0 2 r such that t0[A1; C1] = t[A1; C1]^ t

0[TC] =
t0[Ci] = t[Ci]^ t

0[Ai] = t[Ai]. 2

This is based on the following idea of data-based
semantics: c-tuple contains all the data accepted (but
not necessarily owned) by c-subjects; absence of a c-
tuple means that to c-subjects the entity does not ex-
ist.

Consider the following relation instance

SHIP OBJ DEST TC

Ent U Exploration U Rigel S S
Ent U Exploration U Talos U U

SHIP OBJ DEST TC

Ent U Exploration U Rigel S S

The former one satis�es DBI but the later one does
not. Here DBI requires that the U-tuple, which is the
source of the data Ent and Exploration, must exist.
This is because absence of a U-tuple means that to U-
subjects the entity Ent does not exist; which implies
that the data once owned by U-subjects is invalid now
and, of course, can no longer be used by S-subjects.

Note that DBI is independent from PI. For exam-
ple, the second instance above does not satisfy DBI
but yet satis�es PI.

4.4 Foreign Key Integrity

The Foreign Key Integrity is also proposed by
SeaView, and is another very stable property.

Property 4 [Foreign Key Integrity (FKI)] Let
FK be a foreign key of the referencing relation R. An
instance r of a multilevel relation R satis�es foreign
key integrity if and only if for all t 2 r

1. Either (8Ai 2 FK)[t[Ai] = null] or (8Ai 2
FK)[t[Ai] 6= null].

2. Ai; Aj 2 FK) t[Ci] = t[Cj] (i.e., FK is uni-
formly classi�ed). 2

The �rst part of this property arises from standard
relations. The motivations for the second part of this
property are similar to those for the uniform classi�-
cation of apparent primary keys in EI.

4.5 Referential Integrity

Referential Integrity appears both in SeaView and
in Sandhu-Jajodia model. The main issue with ref-
erential integrity is to avoid semantic ambiguity, as
discussed at length in [13]. The de�nition given here
is similar to the original SeaView de�nition and the
Sandhu-Jajodia de�nition. However, ambiguity is
eliminated by our data-based semantics as follows.

Property 5 [Referential Integrity (RI)] Let FK
be a foreign key of the referencing relation R1. Let
R2 be the referenced relation, with apparent primary
key AK. Instances r1 of R1 and r2 of R2 satisfy refer-
ential integrity if and only if for all t1 2 r1 such that
t1[FK] 6= null, there exists t2 2 r2 such that t1[FK] =
t2[AK] ^ t1[TC] = t2[TC]^ t1[CFK] � t2[CAK]. 2

In standard relations, the referential integrity prop-
erty precludes the possibility of dangling references. In
other words a non-null foreign key must have a match-
ing tuple in the referenced relation. The requirement
t1[CFK] � t2[CAK] is added by SeaView to only al-
low downward references. In our de�nition, we re-
quire t1[TC] = t2[TC] as well, which means for any
level c, c-tuples can only reference c-tuples. This fol-
lows naturally from our data-based semantics: c-tuple
contains all the data accepted by c-subjects, absence
of a c-tuple means to c-subjects the entity does not
exist.

Now let us consider the two examples described in
[13] as an impasse between referential ambiguity and
modeling power.

In the �rst example, references between relation in-
stances SOD and CS

SHIP OBJ DEST TC

Ent U Exploration U Talos U U
Ent S Spying S Rigel S S

CAPTAIN SHIP TC

Kirk U null U U
Kirk U Ent S S

no longer have any ambiguity, because the S-tuple of
CS only references the S-tuple of SOD. In previous
models the S-tuple of CS has been interpreted as ref-
erencing both the U- and S-tuples of SOD, resulting
in referential ambiguity.

As the second example, references between relation
instances SOD and CS

SHIP OBJ DEST TC

Ent U Exploration U Talos U U
Ent U Spying S Rigel S S

CAPTAIN SHIP TC

Kirk U null U U
Kirk U Ent S S

are also allowed. Again, the S-tuple of CS references
the S-tuple of SOD without referential ambiguity.

5 Expressive Power

In this section we compare the expressive power of
the MLR data model with respect to several other
data models. This is done by giving ER (Entity-
Relationship) style diagrams to show how entities, tu-
ples and elements are related in di�erent models.

We also give a decomposition for mapping a single
MLR relation into multiple relations with tuple-level
labeling. This not only shows another way to compare
data models, but is also important in building MLR
on current commercial multilevel database products.
The decomposition is discussed in further detail in sec-
tion 7.

We address the tuple-level labeling model �rst, be-
cause it is the simplest data model and is used as the
base for our comparisons.

5.1 The Tuple-Level Labeling Model

The tuple-level labeling model has simple schemes
as follows

A1 A2 : : : An TC

The expressive power of the tuple-labeling data
model can be shown as Figure 1. Every entity is
identi�ed by A1 and can have at most one tuple for
each classi�cation level. Each tuple has its class level
recorded in TC, and consists of n � 1 elements asso-
ciated with A1. The value of every element is kept in
Ak (2 � k � n).

Note that there is no entity polyinstantiation in the
tuple-level labeling model, because here an entity is
identi�ed only by A1. Fundamentally, tuple-level la-
beling can directly provide either element polyinstan-
tiation or entity polyinstantiation, but not both. An
alternate interpretation can be shown as Figure 2, in
which every entity, identi�ed by A1 and C1, can only
have one tuple. It is obviously more useful to opt
for element polyinstantiation, because this allows en-
tities whose attributes are labeled at di�erent classes;
whereas entity polyinstantiation would require all at-
tributes of an entity to be uniformly classi�ed.

Ak

A1Entity

Tuple

Element

1

1

n-1
consist-of

consist-of

TC

m

Figure 1: The expressive power of the tuple-level la-
beling data model

Ak

Entity

Tuple

Element

A1

C1
1

1

n-1
consist-of

consist-of
1

Figure 2: An alternate interpretation of the tuple-level
labeling data model

Entity

Tuple

Element

A1

C1

TC

Ak

Ck

1

m

1

n-1
consist-of

consist-of

Figure 3: The expressive power of the MLR data
model

5.2 The MLR Model

The expressive power of the MLR data model can
be shown as Figure 3. Here an entity is identi�ed
by A1 and C1, and may have at most one tuple for
each classi�cation level. Each tuple has its class level
recorded in TC, and consists of n � 1 elements. The
value and owner's level of every element are kept in Ak
and Ck (2 � k � n). It is clear that entity polyinstan-
tiation is allowed here, because each entity is identi�ed
by both A1 and C1.

When converting the MLR data model to tuple-
labeling data model, attributes Eid and El2, : : : , Eln
could be introduced, which identify, respectively, an
entity and an element in the MLR model and are
transparent to all subjects.

A1 Eid C1

Eid El2 : : : Eln TC

Elk Ak Ck

This is to say, every A1 can be mapped to at most
one Eid at each classi�cation level indicated by C1;
every Eid can have at most one set of elements El2,
: : : , Eln at each level indicated by TC; every element
Elk contains Ak and Ck.

This decomposition is simple and good for static
expression. As for dynamic operations, the following
decomposition is more convenient

A1 Eid C1

Eid El2 : : : Eln TC

Ak

Entity

Tuple

Element

A1

C1

TC

1

m

1

n-1
consist-of

consist-of

Figure 4: The expressive power of the semi-tuple-level
labeling data model

Elk Eid Ak Ck

which means element Elk is uniquely determined by
Eid, Ak and Ck, therefore Elk can be added and
deleted freely in cases such as Eid is to be added or
deleted. See section 7 for further detail.

5.3 The Semi-Tuple-Level Labeling
Model

What we called the semi-tuple-level labeling data
model has schemes as follows,

A1 C1 A2 : : : An TC

This is exactly the same as the model provided by
Smith and Winslett [14]. The expressive power of the
semi-tuple-level labeling data model can be shown as
Figure 4. Both entity and element polyinstantiation
are allowed here, but there is no data borrow.

The semi-tuple-level labelingmodel can also be seen
as coming from restricting the MLR model in such a
way that no Ck (2 � k � n) is allowed. By this
restriction, the model would no longer take care of
the sources of element data, and at the same time
no upward information ow by data borrow would ex-
ist. When converting MLR to tuple-level labeling data
model under these assumptions, we will get:

A1 Eid C1

Eid A2 : : : An TC

Elk's are no longer needed.

Entity

Tuple

Element

A1

C1

TC

Ak

Ck

1

m

1

n-1
consist-of

consist-of

Figure 5: The expressive power of the SeaView data
model

5.4 The SeaView Model

Now let us compare MLR with SeaView. Although
the SeaView model is not grounded on belief-based
semantics, we can still establish some relationship be-
tween SeaView and MLR. The expressive power of the
SeaView data model can be shown as Figure 5. The
TC in SeaView is redundant and can be calculated
from C1, : : : , Cn. Hence, it is attached by a dotted
line in the diagram.

Qian and Lunt [9] decompose a SeaView relation to
several tuple-level labeling relations as follows

A1 C1

A1 Ak Ck

There is an implicit assumption in this decomposition:
no entity polyinstantiation, i.e. A1 ! C1.2 Here, Eid
is not needed, because A1 can identify the entity. Elk's
are not needed either, because the relation including
TC in the MLR decomposition can, to some extent,
be omitted.

What SeaView can do to counter the semantic am-
biguity problem addressed in section 2 is very lim-
ited. The model-theoretic semantics of [8] is slightly
di�erent from the SeaView's original \fact-based" se-
mantics [9], in that it integrates some ideas from the
belief-based semantics to overcome semantic ambigu-
ity. However, as long as believability is equated to
visibility, it is quite possible that either believability

2If entity polyinstantiation was allowed, A1 alone could not
be used to connect two or more tuple-level labeling relations
during the recovery process.

is maximized or visibility is minimized. To di�erenti-
ate believability from visibility, operational semantics
and performance may become two problems.

5.5 Discussion

As an example, let us consider an MLR instance

SHIP OBJ DEST TC

Ent U Mining S Talos U TS
Ent U Mining S Rigel S S
Ent U Exploration U Talos U U

In this case, all data accepted by TS-subjects are bor-
rowed from lower-level subjects. Furthermore, TS-
subjects take DEST from U-subjects instead of S-
subjects, and the data Talos can be changed by U-
subjects. Neither SeaView nor semi-tuple-labeling
model can express this case, because it concerns data-
borrow. In SeaView, TS-subjects should accept S-
tuple if they do not have their own data. In semi-
tuple-labeling model, TS-subjects can only accept the
data owned by themselves.

So far, we can see that the MLR model is a very
powerful multilevel relational data model, which can
be used as a uni�ed data model to support general
MLS database design.

6 Manipulation

There are �ve manipulation statements in the MLR
data model. Four of them are the conventional SQL
statements of INSERT, DELETE, SELECT and UP-
DATE. The �fth statement is UPLEVEL and is new to
MLR. The UPLEVEL statement is introduced to solve
the operational incompleteness problem addressed in
section 2. Compared to the Sandhu-Jajodia model of
[12], we have rede�ned the semantics of the four stan-
dard SQL statements, and have replaced PUPDATE
by UPLEVEL. The SELECT statement given here is
similar to that of Smith-Winslett [14], and our intent
is to provide a friendly interface upward-compatible to
the standard SQL.

We �rst give several examples to show how these
statements are used. After that, we present formal
syntax and semantics for all these manipulation state-
ments. The syntax is similar to that in [5], and the
explanation given here concentrates on data-borrow
and operation propagation.

We are not going to discuss performance in detail,
because it depends on physical strategies. However,
these operations should not present a performance

problem if we can use an entity, instead of a tuple,
as the basic storage and retrieval unit. As discussed
in section 3.3, the size of an entity will not be too
large, in comparison to that of a tuple.

6.1 Examples

Consider the following relation instance

SHIP OBJ DEST TC

Ent U Mining M1 Talos U M1

Ent U Exploration U Sirius M2 M2

Ent U Exploration U Talos U U

to which an S-subject applies the following UPLEVEL
command

UPLEVEL SOD
GET OBJ FROM M1, DEST FROM M2

WHERE SHIP = \Ent"

giving us the following result

SHIP OBJ DEST TC

Ent U Mining M1 Sirius M2 S
Ent U Mining M1 Talos U M1

Ent U Exploration U Sirius M2 M2

Ent U Exploration U Talos U U

An S-tuple is added into SOD, whose OBJ and DEST
values are, respectively, borrowed from the data owned
by M1-subjects and M2-subjects.

Next, suppose an S-subject executes the following
UPDATE statement

UPDATE SOD
SET DEST = \Rigel"
WHERE SHIP = \Ent"

the result is

SHIP OBJ DEST TC

Ent U Mining M1 Rigel S S
Ent U Mining M1 Talos U M1

Ent U Exploration U Sirius M2 M2

Ent U Exploration U Talos U U

Only the S-tuple is changed.
However, if an M1-subject issues

UPDATE SOD
SET OBJ = \Spying"
WHERE SHIP = \Ent"

the relation instance will be

SHIP OBJ DEST TC

Ent U Spying M1 Rigel S S
Ent U Spying M1 Talos U M1

Ent U Exploration U Sirius M2 M2

Ent U Exploration U Talos U U

The M1-tuple is changed, and the change is prop-
agated to S-tuple. This is because the OBJ value
accepted by S-subjects is currently owned by M1-
subjects.

Furthermore, a DELETE statement from an M1-
subject

DELETE
FROM SOD
WHERE SHIP = \Ent"

will change the relation instance to

SHIP OBJ DEST TC

Ent U null M1 Rigel S S
Ent U Exploration U Sirius M2 M2

Ent U Exploration U Talos U U

The M1-tuple is deleted and the OBJ value in S-tuple
is set to null since no data is currently owned by M1-
subjects.

If the M1-subject issues an UPLEVEL instead of
the DELETE,

UPLEVEL SOD
GET OBJ FROM U, DEST FROM U
WHERE SHIP = \Ent"

the result will be

SHIP OBJ DEST TC

Ent U null M1 Rigel S S
Ent U Exploration U Talos U M1

Ent U Exploration U Sirius M2 M2

Ent U Exploration U Talos U U

The M1-tuple is changed and all its values are bor-
rowed from U-subjects. The OBJ value of the S-tuple
is null because there is no OBJ data currently owned
by M1-subjects.

Note that there is upward propagation of changes
in UPLEVEL, DELETE and UPDATE statements.

To the instance above, an M2-subject issuing

SELECT �
FROM SOD

will get the following result

SHIP OBJ DEST

Ent Exploration Sirius

i.e., the tuple at level M2 with neither classi�cation at-
tribute nor tuple-class attribute. This looks like a tra-
ditional SELECT statement applied to a traditional
relation, consisting of all data in the M2-tuple. If the
issued statement was

SELECT �%
FROM SOD

the result would be

SHIP OBJ DEST TC

Ent U Exploration U Sirius M2 M2

all data attributes, classi�cation attributes as well as
a tuple-class attribute are included.

Finally, let us consider the two examples from [13]
mentioned in section 4.5. To both of them, if a TS-
subject issues the following SELECT statement

SELECT CS.CAPTAIN, CS.CAPTAIN%,
SOD.DEST, SOD.DEST%,
SOD.TC

FROM CS, SOD
WHERE CS.SHIP=SOD.SHIP
AT S

where CAPTAIN% and DEST% stand for the clas-
si�cation attributes of CAPTAIN and DEST respec-
tively, the results returned to the TS-subject are the
same

CAPTAIN DEST TC

Kirk U Rigel S S

This is because in both cases the S-tuple of CS only
joins with the S-tuple of SOD.

This concludes our examples and we now give the
formal de�nition and operational semantics of the �ve
data manipulation statements.

6.2 The INSERT Statement

The INSERT statement executed by a c-subject has
the following general form:

INSERT
INTO R[(Ai[; Aj] : : :)]
VALUES (ai[; aj] : : :)

where R is a relation name; Ai, Aj , : : : are data at-
tribute names, 1 � i; j; : : : � n; ai, aj , : : : are data
values for Ai, Aj, : : : respectively. Value speci�ed

must be from appropriate domains. (In this paper, as
a syntax description we use [] to stand for option and
: : : for repetition.)

Each INSERT operation can insert at most one tu-
ple into the relation R. The inserted tuple t is con-
structed as follows: for 1 � k � n,

1. if Ak is in the attribute list of INTO clause,
t[Ak; Ck] = (ak; c);

2. if Ak is not in the attribute list of INTO clause,

(a) if c 2 [Lk;Hk], t[Ak; Ck] = (null; c);

(b) if c =2 [Lk;Hk], t[Ak; Ck] = (null, null);

Also, t[TC] = c.
The insertion is permitted if and only if:

1. There is no t0 2 r such that t0[A1] = a1 ^ t0[TC] =
c; and

2. The resulting database state satis�es EI, FKI and
RI.

If so, the tuple t is inserted into r. Otherwise the
operation is rejected and the original database state
is left unchanged.

6.3 The DELETE Statement

The DELETE statement executed by a c-subject
has the following general form:

DELETE
FROM R
[WHERE p]

where R is a relation name; p is a predicate expression
which may include conditions involving the classi�ca-
tion attributes, in addition to the usual case of data
attributes.

Only tuples t 2 r with t[TC] = c will be taken into
the calculation of p. For those tuples t 2 r that satisfy
the predicate p, r will be changed as follows:

1. t will be deleted;

2. if t[C1] = c, all t0 2 r with t0[A1; C1] = t[A1; C1]
^ t0[TC] > c will be deleted from r;3

3. if t[C1] < c, for t0 2 r with t0[A1; C1] = t[A1; C1]
^ t0[TC] > c ^ t0[Ck] = c, t0[Ak] is set to null.

3Some improvement are possible, such as instead of deleting
higher-level data or setting higher-level data to null, the sys-
tem could just \freeze" and mark them, show subjects at these
levels some warnings and let these subjects �x them. Those
are important in practice and should be explicitly added to the
semantics of an implementation.

The DELETE statement is successful if at level c
the resulting database state satis�es RI. Otherwise the
operation is rejected and the original database state
is left unchanged.

In case that RI is not satis�ed at levels c0 (c0 > c),4

for the relation R1 with relation instance r1 containing
the referencing tuple t1 and with apparent primary key
AK1 and the foreign key FK1,

1. if FK1\AK1 = ;, there are two steps to be done,

(a) if t1[CFK1
] = c0, t1 is set as t1[FK1] =

null, and for t0
1
2 r1 with t0

1
[AK1; CAK1

] =
t1[AK1; CAK1

] ^ t0
1
[TC] > c0 ^ t0[CFK1

] =
c0, t0

1
[FK1] is set to null;

(b) if t1[CFK1
] < c0 and t1[FK1] has not

been set to null in step (a), t1 is set as
t1[FK1; CFK1

] = (null,c0);

2. if FK1 \AK1 6= ;, t1 (at level c0) should also be
deleted, which appears as cascading deletions.

6.4 The SELECT Statement

The SELECT statement executed by a c-subject
has the following general form:

SELECT B1[; B2] : : :
FROM R1[; R2] : : :
[WHERE p]
[AT c1[; c2] : : :]

where B1, B2, : : : are attribute names, either data
attribute or classi�cation attribute or tuple-class at-
tribute (Wildcards are available, � for all data at-
tributes, % for all classi�cation attributes and tuple-
class attribute, �% for all attributes); R1, R2, : : :
are relation names; p is a predicate expression which
may include conditions involving the classi�cation at-
tributes, in addition to the usual case of data at-
tributes; c1, c2, : : : are values of classi�cation levels
(There is wildcard � standing for all levels lower than
or equal to c). Value speci�ed must be from appropri-
ate domains.

Only those tuples t 2 r1; r2; : : : that have t[TC]
being c if there is no AT clause or otherwise included
in AT clause will be taken into the calculation of p. If
there are more than one relation included in FROM
clause, the p is implicitly substituted by p^ (R1:TC =
R2:TC = : : :).

4Adopting di�erent policies in RI checking, at level c and
at levels c0 (c0 > c), is because the DELETE statement issued
by a c-subject should not be rejected due to violation of RI
at levels c0, otherwise there would be downward information
leakage. Same thing happens with the UPDATE statement.

For those tuples t satisfying p, the data of t for those
attributes listed in SELECT clause will be included in
the result.

6.5 The UPDATE Statement

The UPDATE statement executed by a c-subject
has the following general form:

UPDATE R
SET Ai = si[; Aj = sj] : : :
[WHERE p]

where R is a relation name; Ai, Aj , : : : are data at-
tribute names, 1 � i; j; : : : � n; si, sj , : : : are scalar
expression for Ai, Aj , : : : respectively; p is a predicate
expression which may include conditions involving the
classi�cation attributes, in addition to the usual case
of data attributes. Value speci�ed must be from ap-
propriate domains.

Only tuples t 2 r with t[TC] = c will be taken into
the calculation of p. For those tuples t 2 r that satisfy
the predicate p, r will be updated as follows:

1. if some attribute of A1 is in SET clause,

(a) if t[C1] = c, all tuples t0 2 r that have
t0[A1; C1] = t[A1; C1] ^ t0[TC] > c will be
deleted5;

(b) if t[C1] < c,

i. for 2 � k � n, if Ak is not in SET clause
and t[Ck] < c, t[Ak; Ck] = (null,c);

ii. for tuples t0 2 r with t0[A1; C1] =
t[A1; C1] ^ t0[TC] > c ^ t0[Ck] = c,
t0[Ak] = null;

(c) for 1 � k � n, if Ak is in SET clause,
t[Ak; Ck] = (jskj; c);

2. if no attribute of A1 is in SET clause, for 2 � k �
n, if Ak is in SET clause,

(a) t[Ak; Ck] = (jskj; c);

(b) for tuples t0 2 r with t0[A1; C1] = t[A1; C1]
^ t0[TC] > c ^ t0[Ck] = c, t0[Ak] = jskj.

The UPDATE operation is successful if and only if:

1. In case that some attribute ofA1 is in SET clause,
there is no t0 2 r such that for the resulting t[A1],
t0[A1] = t[A1] ^ t0[TC] = c; and

5Changing A1 means changing the entity. Lower level sub-
jects should not have the privilegeof having higher level subjects
to accept any new entity beyond their willingness to do so by
UPLEVEL statements.

2. The resulting database state satis�es EI, FKI and
RI (at level c).

Otherwise the operation is rejected and the original
database state is left unchanged.

In case that RI is not satis�ed at levels c0 (c0 > c),
for the relation R1 with relation instance r1 containing
the referencing tuple t1 and with apparent primary key
AK1 and the foreign key FK1,

1. if FK1\AK1 = ;, there are two steps to be done,

(a) if t1[CFK1
] = c0, t1 is set as t1[FK1] =

null, and for t0
1
2 r1 with t0

1
[AK1; CAK1

] =
t1[AK1; CAK1

] ^ t0
1
[TC] > c0 ^ t0[CFK1

] =
c0, t0

1
[FK1] is set to null;

(b) if t1[CFK1
] < c0 and t1[FK1] has not

been set to null in step (a), t1 is set as
t1[FK1; CFK1

] = (null,c0);

2. if FK1 \AK1 6= ;, t1 (at level c0) should also be
deleted, which appears as cascading deletions.

6.6 The UPLEVEL Statement

The UPLEVEL statement executed by a c-subject
has the following general form:

UPLEVEL R
GET Ai FROM ci[; Aj FROM cj] : : :
[WHERE p]

where R is a relation name; Ai, Aj , : : : are data at-
tribute names, 2 � i; j; : : : � n; ci, cj, : : : are values
of classi�cation levels for Ai, Aj , : : : respectively; p is
a predicate expression which may include conditions
involving the classi�cation attributes and tuple-class
attributes, in addition to the usual case of data at-
tributes. Value speci�ed must be from appropriate
domains.

Only tuples t 2 r with t[TC] � c will be taken into
the calculation of p. For every entity that has tuples
t0 2 r satisfying the predicate p, a c-tuple t will be
constructed as follows:

1. t[A1; C1] = t0[A1; C1];

2. for 2 � k � n,

(a) if Ak is in GET clause,

i. if there is a tuple t00 with t00[A1; C1] =
t[A1; C1] ^ t00[TC] = t00[Ck] = ck, set
t[Ak; Ck] = t00[Ak; Ck];

ii. if there is no tuple t00 with t00[A1; C1] =
t[A1; C1] ^ t00[TC] = t00[Ck] = ck, set
t[Ak; Ck] = (null,ck);

(b) if Ak is not in GET clause,

i. if c 2 [Lk;Hk], t[Ak; Ck] = (null; c);

ii. if c =2 [Lk;Hk], t[Ak; Ck] = (null, null).

After that,

1. if there is a tuple t00 with t00[A1; C1] = t[A1; C1] ^
t00[TC] = c,

(a) replace t00 with t;

(b) for any tuple t000 and any 2 � k � n such
that t000[A1; C1] = t[A1; C1] ^ t000[TC] > c ^
t000[Ck] = c, if t[Ak; Ck] 6= t00[Ak; Ck], set t000

as t000[Ak] =null.

2. if there is no tuple t00 with t00[A1; C1] = t[A1; C1]
^ t00[TC] = c, add t into r.

The UPLEVEL operation is successful if and only if
the resulting database state satis�es PI, FKI and RI.
Otherwise the operation is rejected and the original
database state is left unchanged.

7 Operational Behavior of Tuple-Level

Decomposition

As mentioned in section 5.2, an MLR relation
R(A1; C1; A2; C2; : : : ; An; Cn; TC) can be decomposed
to several tuple-level labeling relations

1. R1(A1; Eid; C1)

2. R2(Eid;El2; : : : ; Eln; TC)

3. R3k(Elk; Eid;Ak; Ck)

Now as a feasibility discussion, the operations is-
sued by a c-subject in the MLR data model can be
interpreted as follows,

� INSERT

1. generate a new Eid and some new Elk;

2. insert tuples into R1, R2 and some R3k.

� SELECT

1. select attributes from R1, R2 and R3k, using
Eid and Elk as connection keys.

� UPLEVEL

1. select Eid from R1, R2 and R3k, using Eid
and Elk as connection keys;

2. for the selected Eid that has no c-tuple in
R2, insert a tuple into R2;

3. for the selected Eid that has c-tuple in R2,
update R2 to change this c-tuple as well as
propagate the change to higher level tuples.

� UPDATE

1. select Eid and Elk from R1, R2 and R3k,
using Eid and Elk as connection keys;

2. if A1 is to be changed, for C1 < c, generate
a new Eid and insert a tuple into R1, change
R2 and R3 for both update and propagation;
for C1 = c, update R1 as well as delete all
higher level tuples of the entity in R1, R2

and R3k for propagation.

3. for the selected Elk that has Ck = c, update
R3k to change Ak;

4. for the selected Elk that has Ck < c, gener-
ate a new Elk and insert a tuple into R3k as
well as update R2 to propagate the change;

� DELETE

1. select Eid and Elk from R1, R2 and R3k,
using Eid and Elk as connection keys;

2. for the selected Eid that has C1 < c, delete
relative tuples in R2 and R3k as well as up-
date R2 to propagate these changes;

3. for the selected Eid that has C1 = c, delete
all tuples in R1, R2 and R3k, that contain
the Eid.

Here the relation R can be seen as an updatable
view based on R1, R2 and R3k. However, both scheme
mapping and operation interpretation as well as in-
tegrity checking require some tools to be developed.
For example, we need tools to

1. generate and maintain Eid and Elk;

2. update and delete some speci�c tuples with classi-
�cation levels higher than the level of the subject
issuing the operation;

3. interpret some details of these operation state-
ments.

Fortunately, all these tools could work in a straight-
forward way. The only thing that we should take care
of is the performance. Joining R1, R2 and R3k to
reconstruct R is, to some extent, unavoidable in any
model conversion as long as decomposition is used.
What remains is data-borrow/operation-propagation,
which should not present a performance problem if the
interpretation tool could be implemented in the way
that the (MLR) entity is treated as an access unit, i.e.
one entity at a time.

8 Conclusion

Our major contributions in this paper are:

1. Establish the MLR data model with data-based
semantics by unifying ideas from a number of
other models.

2. Analyze the expressive power of the MLR data
model, indicating that the MLR data model can
be used as a uni�ed data model to support general
MLS database design.

3. Describe how to convert the MLR data model to
tuple-level labeling ones, which shows a practical
way to build the model on the current commercial
multilevel database products.

Particularly, our rede�ned Polyinstantiation In-
tegrity and Referential Integrity as well as our newly
introduced UPLEVEL statement and Data-Borrow
Integrity strongly support the fact that the MLR
model is a simple, unambiguous and powerful data
model.

Finally, we reiterate that the MLR model is sound,
complete and free of downward information ows.
Proofs of these properties cannot be provided here for
lack of space, but are given in [2].

References

[1] Bell, D.E. and LaPadula, L.J. \Secure Computer
Systems: Uni�ed Exposition and Multics Inter-
pretation." MTR-2997, MITRE (1975).

[2] Chen, F. and Sandhu, R.S. \The Multilevel Re-
lational (MLR) Data Model." Technical Report,
ISSE-TR-95-101, George Mason Univ (1995).

[3] Denning, D.E., Lunt, T.F., Schell, R.R., Shock-
ley, W.R. and Heckman, M. \The SeaView Secu-
rity Model." Proc. IEEE Symposium on Security
and Privacy, 218-233 (1988).

[4] Haigh, J.T., O'Brien, R.C. and Thomsen, D.J.
\The LDV Secure Relational DBMS Model."
Database Security IV: Status and Prospects, S.
Jajodia and C. E. Landwehr (editors), North-
Holland, 1991, pages 265-279.

[5] Jajodia, S. , Sandhu, R.S., and Sibley E. \Update
Semantics of Multilevel Relations." Proc. 6th An-
nual Computer Security Applications Conf., Tuc-
son, AZ, December 1990, pages 103-112.

[6] Jajodia, S. and Sandhu, R.S. \A Novel Decom-
position of Multilevel Relations Into Single-Level
Relations." Proc. IEEE Symposium on Security
and Privacy, Oakland, California, May 1991,
pages 300-313.

[7] Lunt, T.F., Denning, D.E., Schell, R.R., Heck-
man, M. and Shockley, W.R. \The SeaView Se-
curity Model." IEEE Transactions on Software
Engineering, 16(6):593-607 (1990).

[8] Qian, X. \A model-theoretic semantics of
the multilevel relational model." Advances in
Database Technology { EDBT'94, Lecture Notes
in Computer Science 779, Jarke, M., Bubenko, J.
and Je�ery, K. (editors), Springer-Verlag, pages
201-214, 1994.

[9] Qian, X. and Lunt, T.F. \Tuple-level vs. element-
level classi�cation." Database Security IV: Sta-
tus and Prospects, Thuraisingham, B.M. and
Landwehr, C. (editors), North-Holland, pages
301-315, 1993.

[10] Sandhu, R.S., Jajodia, S. and Lunt, T. \A
New Polyinstantiation Integrity Constraint for
Multilevel Relations." Proc. IEEE Workshop on
Computer Security Foundations, Franconia, New
Hampshire, June 1990, pages 159-165.

[11] Sandhu, R.S. and Jajodia, S. \Honest Databases
That Can Keep Secrets." 14th NIST-NCSC Na-
tional Computer Security Conference, Washing-
ton, D.C., October 1991, pages 267-282.

[12] Sandhu, R.S. and Jajodia, S. \Polyinstantiation
for Cover Stories." Proc. European Symposium
on Research in Computer Security, Toulouse,
France, November 1992, pages 307-328. Published
as Lecture Notes in Computer Science, Vol 648,
Computer Security|ESORICS92 (Deswarte, Y.,
Eizenberg, G., and Quisquater, J.-J., editors),
Springer-Verlag, 1992.

[13] Sandhu, R.S. and Jajodia, S. \Referential In-
tegrity in Multilevel Secure Databases." 16th Na-
tional Computer Security Conference, Baltimore,
MD, Sept. 20-23, 1993, pages 39-52.

[14] Smith, K. and Winslett, M. \Entity Modeling in
the MLS Relational Model." Proc. of the 18th
VLDB Conference, Vancouver, British Columbia,
Canada, 1992, pages 199-210.

