
Proc. IEEE Symposiumon Research in Security and Privacy, Oakland, Ca lifornia, May 16-18, 1994, pages 230-241

On the Minimality of Testing for Rights in Transformation Models

Ravi S. Sandhu and Srinivas Ganta�

Center for Secure Information Systems
&

Department of Information and
Software Systems Engineering
George Mason University
Fairfax, VA 22030-4444

fsandhu,gsrinivag@isse.gmu.edu

Abstract

In this paper we de�ne and analyze a family of
access control models, called transformation models,
which are based on the concept of transformation of

rights. In these models, propagation of access rights
is authorized entirely by existing rights for the object
in question. Transformation models are useful for ex-
pressing various kinds of consistency, con�dentiality,
and integrity controls. These models also generalize
the monotonic transform model of Sandhu, and its
non-monotonic extension (NMT) by Sandhu and Suri.
We argue that NMT is inadequate for expressing the
document release example discussed by Sandhu and
Suri, because it can test only one access matrix cell
in its state changing commands. We then analyze the
relative expressive power of testing two access matrix
cells in state changing commands versus testing more
than two. Our conclusion is that it su�ces to allow
testing for two cells.

1 Introduction

In this paper we de�ne and analyze a family of
access control models called Transformation Models.
These models are based on the concept of transforma-
tion of rights, which simply implies that possession of
rights for an object by subjects allows those subjects
to get and lose rights for that object and also give
and revoke rights (for that object) to other subjects.

�The work of both authors is partially supported by National
Science Foundation grant CCR-9202270 and by the National
Security Agency contract MDA904-92-C-5141. We are grateful
to Nathaniel Macon, Howard Stainer, and Mike Ware for their
support and encouragement in making this work possible.

Hence, in these models propagation of access rights
is authorized entirely by existing rights for the object
in question. (More generally, propagation could also
be authorized by existing rights for the source and
destination subjects, for example, in models such as
HRU [5], SPM [11], TAM [13].)

The concept of transformation of rights allows us to
express a large variety of practical security policies en-
compassing various kinds of consistency, con�dential-
ity and integrity controls. In this paper, we demon-
strate the expressiveness of Transformation Models,
by expressing some practical policies using these mod-
els and citing other examples published elsewhere in
the literature.

The concept of transformation of access rights was
introduced by Sandhu in [12]. Based on it the Mono-
tonic Transform Model and its Non-Monotonic exten-
sion (NMT) [14] were proposed. The simplicity and
expressive power of NMT is demonstrated in [14] by
means of a number of examples. But we have dis-
covered that NMT cannot adequately implement the
document release example given in [14]. The reason
behind this is the limited testing power of NMT. This
led us to the formulation of the Transformation Model
(TRM) introduced in this paper. TRM substantially
generalizes NMT.

In TRM the propagation of access rights is autho-
rized entirely by existing rights for the object in ques-
tion. TRM can therefore be very e�ciently imple-
mented in a distributed environment using a simple
client-server architecture. In such an implementation,
each server acts as a mediator for the set of objects
it manages. All accesses to an object pass through
its server who determines the validity of the request.
The server maintains an access control list (ACL) for



each of the objects it is required to manage. An ACL
is associated with each object, specifying the subjects
who can access the object and the access right(s) au-
thorized for each of them. The ACL makes the access
to the object dependent on the identity of the sub-
ject. Every time a subject makes a request, the re-
quest is checked against this list. The access request
is valid only if the access requested is authorized by
the rights present for the subject in the ACL for the
object. ACL's are dynamic and hence to maintain
them each server only needs to know about the state
changing commands for the object type that it man-
ages. Moreover, the authorization can be checked lo-
cally at each server without requiring communication
with other servers. This makes the system extremely
modular and easy to maintain. In particular, new ob-
ject types can be introduced (along with their servers)
without any need to informpreviously existing servers.

We also de�ne two special cases of TRM called
the Unary Transformation Model (UTRM) and the
Binary Transformation Model (BTRM). UTRM com-
mands are authorized by checking for rights in a single
cell of the access matrix, whereas in BTRM commands
such testing is limited to exactly two cells. We then
analyze the relative expressive power of these mod-
els. One of our conclusions is that UTRM is not ad-
equately expressive. On the other hand, we formally
prove that BTRM is as expressive as TRM in general
(where authorization for commands can be checked by
testing any number of cells). Hence our conclusion is
that it su�ces to have models which test for two cells.

Although the syntax of Typed Access Matrix Model
(TAM) [13] and the transformation models proposed
in this paper are alike, these models di�er in some im-
portant respects. The main di�erence is that in TRM
propagation of access rights is authorized entirely by
existing rights for the object in question, whereas in
TAM this testing may involve rights for other objects
(and subjects) in the system. Also TRM allows testing
for absence of rights and TAM does not allow testing
for absence of rights (although in extensions of TAM
such tests have been incorporated [1, 15]). TAM ex-
tended to allow testing for absence of rights is a gen-
eralization of TRM.

The rest of the paper is organized as follows. Sec-
tion 2 de�nes the Transformation Model (TRM). It
also describes two models, UTRM and BTRM, which
are de�ned as restricted cases of TRM. In section 3,
we show how these models can enforce some practical
policies. In section 4, we argue that UTRM, which
tests for one cell, cannot conveniently express some
simple policies. Section 5 proves that BTRM, which

tests for two cells, is as expressive as TRM in general.
Finally, section 6 concludes the paper.

2 The Transformation Model (TRM)

In this section we formally de�ne and intuitively
motivate the Transformation Model. TRM is an ac-
cess control model in which authorization for prop-
agation of access rights is entirely based on existing
rights for the object in question. As argued in the in-
troduction, this leads to an e�cient implementation in
a distributed environment using a simple client-server
architecture.

The protection state in TRM can be viewed in
terms of the familiar access matrix. There is a row
for each subject in the system and a column for each
object. In TRM, the subjects and objects are dis-
joint. TRM does not de�ne any access rights for op-
erations on subjects, which are assumed to be com-
pletely autonomous entities. The [X;Y ] cell contains
rights which subject X possesses for object Y .

TRM consists of a small number of basic constructs
and a language for specifying the commands which
cause changes in the protection state. For each com-
mand, we have to specify the authorization required
to execute that command, as well as the e�ect of the
command on the protection state. We generally call
such a speci�cation as an authorization scheme (or
simply scheme) [13].

A scheme in the TRM is de�ned by specifying the
following components.

1. A set of access rights R.

2. Disjoint sets of subject and object types, TS and
TO, respectively.

3. A collection of three classes of state chang-
ing commands: transformation commands, cre-

ate commands, and destroy commands. Each in-
dividual command speci�es the authorization for
its execution, and the changes in the protection
state e�ected by it.

The scheme is de�ned by the security administrator
when the system is �rst set up and thereafter remains
�xed. It should be kept in mind that TRM treats
the security administrator as an external entity, rather
than as another subject in the system. Each compo-
nent of the scheme is discussed in turn below.

As explained in the introduction, TAM [13] and
TRM are strongly related. They di�er in state chang-
ing commands. In TRM, propagation of access rights



is authorized entirely by existing rights for the object
in question, whereas in TAM this authorization can
involve testing rights for multiple objects. TRM does
allow testing for absence of rights, while the original
de�nition of TAM [13] does not allow for such testing.
If TAM is augmented with testing for absence of rights
(as in [1], [15]), it is then a generalization of TRM.

2.1 Rights

Each system has a set of rights, R. R is not speci�ed
in the model but varies from system to system. We will
generally expect R to include the usual rights such as
own, read, write, append and execute. However, this
is not required by the model. We also expect R to
generally include more complex rights, such as review,
pat-ok, grade-it, release, credit, debit, etc. The mean-
ing of these rights will be explained wherever they are
used in our examples.

The access rights serve two purposes. First, the
presence of a right, such as r, in the [S;O] cell of the
access matrix may authorize S to perform, say, the
read operation on O. Secondly, the presence of a right,
say o, or the absence of right o, in [S;O] may autho-
rize S to perform some operation which changes the
access matrix, e.g., by entering r in [S0; O]. The focus
of TRM is on this second purpose of rights, i.e., the
authorization by which the access matrix itself gets
changed.

2.2 Types of Subjects and Objects

The notion of type is fundamental to TRM. All
subjects and objects are assumed to be strongly typed.
Strong typing requires that each subject or object is
created to be of a particular type which thereafter does
not change. The advantage of strong typing is that
it groups together subjects and objects into classes
(i.e., types) so that instances of the same type have
the same properties with respect to the authorization
scheme.

Strong typing is analogous to tranquility in the
Bell-LaPadula style of security models [2], whereby
security labels on subjects and objects cannot be
changed. The adverse consequences of unrestrained
non-tranquility are well known [4, 7, 8]. Similarly,
non-tranquility with respect to types has adverse con-
sequences for the safety problem [13].

TRM requires that a disjoint set of subject types,
TS, and object types, TO, be speci�ed in a scheme.
For example, we might have TS=fuser, security-

o�cerg and TO=fuser-�les, system-�lesg, with the
signi�cance of these types indicated by their names.

2.3 State Changing Commands

The protection state of the system is changed by
means of TRM commands. The security administra-
tor de�nes a �nite set of commands when the system
is speci�ed. There are three types of state changing
commands in the TRM, each of which is de�ned be-
low.

2.3.1 Transformation Commands

We reiterate that every command in TRM has a con-
dition which is on a single object and the primitive
operations comprising the command are only on that
object. In all the commands the last parameter in the
command is the object which is being manipulated,
and the �rst parameter is the subject who initiates
the command.

A transformation command has the following for-
mat:

command �(S1 : s1, S2 : s2, : : : , Sk : sk, O : o)
if predicate then

op1; op2; : : : ; opn
end

The �rst line of the command states that � is the
name of the command and S1; S2; : : : ; Sk; O are the
formal parameters. The formal parameters S1, S2,
: : : , Sk are subjects of types s1, s2, : : : , sk, respec-
tively. The only object formal parameter O is of type
o and is the last parameter in the command.

The second line of the command � is the predi-
cate and is called the condition of the command. The
predicate consists of a boolean expression composed
of the following terms connected by the usual boolean
operators (such as ^ and _):

ri 2 [S;O] or ri 62 [S;O]

Here ri is a right in R, S can be substituted with any
of the formal subject parameters S1; S2; : : : ; Sk, and
O is the sole object parameter. Simply speaking the
predicate tests for the presence and absence of some
rights for subjects on object O. Given below are some
examples of TRM predicates:

1. approve 2 [S1; O]^ prepare 62 [S2; O]

2. prepare 2 [S;O]^ assign 2 [S1; O]^
creator 62 [S;O]

3. own 2 [S;O]_ write 2 [S;O]

4. r1 2 [S1; O]^ (r2 2 [S1; O]_ r1 2 [S2; O])^
r3 2 [S2; O]^ r 2 [S3; O]



If the condition is omitted, the command is said to
be an unconditional command, otherwise it is said to
be a conditional command.

The third line of the command consisting of se-
quence of operations op1; op2; : : : ; opn is called the
body of �. Each opi is one of the following two primi-
tive operations:

� enter r into [S;O]

� delete r from [S;O]

Here again, r is a right in R, S can be substituted with
any of the formal subject parameters S1; S2; : : : ; Sk
and O is the sole object parameter. It is important to
note that all the operations enter or delete rights for
subjects on object O alone.

The enter operation enters a right r 2 R into an
existing cell of the access matrix. The contents of the
cell are treated as a set for this purpose, i.e., if the
right is already present, the cell is not changed. The
delete operation has the opposite e�ect of enter. It
(possibly) removes a right from a cell of the access
matrix. Since each cell is treated as a set, delete has
no e�ect if the deleted right does not already exist in
the cell.

A TRM command is invoked by substituting actual
parameters of the appropriate types for the formal pa-
rameters. The condition part of the command is eval-
uated with respect to its actual parameters. The body
is executed only if the condition evaluates to true.

Some examples of transformation commands are
given below.

command transfer-ownership (S1 : s; S2 : s;O : o)
if own 2 [S1; O] then
enter own in [S2; O]
delete own from [S1; O]

end

command grade (S1 : professor; S2 : student,
O : project)

if own 2 [S2; O]^ grade 2 [S1; O] then
enter good in [S2; O]
delete grade from [S1; O]

end

command issue-check (S1 : clerk;O : voucher)
if prepare 62 [S1; O]^ approve 62 [S1; O] then
enter issue in [S1; O]

end

The command transfer-ownership transfers the
ownership of a �le from one subject to another. In

the command grade, the professor gives right good to
the student's project after the student who owns the
project has requested the professor to grade it. In
command issue-check, a clerk gets an issue right for a
check only if he/she is not the one who prepared and
approved it.

2.3.2 Create Commands

A create command is an unconditional command. The
creator of an object gets some rights for the created
object like own, read, etc., as speci�ed in the body of
the command. No subject other than the creator will
get rights to the created object in the create command.
Subjects other than the creator can subsequently ac-
quire rights for the object via transformation com-
mands. In short, the e�ect of a create command is
to introduce a new column in the matrix with some
new rights for the subject who created it.

A typical create command is given below.

command create (S1 : s1, O : o)
create object O
enter own in [S1; O]

end

In the general case the body of the command may
enter any set of rights in the [S1; O] cell.

A create command is necessarily an unconditional
command as the command cannot check for rights on
an object which does not exist, and TRM commands
do not allow testing for rights on objects other than
the object which is being created. The create object
operation requires that the object being created have
an unique identity di�erent from all other objects.

2.3.3 Destroy Commands

A destroy command is, in general, a conditional com-
mand. The e�ect of a destroy command on the matrix
will be removal of the corresponding column from the
access matrix. A typical destroy command is given
below.

command destroy (S1 : s1, O : o)
if own 2 [S1; O] then
destroy object O

end

In this case the condition ensures that only the owner
can destroy the object. More generally, deletion can
be authorized by some combination of rights possessed
by the destroyer.



2.4 Summary of TRM

To summarize, a system is speci�ed in TRM by
de�ning the following �nite components.

1. A set of rights R.

2. A set of disjoint subject and object types TS and
TO respectively.

3. A set of state-changing transformation, creation
and destroy commands.

4. The initial state.

We say that the rights, types and commands de�ne the
system scheme. Note that once the system scheme is
speci�ed by the security administrator it remains �xed
thereafter for the life of the system. The system state,
however, changes with time.

2.5 The Unary Transformation Model
(UTRM)

The Unary Transformation Model is a simpler ver-
sion of TRM in which testing in a command can be on
only one cell of the matrix. A UTRM predicate con-
sists of a boolean expression composed of the following
terms:

ri 2 [Sj ; O] or ri 62 [Sj; O]

where ri is a right in R and Sj can be any one of the
formal subject parameters, but all the terms in the
expression must have the same Sj . In other words,
the predicate tests for the presence and absence of
rights for a single subject Sj on object O. Usually Sj
will be the �rst parameter in the command, since that
is the one who initiates the command.

UTRM generalizes the model called NMT (for Non-
Monotonic Transform) [14]. The transformation com-
mands in NMT, viz., grant transformation and in-
ternal transformation, are easily expressed as UTRM
commands (as they test for rights in one cell of the
matrix). NMT is a restricted version of UTRM as the
state changing commands in NMT test only one cell
and modify at most two cells.

As we will argue in section 4, UTRM, and therefore
NMT, cannot adequately express some simple policies
of practical interest.

2.6 The Binary Transformation Model
(BTRM)

The Binary Transformation Model is also a simpler
version of TRM in which testing in a command can

involve up to two cells of the matrix. A BTRM predi-
cate consists of a boolean expression composed of the
following terms:

ri 2 [Sj ; O] or ri 62 [Sj; O]

where ri is a right in R and Sj can be any one of
the formal subject parameters, but the expression can
have at most two di�erent Sj 's from the given pa-
rameters. In other words, the predicate tests for the
presence and absence of rights for at most two subjects
(on object O). One of the Sj 's will typically be the
�rst parameter which is the initiator of the command.

Sections 4 and 5 will discuss the relationship be-
tween the expressive power of TRM, UTRM, and
BTRM.

3 Examples

In this section we motivate the utility of TRM,
UTRM and BTRM. It has been shown in [12] that
monotonic transformation of access rights can imple-
ment rights ampli�cation [3], various kinds of copy

ags [6] and synergistic authorization [9]. It has fur-
ther been shown in [14], that NMT can express both
the concepts of transfer-only privileges and countdown
privileges. As these models are instances of UTRM,
the above concepts can also be expressed by UTRM,
BTRM and TRM.

In this section we take some other policies and see
how they can be speci�ed by TRM. In particular, we
show how the Bell-LaPadula model [2], transaction
control expressions [10], and a document release ex-
ample [14] are implemented by these models. Bell-
LaPadula is enforced by UTRM (and obviously can be
enforced by BTRM and TRM). BTRM expresses both
the document release and transaction control expres-
sion examples. The document release example does
not need testing for absence of rights, whereas trans-
action control expressions do need testing for absence
of rights.

3.1 BLP with Tranquility

The concept of mandatory access controls was in-
troduced by Bell and LaPadula [2]. They de�ned a
model, commonly called the Bell-LaPadula or the BLP
model.

The key idea in BLP is to augment discretionary
access controls with mandatory access controls, so as
to enforce information 
ow policies. BLP takes a two
step approach to access control. First there is a dis-
cretionary access matrix D, the contents of which can



be modi�ed by subjects (in some manner which we
do not need to specify). However, authorization in
D is not su�cient for an operation to be carried out.
In addition, the operation must also be authorized by
the mandatory access control policy, over which users
have no control.

The mandatory access control policy is expressed
in terms of security labels attached to subjects and
objects. A label on an object is called a security clas-
si�cation, while a label on a subject is called a security
clearance. Moreover, the classi�cations and clearances
once assigned cannot be changed. This assumption is
known as tranquility.

The speci�c mandatory access rules given in BLP
are as follows (where � signi�es the security label of
the indicated subject or object):

� Simple-Security Property: Subject s can read ob-
ject o only if �(s) � �(o).

� ?-Property: Subject s can write object o only if
�(s) � �(o).

We now see how the simple-security and ?-properties
are implemented in UTRM (actually NMT).

The labels of subjects are the types of the subjects
and labels on the objects are the types of the objects.
For example, the type of an object whose label is �i
is O�i, and the type of a subject whose label is �i is
S�i.

The simple-security property is enforced by giving
commands for each �i and �j , such that S�i � O�j
as shown below. Let the right r� represent the discre-
tionary permission for subject S to read object O. Let
r be the right authorizing S to actually perform the
read operation on O. The right r� is entered in accor-
dance with some discretionary which we do not specify
(it does not matter what this discretionary policy is).
If r� exists in [S;O], then r is entered into the matrix
(by BLP) to really give the ability for S to read O.

command read-ij(S : S�i; O : O�j)
if r� 2 [S;O] then

enter r in [S;O]
end

There is a read-ij command for each �i and �j such
that Si � Oj. If S�i 6� O�j , there is no correspond-
ing read-ij command, so in such cases r� cannot be
converted to r.

The ?-property is similarly enforced by giving com-
mands for each �i and �j such that S�i � O�j as
shown below. In the command write-ij the right w�

(which gives the discretionary permission to write un-
der some unspeci�ed discretionary policy) is tested for

presence in [S;O]. If w� exists in [S;O], then w is en-
tered into the matrix to really give the ability for S to
write on O.

command write-ij(S : S�i; O : O�j)
if w� 2 [S;O] then

enter write in [S;O]
end

In this case, if S�i 6� O�j , there is no write-ij com-
mand, so w� cannot be converted to w. Create and
Destroy are also constrained by the ?-property because
they modify the state of the object. They are omitted
here, but can be easily worked out by the interested
reader.

It appears that BLP with non-tranquility cannot
be enforced by TRM (although we do not have a for-
mal proof). This is due to the fact that the label of a
subject or an object is encoded as a type in the above
construction. As typing is strong, it is not possible
to change the type of a subject or an object. Other
means of encoding a subject label, such as in a special
column of the access matrix, requires testing in more
than one column, contrary to TRM. Similarly encod-
ing the label in one or more rows requires changing
the contents of multiple columns when the subject's
label is changed. This is not allowed in TRM.

3.2 Document Release Example

Next let us take the document release example dis-
cussed in [14]. In this section we show how this exam-
ple can be implemented by BTRM. The next section
argues informally why NMT and UTRM cannot ade-
quately enforce this example. (The document-release
solution given in [14] has a 
aw and does not solve the
problem correctly.)

In the document release problem, a scientist cre-
ates a document and hence gets own, read and write

rights to it. After preparing the document for publi-
cation, the scientist asks for a review from a patent
o�cer. In the process, the scientist loses the write

right to the document, since it is clearly undesirable
for a document to be edited during or after a (success-
ful) review. After review of the document, the patent
o�cer grants the scientist an approval. It is reasonable
to disallow further attempts to review the document
after an approval is granted. Thus the review right for
the document is lost as approval is granted. After ob-
taining approval from the patent o�cer, the scientist
can publish the document by getting a release right
for the document. (The problem discussed in [14] also
requires approval by a security o�cer prior to docu-



ment release, but that aspect of the problem is not
germane to the discussion here.)

To express this policy, we employ the following
rights and types:

� R = fown, read, write, review, pat-ok, pat-reject,
releaseg

� TS = fsci, pog, TO = fdocg

The own, read, and write rights have their usual
meaning. The other rights correspond to stages in the
approval process. The right review lets a patent o�cer
review a document; pat-ok is the right that is returned
if the patent review is satisfactory otherwise pat-reject
is returned; and release authorizes release of the doc-
ument. Subject types sci and po are abbreviations for
scientists and patent o�cers respectively, and there is
a single object type doc.

The following TRM (or more precisely BTRM)
commands enforce the desired policy:

command create-doc(S : sci; O : doc)
create object O
enter own in [S;O]
enter read in [S;O]
enter write in [S;O]

end

command rqst-review(S : sci; P : po;O : doc)
if own 2 [S;O]^ write 2 [S;O] then

enter review in [P;O]
delete write from [S;O]

end

command get-approval(S : sci; P : po;O : doc)
if review 2 [P;O] ^ own 2 [S;O] then

enter pat-ok in [S;O]
delete review from [P;O]

end

command get-rejection(S : sci; P : po;O : doc)
if review 2 [P;O] ^ own 2 [S;O] then

enter pat-reject in [S;O]
delete review from [P;O]

end

command release-doc(S : sci; O : doc)
if pat-ok 2 [S;O] then

enter release in [S;O]
delete pat-ok from [S;O]

end

command revise-doc(S : sci; O : doc)
if pat-reject 2 [S;O] then

enter write in [S;O]

delete pat-reject from [S;O]
end

The scientist creates a document using the com-
mand create-doc. After preparing the document the
scientist asks the patent o�cer to review it through
command rqst-review. The scientist gets approval to
release through command get-approval or a rejection
via get-rejection. In the former case the scientist
gets the release permission by means of the command
release-doc. In the latter case the scientist gets the
write permission by means of the command revise-doc
so as to revise the document if appropriate.

3.3 Transaction Control Expressions

We show how one of the examples of the transaction
control expressions given in [10] can be expressed in
BTRM. A transaction control expression (TCE) rep-
resents the potential history of an information object.
The classic example of a transient object is a voucher
that ultimately results in a check being issued. The
potential history of a voucher is represented by the
following transaction control expression [10].

prepare � clerk;
issue � clerk;

Each term in this expression has two parts. The �rst
part names a transaction. The transaction can be ex-
ecuted only by a user with the role speci�ed in the
second part. For simplicity in discussion assume each
user has only one role. So `prepare � clerk' speci-
�es that the prepare transaction can be executed on a
voucher only by a clerk. The semi-colon signi�es se-
quential application of the terms. That is, a clerk can
execute the issue transaction on a voucher only after a
clerk has executed the preceding prepare transaction.
Finally, separation of duties is speci�ed by requiring
that the users who execute di�erent transactions in
the transaction control expression all be distinct.

We now show how the given TCE is speci�ed in
BTRM. We make use of the following sets of types
and rights:

1. Rights R= fprepare; prepare0; issue; issue0g

2. Subject types TS= fclerkg, and object types
TO= fvoucherg

Rights are used as a means of keeping track of
the current location in the progression of a transac-
tion control expression. Undecorated rights, i.e., those
rights without a trailing apostrophe, are used to indi-
cate that current operation in the transaction control



expression is in progress. Decorated rights, i.e., those
rights with a trailing apostrophe, are used to indicate
that current operation in the transaction control ex-
pression is complete. The decorated rights are useful
in ensuring both separation and coincidence of duties.

The BTRM commands for the voucher transaction
control expression are given below. Each step of the
TCE is translated into two commands: the �rst indi-
cating that the step in question is in progress, and the
second indicating that the step has been completed.

(a) command begin-prepare-voucher (C : clerk;
V : voucher)

create subject V
enter prepare into [C; V ]

end

(a0) command complete-prepare-voucher

(C : clerk; V : voucher)
if prepare 2 [C; V ] then

delete prepare from [C; V ]
enter prepare0 into [C; V ]

end

(b) command begin-issue-check (C1 : clerk; C2 :
clerk; V : voucher)

if prepare02 [C2; V ]^ prepare0=2 [C1; V ] then
delete prepare0 from [C2; V ]
enter issue into [C1; V ]

end

(b0) command complete-issue-check (C : clerk; V :
voucher)

if issue2 [C; V ] then
delete issue from [C; V ]
enter issue0 into [C; V ]

end

To control progress of the TCE, the clerk in com-
mand (a) creates a voucher object and acquires the un-
decorated right prepare, indicating that the �rst oper-
ation of the TCE is in progress. Once the voucher has
been prepared command (a0) is invoked to indicate,
via the prepare0 right, that voucher preparation is com-
plete. Command (a0) can be invoked only by the same
clerk who invoked command (a) for a given voucher.
Command (a0) enters the prepare0 right in the [C; V ]
cell to record which clerk prepared the voucher. The
command (b) gives the named clerk the issue right
for the voucher, provided the voucher has been pre-
pared, and the speci�c clerk named in the command
does not hold the prepare0 right for the voucher. (This
is where the facility to test for absence of rights is cru-
cial.) Command (b0) subsequently indicates, via the

issue0 right, that the check has been issued. At this
point the voucher's TCE is complete and the voucher
can be archived. (The BTRM command for archival
has been omitted for simplicity.)

4 Expressive Power of UTRM

We now analyze the expressive power of TRM and
its variations. We �rst argue that UTRM is not su�-
ciently adequate to express the document release ex-
ample of the previous section. In the next section
we then show that BTRM is equivalent to TRM in
terms of expressive power. Hence BTRM can enforce
the document release example, and all the policies en-
forced by TRM.

Recall that UTRM is a restricted version of TRM.
It is the same as TRM except that the testing in a
command can only be on a single cell. Our conclusion
in this section is that it is di�cult to conveniently
enforce the document release example in UTRM.

Consider the document release example given in
the previous section. All the commands, except get-
approval and get-rejection shown below, are UTRM
commands. These two commands are BTRM com-
mand as they test two cells.

command get-approval(S : sci; P : po;O : doc)
if review 2 [P;O] ^ own 2 [S;O] then

enter pat-ok in [S;O]
delete review from [P;O]

end

command get-rejection(S : sci; P : po;O : doc)
if review 2 [P;O] ^ own 2 [S;O] then

enter pat-reject in [S;O]
delete review from [P;O]

end

The get-approval command tests for rights in two
cells of the matrix. More speci�cally, it tests if the
patent o�cer has the review right for the document
and if the scientist is the owner of the document. If
this condition is satis�ed the command gives the right,
pat-ok, to the owner.

If the get-approval command does not test for the
own right, then the command might give the pat-ok

right to some other scientist who is not a owner. The
system will then halt in an unwanted state as the sci-
entist who creates the document cannot get the release
right for it. This is due to the fact that the scientist
cannot request a second review prior to receiving a
response for the �rst one (this is achieved by condi-
tioning the request for review on presence of the write



right, which is then removed until a rejection is re-
ceived). At the same time, the patent o�cer can give
the pat-ok only once to one scientist (as the patent of-
�cer loses the review right in this process). Therefore
if the patent o�cer gives the right pat-ok to a scien-
tist who is not owner, the actual owner cannot get
the release right and the system halts in an unwanted
state.

If the get-approval command does not test for the
review right then a patent o�cer can grant pat-ok for
documents which the scientist can still write. More-
over, this can be done whether or not a request for
review has been made. The danger of this approach
is obvious. But then the required policy cannot be
conveniently enforced by UTRM. Note that similar
considerations apply to the get-rejection command.

In short, to enforce the document release example,
it appears there is a need for commandswhich tests for
two cells of the matrix. Since UTRM (and NMT lack)
such commands, they cannot conveniently express the
document release example.

The foregoing discussion argues informally that
UTRM is inadequate for the document release exam-
ple. In our further work [16], we have actually proved
the theoretical equivalence of UTRM and TRM, which
indicates that UTRM has the expressive power to en-
force this example. However, our construction used
in proving the theoretical equivalence of UTRM and
TRM requires commands with all subjects as param-
eters, and is not practically viable.

5 Expressive Power of BTRM

In this section, we establish the relationship be-
tween the expressive power of TRM and BTRM. Re-
call that BTRM is a restricted version of TRM. Hence
to prove equivalence, we need to show that for ev-
ery TRM scheme, there exists an equivalent BTRM
scheme. We will show how any given TRM command
can be simulated by multiple BTRM commands.

The Boolean condition of any TRM command, say
Y , can be converted into the familiar disjunctive nor-
mal form which consists of a disjunction (i.e., _) of
minterms. Each minterm is a conjunction (i.e., ^) of
primitive terms of the form ri 2 [Si; O] or ri 62 [Si; O].
The command Y can then be factored into multiple
commands, each of which has one minterm as its con-
dition and the original body of Y as its body.

Therefore, to show how an arbitrary TRM com-
mand can be simulated, it is enough to consider a
TRM commandwhich has the format of the command
X given below.

command X (S1 : s1; S2 : s2; : : : ; Sn : sn; O : o)
if P1 ^ P2 : : :^ Pnthen

operations in [S1; O]
operations in [S2; O]
: : :
operations in [Sn; O]

end

In the above command, each Pi is itself composed
of terms rj 2 [Si; O] or rj 62 [Si; O], where rj 2 R.
Intuitively Pi tests for the presence of, and absence
of some rights in the single cell [Si; O]. Some Pi's in
the condition may be missing (or empty), in which
case they are equivalent to the logical constant true.
In the body of command X, the phrase \operations
in [Si; O]" denotes a sequence of enter, delete, or no
operations in the [Si; O] cell. Note that the types
s1; s2; : : : ; sn need not all be distinct. The formal pa-
rameters S1; S2; : : : ; Sn must of course be distinct, but
the actual parameters used on a particular invocation
of this command may have repeated parameters as al-
lowed by parameter types. (These are the usual con-
ventions in most programming languages.)

We now consider how the TRM commandX can be
simulated by several BTRM commands. As X tests
multiple cells, it is obvious that the simulation of X
cannot be done by a single BTRM command. Since
BTRM can test for only two cells, the simulation of
X can be done by multiple commands in the BTRM
system. The key to doing this successfully is to pre-
vent other BTRM commands from interfering with the
simulation of the given TRM command, X. The sim-
plest way to do this is to ensure that TRM commands
can be executed in the BTRM simulation only one at
a time. To do this we need to synchronize the ex-
ecution of successive TRM commands in the BTRM
simulation.

This synchronization is achieved by introducing an
extra subject called LOCK of type lock, and an ex-
tra right, L. The role of LOCK is to sequentialize
the execution of simulation of TRM commands in the
BTRM system. The type lock is assumed, without loss
of generality, to be distinct from any type in the given
TRM system. Thus the initial state of the BTRM
system consists of the initial state of the given TRM
system augmented with a subject LOCK and with the
right L, in all cells of the row represented by LOCK.
(For objects created subsequently, the L right can be
entered by a UTRM command invoked immediately
after the creation.)

The BTRM simulation ofX proceeds in �ve phases,
as illustrated in �gures 1 and 2. In these �gures we
show only the relevant portion of the access matrix,



O
LOCK X
S1 1
S2 2
: : :
Sn n

O
LOCK X; T1; T2 : : : ; Tn
S1 1
S2 2
: : :
Sn n

(a) End of phase I (b) End of phase II

O
LOCK TX
S1 1
S2 2
: : :
Sn n

O
LOCK TX; 1; 2; : : :; n
S1 operations
S2 operations
: : :
Sn operations

(c) End of phase III (d) End of phase IV

Figure 1: BTRM simulation of the authorized TRM
command X

O
LOCK FX
S1 1
S2 2
: : :
Sn n

O
LOCK FX; 1; 2; : : : ; n
S1
S2

Sn

(a) End of phase III (b) End of phase IV

Figure 2: BTRM simulation of unauthorized TRM
command X

and only those rights introduced speci�cally for the
BTRM simulation. Since the focus is on a single object
the matrix actually reduces to a single column for that
object.

The �rst phase is to make sure that no other BTRM
command corresponding to another TRM command
can execute on object O until the simulation of X is
complete. The second phase is where each predicate
Pi is tested, and in the third phase the conjunction of
the Pi's is tested. The fourth phase is where the body
of X is executed (provided the third phase evaluates
to true). The �fth and �nal phase makes sure that
all the bookkeeping rights used in the simulation are
removed from [LOCK;O], and also enters the right L
back in [LOCK;O] to indicate that the simulation of
another TRM command can now begin. Each of the
phases and the commands used are explained brie
y
below.

The BTRM command I-X-invocation corresponds
to phase I. It deletes the right L from [LOCK;O],
to make sure that no other BTRM command (sim-
ulating some other TRM command) can execute on
object O until the simulation of X is complete. It
ensures that the actual parameters of X are used in
the simulation by entering rights 1; 2: : : : ; n in cells
[S1; O]; [S2; O]; : : : ; [Sn; O] respectively. It also enters
the right X in [LOCK;O] to indicate that the simula-
tion of the command is currently in progress. The ma-
trix, after the execution of command I-X-invocation

resembles �gure 1(a). The Phase I BTRM command
is given below.

command I-X-invocation (S1 : s1; S2 : s2; : : :,
Sn : sn; LOCK : lock;O : o)

if L 2 [LOCK;O] then
enter 1 in [S1; O]
enter 2 in [S2; O]
: : :
enter n in [Sn; O]
enter X in [LOCK;O]
delete L from [LOCK;O]

end

In phase II, each command in II-i-X-success tests
if the Pi part of the condition of X is true. If so,
the command enters a right Ti in [LOCK;O] to indi-
cate that Pi is true. In phase II, if all the commands
successfully test for their predicate, then the matrix
after phase II will resemble �gure 1(b). Similarly each
command in II-i-X-failure tests if Pi is false, and if so,
enters the right Fi in [LOCK;O] to indicate that Pi

is false. Phase II commands are given below. There is
a di�erent II-i-X-success and II-i-X-failure command
for each value of i = 1 : : :n.

command II-i-X-success (LOCK : lock; Si :
si; O : o)

if X 2 [LOCK;O]^ i 2 [Si; O]^ Pi then

enter Ti in [LOCK;O]
end

command II-i-X-failure(LOCK : lock; Si :
si; O : o)

if X 2 [LOCK;O]^ i 2 [Si; O]^ :Pi then

enter Fi in [LOCK;O]
end

Note that these are BTRM commands because testing
Pi only involves tests in the [Si; O] cell.

In phase III, the command III-X-complete-testing

tests if the condition of X is true by testing for all



the rights T1; T2 : : : ; Tn in [LOCK;O]. If they all ex-
ist, it then deletes all rights R1 from [LOCK;O] and
enters right TX. TX is entered to indicate that the
simulation of the body of X can now begin as the
condition of X is true. The matrix after execution
of III-X-complete-success resembles �gure 1(c). Simi-
larly in phase III, the command III-X-complete-failure
tests if any one of F1; F2; : : : ; Fn is in [LOCK;O] and
if so, it then deletes all rights R from [LOCK;O] and
enters right FX. FX is entered to indicate that the
condition of X is false and hence the simulation of X
can no longer continue. If command III-X-complete-

failure executes in phase III, the matrix resembles �g-
ure 2(a). It is important to note that in phase III only
one of III-X-complete-success or III-X-complete-failure
can execute. Phase III commands are given below.

command III-X-complete-testing (LOCK :
lock;O : o)

if X 2 [LOCK;O]^ T1 2 [LOCK;O]^ T2 2
[LOCK;O] : : :^ Tn 2 [LOCK;O] then

delete R from [LOCK;O]
enter TX in [LOCK;O]

end

command III-X-complete-failure (LOCK :
lock;O : o)

if X 2 [LOCK;O]^ (F1 2 [LOCK;O]_ F2

2 [LOCK;O] : : :_ Fn 2 [LOCK;O]) then
delete R from [LOCK;O]
enter FX in [LOCK;O]

end

In phase IV, each command in IV-i-X-operations

checks for TX in [LOCK;O], and if found performs
operations in cell [Si; O]. It also enters i in [LOCK;O]
to indicate that operations in [Si; O] have been done.
If the testing of X is successful, the matrix at the end
of phase IV resembles �gure 1(d). Similarly, if the
condition of X fails, then each command represented
by IV-i-X-garbage-removal removes the right i in cell
[Si; O] and it also enters the right i in [LOCK;O] to
indicate the removal of i. If the testing of X is a fail-
ure, the matrix at the end of phase IV resembles �gure
2(b). The commands in phase IV are given below.

command IV-i-X-operations (LOCK : lock; Si :
si; O : o)

if TX 2 [LOCK;O]^ i 2 [Si; O] then

1Strictly speaking, the command needs to remove
fT1; : : : ; Tng from [LOCK;O]. Since it does no harm to re-
move rights which are not present, for convenience we delete all
rights R. This is similarly done with other commands in phases
III and V.

delete i from [Si; O]
operations in [Si; O]
enter i in [LOCK;O]

end

command IV-i-X-garbage-removal (LOCK :
lock; Si : si; O : o)

if FX 2 [LOCK;O]^ i 2 [Si; O] then
delete i from [Si; O]
enter i in [LOCK;O]

end

Finally, in phase V, command V-X-done checks
to see if all operations of phase IV have been com-
pleted. This is done by checking for the presence of
all rights 1; 2; : : : ; n in [LOCK;O]. If all the rights are
in [LOCK;O], this command clears the [LOCK;O]
cell and then enters right L in [LOCK;O] indicating
that the simulation of some other TRM command on
object O can now begin. The Phase V command is
given below.

command V-X-done (LOCK : lock;O : o)
if 1 2 [LOCK;O]^ 2 2 [LOCK;O] : : :^ n 2

[LOCK;O] then
delete R from [LOCK;O]
enter L in [LOCK;O]

end

In the TRM system, commandX is initiated by S1,
the �rst parameter. In the BTRM simulationofX, the
subject S1 (which initiates X) initiates the only phase
I command (I-X-invocation), and all other commands
simulatingX are initiated by LOCK as a result. This
is a reasonable assumption as LOCK cannot initiate
any command unless S1 initiates I-X-invocation. This
can be literally taken as S1 authorizing LOCK to ini-
tiate all other commands in the BTRM simulation.

In our construction all BTRM commands except
the one in phase I have a maximum of three param-
eters. The command in phase I has more than three
parameters. This command can be easily simulated
by multiple BTRM commands, each of which have a
maximum of three parameters. Hence we also con-
clude that TRM is equivalent to BTRM with only
three parameters.

A proof sketch for the correctness of the construc-
tion is given below.

Theorem 1 For every TRM system �1, the construc-

tion outlined above produces an equivalent BTRM sys-

tem �2.

Proof Sketch: It is easy to see that any reachable
state in �1 can be reached in �2 by simulating each



TRM command by BTRM commands, as discussed
above. Conversely any reachable state in �2, with
L 2 [LOCK;O], will correspond to a reachable state
in �1. A reachable state in �2, with L =2 [LOCK;O]
and which passes the testing phase, will correspond to
a state in �1 where one TRM command has been par-
tially completed. A state in �2, with L =2 [LOCK;O]
and which fails the testing phase, will then lead �2 to a
previous state where L 2 [LOCK;O], which is reach-
able in �1. Hence the above construction proves the
equivalence of TRM and BTRM. A formal inductive
proof can be given, but is omitted for lack of space.

6 Conclusion

Transformation models provide a powerful frame-
work for implementingnon-discretionary security poli-
cies in a simple client-server architecture. In this
paper we have introduced this family of access con-
trol models, and have analyzed their expressive
power. In particular, we have de�ned three mod-
els: the Transformation Model (TRM), the Unary-
Transformation Model (UTRM), and the Binary-
Transformation Model (BTRM). These models gener-
alize the Monotonic Transform Model of Sandhu, and
its Non-Monotonic extension (NMT). We have then
shown the utility of these models by expressing some
practical policies using them. We have argued that
models which only test for a single cell cannot ade-
quately implement simple policies like the document
release example. We have then shown that testing for
two cells has the same expressive power as testing for
multiple cells. Hence, our conclusion is that in prac-
tical systems it su�ces to have models which test for
two cells.

References

[1] Ammann, P.E. and Sandhu, R.S. \Implementing
Transaction Control Expressions by Checking for
Absence of Access Rights." Proc. Eighth Annual

Computer Security Applications Conference, San
Antonio, Texas, 131-140, December 1992.

[2] Bell, D.E. and LaPadula, L.J. \Secure Com-
puter Systems: Uni�ed Exposition and Multics
Interpretation." MTR-2997, Mitre, Bedford, Mas-
sachusetts (1975).

[3] Cohen, E. and Je�erson, D. \Protection in the Hy-
dra Operating System." 5th ACM Symposium on

Operating systems Principles, 141-160 (1975).

[4] Denning, D.E. \A Lattice Model of Secure
Information Flow." Communications of ACM

19(5):236-243 (1976).

[5] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D.
\Protection in Operating Systems." Communica-

tions of ACM 19(8), 1976, pages 461-471.

[6] Lampson, B.W. \Protection." 5th Princeton Sym-

posium on Information Science and Systems, 437-
443 (1971). Reprinted in ACM Operating Systems

Review 8(1):18-24 (1974).

[7] McLean, J. \A Comment on the `Basic Security
Theorem' of Bell and LaPadula." Information Pro-
cessing Letters 20(2):67-70 (1985).

[8] McLean, J. \Specifying and Modeling Computer
Security." IEEE Computer 23(1):9-16 (1990).

[9] Minsky, N. \Synergistic Authorization in Database
Systems." 7th International Conference on Very

Large Data Bases, 543-552 (1981).

[10] Sandhu, R.S. \Transaction Control Expressions
for Separation of Duties." Proc. Fourth Aerospace

Computer Security Applications Conference, Or-
lando, Florida, December 1988, pages 282-286.

[11] Sandhu, R.S. \The Schematic Protection Model:
its de�nition and analysis for acyclic attenuating
schemes." JACM. 35,2,(April 1988). 404-432.

[12] Sandhu, R.S. \Transformation of Access Rights."
Proc. IEEE Symposium on Security and Privacy,
Oakland, California, May 1989, pages 259-268.

[13] Sandhu, R.S. \The Typed Access Matrix Model"
IEEE Symposium on Research in Security and Pri-

vacy, Oakland, CA. 1992, pages 122-136.

[14] Sandhu, R.S. and Suri, G.S. \Non-monotonic
Transformations of Access Rights." Proc. IEEE

Symposium on Research in Security and Privacy,
Oakland, California, May 1992, pages 148-161.

[15] Sandhu, R.S. and Srinivas Ganta. \On Testing
for Absence of Rights in Access Control Models."
Proc. The Computer Security Foundations Work-

shop VI, Franconia, NH, June 1993, pages 109-118.

[16] Sandhu, R.S. and Srinivas Ganta. \On the
Expressive Power of the Unary Transformation
Model." GMU Technical Report ISSE-TR-94-101.


