
Proceedings of IEEE Symposium on Security and Privacy, Oakland, California, May 4-6, 1992, pages 122-136.

The Typed Access Matrix Model

Ravi S. Sandhu

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030

Abstract

The access matrix model as formalized by Harri-
son, Ruzzo, and Ullman (HRU) has broad expressive
power. Unfortunately, HRU has weak safety proper-
ties (i.e., the determination of whether or not a given
subject can ever acquire access to a given object).
Most security policies of practical interest fall into the
undecidable cases of HRU. This is true even for mono-
tonic policies (i.e., where access rights can be deleted
only if the deletion is itself reversible). In this paper
we de�ne the typed access matrix (TAM) model by in-
troducing strong typing into HRU (i.e., each subject
or object is created to be of a particular type which
thereafter does not change). We prove that monotonic
TAM (MTAM) has strong safety properties similar
to Sandhu's Schematic Protection Model. Safety in
MTAM's decidable case is, however, NP-hard. We de-
velop a model called ternary MTAM which has poly-
nomial safety for its decidable case, and which nev-
ertheless retains the full expressive power of MTAM.
There is compelling evidence that the decidable safety
cases of ternary MTAM are quite adequate for mod-
eling practical monotonic security policies.

1 Introduction

The need for access controls arises in any computer
system that provides for controlled sharing of informa-
tion and other resources among multiple users. Access
control models (also called protection models or secu-
rity models) provide a formalism and framework for
specifying, analyzing and implementing security poli-
cies in multi-user systems. These models are typically
de�ned in terms of the well-known abstractions of sub-
jects, objects and access rights with which we assume
the reader is familiar.

Access controls are useful to the extent they meet
the user community's needs. They need to be exi-
ble so that individual users can specify access of other
users to the objects they control. At the same time the
discretionary power of individual users must be con-
strained to meet the overall objectives and policies of
an organization. For example, members of a project
team might be allowed to freely share project docu-
ments with each other, but only the project leader is
authorized to allow non-members to read project doc-
uments.

The protection state of a system is de�ned by the
privileges� possessed by the individual subjects. Here-
after, we understand state to mean protection state.
Once the initial state of a system has been estab-
lished, the state evolves by the autonomous activity
of subjects. A security model provides a framework
for specifying the dynamics of the protection state.
This is usually done by stating rules which prescribe
the authorization for making incremental changes in
the state. We call such a collection of rules an autho-

rization scheme, often abbreviated simply as scheme.
To understand the implications of a scheme it must be
possible to determine the cumulative e�ect of autho-
rized incremental changes in the protection state. The
incremental state changes authorized by a scheme may
appear innocent enough in isolation, although their
cumulative e�ect turns out to be undesirable. So for a
given initial state and authorization scheme, we need
to characterize protection states that are reachable.

This problem was �rst identi�ed in [13] where it
is called the safety problem. In its most basic form,
the safety question for access control asks: is there
a reachable state in which a particular subject pos-

�We view \privilege" as an unde�ned primitive concept. For
the most part, privileges can be treated as synonymous with
access rights. However, there are privileges such as security
level, type or role, which are usually represented as attributes
of subjects and objects rather than as access rights.

sesses a particular privilege for a speci�c object? It is
the fundamental question which a access control model
must confront. Since subjects are usually authorized
to create new subjects and objects, the system is un-
bounded; and it is not certain that such analysis will
be decidable, let alone tractable, without sacri�cing
generality.

There is an essential conict between the expressive
power of an access control model and tractability of
safety analysis. The access matrix model as formal-
ized by Harrison, Ruzzo, and Ullman (HRU) [13] has
very broad expressive power. Unfortunately, HRU also
has extremely weak safety properties. Safety is unde-
cidable for most policies of practical interest, even in
the monotonic version of HRU [14] (which only allows
revocation which is itself reversible).

The safety problem is closely related to the so-
called fundamental aw of discretionary access control
(DAC). DAC is vulnerable to Trojan Horses, partly
because Trojan Horse laden programs can surrepti-
tiously modify the protection state without explicit
instruction from the users. These Trojan Horses are,
however, constrained by the authorization scheme.y

They can modify the protection state only by using
commands which are authorized in the current state.
Consequently, the Trojan Horse vulnerability of DAC
requires that we assume the worst case regarding prop-
agation of access rights in a system. What we need
therefore is a model with strong safety properties and
broad expressive power. The negative results of HRU
have led many researchers to believe that such a model
does not exist.

There are two principal contributions in this pa-
per. First, there is the demonstration that strong
typing is the key concept for achieving strong safety
properties. Strong typing requires that each subject
or object is created to be of a particular type which
thereafter does not change.z In this paper we de�ne
the typed access matrix (TAM) model by introducing
the notion of strong typing into HRU. We prove that
monotonic TAM (MTAM) has strong safety proper-
ties similar to those of Sandhu's Schematic Protection
Model [21, 22], and its recent extension by Ammann
and Sandhu to Extended SPM (ESPM) [2, 3, 4].

Second we show how safety can be made tractable,

yWe assume that the authorization scheme is enforced by a
high-assurance reference monitor. If the reference monitor can
be bypassed there is, of course, no basis for security.

zStrong typing is analogous (but not identical) to tranquil-
ity in the Bell-LaPadula style of security models [6], whereby
security labels on subjects and objects cannot be changed. The
adverse consequences of unrestrained non-tranquility are well
known [11, 19, 20].

essentially without loss of expressive power, by using
the concepts of local authorization and multi-parent
creation from SPM and ESPM. Speci�cally we de�ne
a simpli�ed version of MTAM, called ternary MTAM,
for which safety has polynomial complexity (for its de-
cidable cases). This is in contrast to MTAM in which
safety is NP-hard (for its decidable cases). At the
same time we show that ternary MTAM is formally
equivalent in expressive power to MTAM. (Of course,
the decidable cases of ternary MTAM and MTAM can-
not be co-extensive without implyingP=NP.) There is
compelling evidence that the decidable safety case of
ternary MTAM is quite adequate for expressing prac-
tical monotonic security policies.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief historical review on the topic of
balancing safety versus expressive power in security
models. Section 3 gives a formal de�nition and in-
tuitive explanation of the TAM model and its mono-
tonic version MTAM. In Section 4 we show how the
originator-control policy for military documents has a
natural expression in MTAM by means of multi-parent
creation. Section 5 de�nes a canonical form for TAM
systems and proves that every TAM system has an
equivalent speci�cation in this form. Section 6 estab-
lishes safety results for MTAM which are very similar
to those for SPM and ESPM. It is shown that safety
in MTAM's decidable case is NP-hard with respect to
the initial size of the access matrix. In Section 7 we
develop a model called ternary MTAM which has poly-
nomial safety for its decidable case, and which never-
theless retains the full expressive power of MTAM.
Notably, the decidable safety cases of ternary MTAM
are quite adequate for modeling practical monotonic
security policies. Section 8 concludes the paper.

2 Background

Safety analysis issues were �rst formalized by Har-
rison, Ruzzo and Ullman [13] in context of the well-
known access matrix model [15]. The resulting model
is commonly known as HRU. The matrix has a row
for each subject and a column for object. Subjects
are also considered to be objects, and thereby have a
row and a column in the access matrix. The [X;Y]
cell of the matrix contains symbols called rights which
authorize subject X to perform operations on object
Y . An authorization scheme in HRU is de�ned by a
set of commands. Each command has a condition part
and a body. The condition speci�es the rights that are
required to exist in the matrix before the body can be
executed for its actual arguments. The body consists

of a sequence of primitive operations. The primitive
operations enter or delete a right from a cell of the
matrix, create a new row or column, or destroy an
existing row or column.

In the general HRU setting safety is undecid-
able [13]. HRU does have decidable (albeit NP-
complete) safety for the mono-operational case, where
the condition part of each command is allowed to be
arbitrarily complex but the body can only consist of
a single primitive operation. The mono-operational
assumption has the unfortunate e�ect of making cre-
ation in HRU essentially useless. A single primi-
tive operation in HRU can create only an empty row
and/or column in the matrix. This new row/column
is not attached to its creator in mono-operational sys-
tems. There is therefore no way of distinguishing the
children of one parent from that of another!

A restriction on expressive power that can have sub-
stantial bene�ts for safety analysis is that of mono-
tonicity. Monotonic models do not allow the deletion
of access privileges. It must be noted that a strictly
monotonic model is too restrictive to be of much prac-
tical use, since the ability to delete access privileges is
an important requirement. We are really interested in
models which can be reduced to monotonic models for
purpose of safety analysis. In particular, we can ignore
deletion of an access privilege p whenever the deletion
can itself be undone by regranting p (see Section 4 for
an example). This is by far the most common form of
revocation, and it is indeed fortunate that such revo-
cation can be ignored for the purposes of worst case
safety analysis.

Unfortunately monotonicity does not seem to help
with HRU. Speci�cally, safety in HRU is known to be
decidable for mono-conditional monotonic commands
(i.e., commands whose condition part has only one
term) but is undecidable even for bi-conditional mono-
tonic commands (i.e., commands whose condition part
has exactly two terms) [14]. In practical terms, mono-
conditional commands can only test one cell of the
access matrix whereas bi-conditional commands can
test two cells. There are numerous security policies
which need bi-conditional, and more generally, multi-
conditional commands. So the HRU demarcation of
decidable versus undecidable safety, places many prac-
tically useful systems on the undecidable side of this
demarcation. To summarize, there does not appear
to be any natural and useful special case of HRU for
which safety is e�ciently decidable. The very weak as-
sumptions from which undecidability follows are most
disappointing.

A number of protection models were developed in

response to these negative results of HRU. The take-
grant model was introduced by Lipton and Snyder [16]
and analyzed in considerable detail by a number of
authors [7, 8, 9, 17, 25, 26]. The principal insights ob-
tained from the take-grant work can be summarized
as follows. Firstly, take-grant is a simple model with
linear time algorithms for safety. Yet it falls outside
the known decidable classes of HRU (because it is
bi-conditional and multi-operational). Secondly, the
consequence of the take-grant rules, i.e., symmetry of
access rights propagation, is not immediately obvious.
Small changes in the rules lead to dramatically di�er-
ent behavior [9, 17]. Thirdly, it is important to analyze
the model under di�erent assumptions regarding what
subjects can and cannot do [7, 8, 26].

The take-grant model was deliberately designed to
be of limited expressive power, so that it would not
exhibit the undecidable safety of HRU. There is there-
fore a substantial gap in expressive power between
take-grant and HRU. Sandhu's Schematic Protection
Model (SPM) [21] was developed to �ll the gap in
expressive power between take-grant and HRU, while
sustaining e�cient safety analysis.

The key notion introduced in SPM is that of se-
curity types. The intuition is that all instances of a
security type are treated uniformly by the authoriza-
tion scheme. Hereafter, we understand type to mean
security type. Every SPM entity (i.e., subject or ob-
ject) is created to be a particular type, which there-
after does not change. In other words SPM requires
strong typing of subjects and objects.

SPM authorizes creation by means of a binary can-
create relation cc on types. Subjects of type u can cre-
ate an object of type v if and only if (u; v) 2 cc. Visu-
alize the cc relation as a directed graph, called the cc-
graph, whose vertices are the types with an edge from
u to v if and only if (u; v) 2 cc. SPM has decidable
safety provided the cc-graph is acyclic [21], whereas
with arbitrary cycles in cc safety is undecidable [22].
Moreover, in the special case of loops (i.e., cycles of
length one which allow a subject to create subjects of
its own type) safety remains decidable if an additional
requirement known as attenuating is imposed. Useful
security policies do not appear to require arbitrary cy-
cles in the cc-graph. Acyclic cc, or at most attenuating
loops in cc, appear to satisfy most requirements [23].
Thus, SPM has a remarkably useful demarcation be-
tween its decidable and undecidable cases for safety.
This is in sharp contrast to the HRU model which
requires multi-conditional and multi-operational com-
mands for most systems of interest, placing them in
the undecidable case of HRU.

Despite SPM's demonstrated expressive power [23],
attempts to show the equivalence of SPM to mono-
tonic HRU were not successful. This led to the devel-
opment of Extended SPM (ESPM) by Ammann and
Sandhu [2, 4]. ESPM generalizes the conventional sin-
gle parent creation operation of SPM, to allow multi-
ple parents for a child. ESPM is formally equivalent
to monotonic HRU [2, 4], while it retains the posi-
tive safety results of SPM [3, 4]. Ammann, Lipton
and Sandhu have recently shown that in monotonic
models multi-parent creation is strictly more power-
ful than single-parent creation [5]. This completes our
historical review.

3 The TAM and MTAM Models

In this Section we de�ne the typed access matrix
(TAM) model, and its monotonic version (MTAM).
TAM is de�ned by introducing strong typing into
HRU. Here, we directly give a de�nition of TAM, in-
dicating along the way how HRU is a special case of
TAM.

3.1 Basic De�nitions

The �rst step in de�ning a TAM system is to de�ne
the access rights and types as follows.

De�nition 1 There is a �nite set of access rights de-
noted by R. 2

De�nition 2 There is a �nite set of object types (or
simply types) denoted by T . There is a set of subject
types TS , TS � T . 2

The types and rights are de�ned when a system is ini-
tialized and thereafter T and R remain constant. For
example, T = fuser; so; fileg speci�es there are three
types, viz., user, security-o�cer and �le, with, say,
TS = fuser; sog. A typical example of rights would
be R = fr; w; e; og respectively denoting read, write,
execute and own. We emphasize that the types and
rights are speci�ed as part of the system de�nition,
and are not prede�ned in the model.

TAM represents the distribution of rights in the
system by an access matrix. The matrix has a row
and a column for each subject and a column for each
object. The [X;Y] cell contains rights which subject
X possesses for object Y . This is formalized below.

De�nition 3 The protection state (or simply state)
of a system is the four-tuple (SUB;OBJ; t; AM) in-
terpreted as follows:

� SUB is the set of subjects.

� OBJ is the set of objects, SUB � OBJ . We
say that members of OBJ � SUB are the pure

objects, i.e., objects which are not also subjects.
Pure objects only have a column and no row in
the access matrix.

� t : OBJ ! T , is the type function which gives
the type of every object. It is the case that t :
SUB ! TS and t : (OBJ � SUB) ! (T � TS),
i.e., the type function maps subjects to subject
types and pure objects to pure object types.

� AM is the access matrix, with a row for every
subject in SUB and a column for every object in
OBJ . We denote the contents of the (S;O) cell
of AM by [S;O]. We have [S;O] � R.

When we need to explicitly identify the state, we will
do so by means of a superscript, i.e., SUBk , OBJk,
tk, AMk and [S;O]k all refer to state k. 2

HRU is a special case of TAM in which there only
two types, say, subject and object. Every subject
in SUB is of type subject and every pure object in
(OBJ � SUB) is of type object.x

3.2 TAM Commands

The rights in the access matrix cells serve two pur-
poses. Firstly, presence of a right, such as r, in [X;Y]
may authorize X to perform, say, the read operation
on Y . Secondly, presence of a right, say o, in [X;Y]
may authorize X to perform some operation which
changes the access matrix, e.g., by entering r in [Z; Y].
In other words, X as the owner of Y can change the
matrix so that Z can read Y . The focus of TAM is on
this second purpose of rights, i.e., the authorization
by which the access matrix itself gets changed.

The protection state of the system is changed by
means of commands de�ned as follows.

De�nition 4 A TAM command has the format
shown in Table 1 where: � is the name of the com-
mand; X1, X2, : : : , Xk are formal parameters whose
types are respectively t1, t2, : : : , tk; r1, r2, : : : , rm
are rights; and s1, s2, : : : , sm and o1, o2, : : : , om are
integers between 1 and k. Each opi is one of the prim-

itive operations shown in Table 2, in which r 2 R and

xStrictly speaking, the situation is slightly more subtle since
HRU parameters are not typed, i.e., some formal parameters in
HRU can be substituted by subjects or pure objects. This can
be simulated in TAM by having multiple versions of the same
command, so as to allow for all possible type combinations of
formal parameters.

command �(X1 : t1, X2 : t2, : : : , Xk : tk)
if r1 2 [Xs1 ; Xo1] ^ r2 2 [Xs2 ; Xo2]^

: : :^ rm 2 [Xsm ; Xom]
then op1; op2; : : : ; opn

end

(a) Conditional Commands

command �(X1 : t1, X2 : t2, : : : , Xk : tk)
op1; op2; : : : ; opn

end

(b) Unconditional Commands

Table 1: TAM Commands

s and o are integers between 1 and k. The meaning of
each primitive operation is formally given in Table 3.

2

The predicate following the if part of the command
is called the condition of �, and the sequence of op-
erations op1; op2; : : : ; opn is called the body of �. If
the condition is omitted the command is said to be an
unconditional command, otherwise it is said to be a
conditional command. Examples of TAM commands
will be discussed in Section 4.

A TAM command is invoked by substituting actual
parameters of the appropriate types for the formal pa-
rameters. TAM makes no statement about who initi-
ates the command. This is consistent with worst-case
safety analysis. The condition part of the command is
evaluated with respect to its actual parameters. The
body is executed only if the condition evaluates to
true (and the pre-conditions for all create and de-

stroy operations are satis�ed). The commands are
executed serially, i.e., there is no interleaving of op-
erations from di�erent commands. (Alternately, we
can assume an interleaved model of execution with a
serializability requirement.)

3.3 TAM Primitive Operations

There are six primitive operations in TAM. They
are formally de�ned in Table 3, where the states
before and after the operation are denoted as
(SUB;OBJ; t; AM) and (SUB0; OBJ 0; t0; AM 0) re-
spectively.

The enter operation enters a right into an existing
cell of the access matrix. As described in Table 3, this

enter r into [Xs; Xo]
create subject Xs of type ts
create object Xo of type to

(a) Monotonic Operations

delete r from [Xs; Xo]
destroy subject Xs

destroy object Xo

(b) Non-Monotonic Operations

Table 2: TAM Primitive Operations

operation leaves the set of objects, subjects and their
types unchanged. It also leaves all cells except one
unchanged. In the one cell that is (possibly) changed
a single right is entered. The contents of each cell
are treated as a set for this purpose, i.e., if the right
is already present the cell is not changed. The enter
operation is said to be monotonic because it only adds
and does not remove from the access matrix. The
delete operation has the opposite e�ect of enter. It
(possibly) removes a right from a cell of the access
matrix. Since each cell is treated as a set, delete has
no e�ect if the deleted right does not already exist
in the cell. Because delete removes from the access
matrix it is said to a non-monotonic operation.

The create subject and destroy subject op-
erations make up a similar monotonic versus non-
monotonic pair. The create subject operation re-
quires that the subject being created does not previ-
ously exist. The destroy subject operation similarly
requires that the subject being destroyed should exist.
Note that if the pre-condition for any create or de-
stroy operation in the body is false, the entire TAM
command has no e�ect. This requirement can be eas-
ily checked.

The create subject operation introduces an
empty row and column for the newly created sub-
ject into the access matrix. The destroy subject

operation removes the row and column for the de-
stroyed subject from the access matrix. The create
object and destroy object operations are much like
their subject counterparts, except that they work on
a column-only basis.{

{One could argue that create object and destroy object

should properly be called create pure object and destroy

pure object. We have followed the original terminologyof [13].

1. enter r into [Xs; Xo]
OBJ 0 = OBJ

SUB0 = SUB

t0(O) = t(O) for all O 2 OBJ

[S;O]0 = [S;O] if (S;O) 6= (Xs; Xo)
[Xs; Xo]

0 = [Xs; Xo] [frg

2. delete r from [Xs; Xo]
OBJ 0 = OBJ

SUB0 = SUB

t0(O) = t(O) for all O 2 OBJ

[S;O]0 = [S;O] if (S;O) 6= (Xs; Xo)
[Xs; Xo]0 = [Xs; Xo]� frg

3. create subject Xs of type ts (where Xs 62 OBJ)
OBJ 0 = OBJ [fXsg
SUB0 = SUB [fXsg
t0(O) = t(O) for all O 2 OBJ

t0(Xs) = ts
[S;O]0 = [S;O] for all (S;O) 2 SUB �OBJ

[Xs; O]0 = � for all O 2 OBJ 0

[S;Xs]0 = � for all S 2 SUB0

4. destroy subject Xs (where Xs 2 SUB)
OBJ 0 = OBJ � fXsg
SUB0 = SUB � fXsg
t0(O) = t(O) for all O 2 OBJ 0

t0(Xs) =unde�ned
[S;O]0 = [S;O] for all (S;O) 2 SUB0 � OBJ 0

5. create object Xo of type to (where Xo 62 OBJ)
OBJ 0 = OBJ [fXog
SUB0 = SUB

t0(O) = t(O) for all O 2 OBJ

t0(Xo) = to
[S;O]0 = [S;O] for all (S;O) 2 SUB �OBJ

[S;Xo]0 = � for all S 2 SUB0

6. destroy object Xo (where Xo 2 OBJ � SUB)
OBJ 0 = OBJ � fXog
SUB0 = SUB

t0(O) = t(O) for all O 2 OBJ 0

t0(Xo) =unde�ned
[S;O]0 = [S;O] for all (S;O) 2 SUB0 � OBJ 0

Note: If the pre-condition for any create or de-
stroy operation in the body is false, the entire
TAM command has no e�ect.

Table 3: Interpretation of TAM Primitive Operations

3.4 De�nition of TAM and MTAM

The following de�nitions complete our formal de�-
nition of TAM and MTAM.

De�nition 5 A TAM authorization scheme consists
of a �nite set of rights R, a �nite set of types T , and
a �nite collection of commands. 2

De�nition 6 A TAM system is speci�ed by a TAM
scheme.and the initial state of the system, i.e.,
(SUB0; OBJ0; t0; AM0). 2

De�nition 7 The monotonic typed access matrix

(MTAM) model is identical to TAM except that the
delete, destroy subject and destroy object prim-
itive operations are omitted. 2

Note that once the scheme has been de�ned it remains
�xed for the life of the system. The system state,
however, changes with time.

3.5 Expressive Power

There is ample evidence that TAM and MTAM are
very expressive in the range of policies that they can
express. TAM inherits the expressive power of HRU,
which is the most general access control model to date.
MTAM inherits the expressive power of monotonic
HRU in general, and SPM [23] and ESPM [4] in par-
ticular.

Note that disjunctive conditions are easily modeled
in TAM by having one command for each component
of the condition. Thus the condition \if P _Q" can be
expressed by two command which are otherwise iden-
tical but which respectively have the conditions \if P"
and \if Q." The absence of rights, however, cannot be
tested in TAM commands. The TAM model can, of
course, be easily extended to allow tests for absence of
access rights. This will, however, only further aggra-
vate the safety problem. Budd [10] has demonstrated
a very simple system which tests for absence of rights
and has NP-complete safety.

MTAM, being monotonic, is not able to represent
certain desirable non-monotonic aspects of access con-
trol. For instance the following transfer command can-
not be represented in a monotonic model.

command transfer-r(S1 : s; S2 : s;O : o)
if r 2 [S1; O] then

enter r in [S2; O];
delete r from [S1; O];

end

Another useful facility, which cannot be represented in
a monotonic model, is a countdown right, i.e., a right
which can be used a �xed number of times before it
expires.

Having noted these limitations of monotonic mod-
els, it is equally important to understand that many
policies with non-monotonic components can be re-
duced to monotonic policies for purpose of safety anal-
ysis. In particular most of the common revocation
policies fall into this category. We will give a concrete
example of this assertion in the next Section.

4 The ORCON Policy

In this Section we discuss the ORCON (originator
controlled) policy for control of information in docu-
ments. This policy has been discussed in a number of
recent papers [1, 12, 18] as an example of a policy in
the military sector that is di�cult to implementwithin
the classic Bell-LaPadula model [6]. In practice the
ORCON policy occurs as one aspect of a larger policy
context, which will typically include the usual label-
based non-disclosure controls (i.e., simple-security and
the ?- property). Our discussion here will focus exclu-
sively on the ORCON component of the policy. The
solution can be easily extended to the larger context
mentioned above.

The ORCON policy requires that the creator (i.e.,
originator) of a document retains control over granting
access to the information in the document. For exam-
ple, let Tom be the creator of an ORCON documentk

SDI. Suppose Tom authorizes Dick to read SDI. The
ORCON policy requires that Dick cannot propagate
the information in SDI to, say, Harry; either directly
by granting Harry read access to SDI, or indirectly
by granting Harry read access to a copy of SDI. The
prohibition that Dick cannot directly grant read ac-
cess to Harry is straightforward to enforce. The real
challenge for the ORCON policy is how to prevent
Dick from copying the information from SDI into some
other document, say, SDI-Copy and authorizing Harry
to read SDI-Copy.��

Our solution to the ORCON problem is based on
the ability in TAM to have multiple parents jointly

kAn ORCON document is one to which the ORCON pol-
icy applies as opposed to, say, ordinary documents to which
ORCON does not apply.
��Note that Dick as a human being is trusted not to divulge

information from SDI to Harry without concurrence of Tom.
The problem of Computer Security is to ensure that Trojan
Horse laden subjects executing on behalf of Dick do not surrep-
tiously leak the information in SDI to Harry.

create a child subject. The solution is illustrated in
Figure 1.yy Figure 1(a) shows a fragment of the access
matrix in which subject S1 is the creator (and there-
fore owner) of object O as indicated by own 2 [S1; O].
The notation S1 : s denotes that S1 is of type s, and
similarly for the names on the other rows and columns.
The type ofO is co for con�ned object. In Figure 1(b),
S1 gives S2 the cread (i.e., con�ned-read) right for
O. This right allows S2 to create S3 of type cs (for
con�ned-subject). S3 obtains the read right for O as
part of the creation command. This results in the sit-
uation shown in Figure 1(c). The scheme will ensure
that S3, by virtue of its type being cs, will never be
able to write to any object or create any objects.

The de�nition of the TAM scheme for this ORCON
solution is given below.

1. Rights R = fown; read;write; cread; parentg

2. Types T = fs; cs; cog with TS = fs; csg

3. The commands are as follows.

(a) command create-orcon-object(S1 : s;O : co)
create object O of type co;
enter own in [S1; O]
enter read in [S1; O]
enter write in [S1; O]

end

(b) command grant-cread(S1 : s; S2 : s;O : co)
if own 2 [S1; O] then

enter cread in [S2; O]
end

(c) command use-cread(S2 : s;O : co; S3 : cs)
if cread 2 [S2; O] then

create subject S3 of type cs;
enter read in [S3; O]
enter parent in [S2; S3]

end

(d) command revoke-cread(S1 : s; S2 : s;O : co)
if own 2 [S1; O] then

delete cread from [S2; O]
end

(e) command destroy-orcon-object(S1 : s;O : co)
if own 2 [S1; O] then

destroy object O

end

yyThe solution described here, prohibits subjects spawned by
Dick from making copies or extracts of SDI. The solution can be
extended to allow for this with the stipulation that the copies
or extracts themselves will be originator controlled by Tom.

S1 : s S2 : s O : co : : :

S1 : s own, read, write
S2 : s
: : :

(a) Subject S1 creates an ORCON object O

S1 : s S2 : s O : co : : :

S1 : s own, read, write
S2 : s cread
: : :

(b) S1 gives S2 the cread (con�ned-read) right for O

S1 : s S2 : s O : co S3 : cs : : :

S1 : s own, read, write
S2 : s cread parent
S3 : cs read
: : :

(c) S2, jointly with O, creates the con�ned subject S3 to read O

Figure 1: Illustration of the ORCON Policy in TAM

(f) command revoke-read(S1 : s; S3 : cs;O : co)
if own 2 [S1; O]^ read 2 [S3; O] then

destroy subject S3
end

(g) command �nish-orcon-read(S2 : s; S3 : cs)
if parent 2 [S2; S3] then

destroy subject S3
end

The �rst three commands given above are mono-
tonic. They respectively authorize the three steps
shown in Figure 1. The remaining four commands
are non-monotonic. They are examples of revocation
commands which are reasonable in this context. Com-
mands d, e and f give the owner of a ORCON object
O the authority to revoke access to O. Command g
gives the parent of a con�ned subject the authority to
destroy it.

It is important to appreciate that the non-
monotonic commands of this ORCON scheme can be
ignored for purpose of safety analysis, because the ef-
fect of each of these commands is itself reversible. In
this sense MTAM is su�cient to model this ORCON
solution for purpose of safety analysis. Reversibil-
ity of the non-monotonic commands is most apparent
for command d, which can be immediately undone

by command b. Command g can be compensated by
command c, i.e., another subject can be created to �ll
the role of the destroyed subject. Command e can be
similarly compensated by commands a and b. Finally,
command f can be compensated by command c.

5 Canonical Schemes

In this Section we show that every MTAM scheme
can be converted to an equivalent scheme in which
all primitive create operations occur only in uncon-
ditional commands. This result is important for the
subsequent safety analysis of Section 6. It is also of
interest in its own right, because it establishes that
there is no need to have conditional creation in access
control systems.

To establish this result we introduce the following
de�nition.

De�nition 8 A command � is a creating command if
the create subject or create object primitive oper-
ation occurs in its body. Otherwise � is non-creating.
An MTAM scheme is in canonical form if and only if
all creating commands are unconditional. 2

We have the following result.

S1 : s S2 : s O : co : : :

S1 : s own, read, write
S2 : s
: : :

(a) Subject S1 creates an ORCON object O

S1 : s S2 : s O : co : : :

S1 : s own, read, write
S2 : s cread
: : :

(b) S1 gives S2 the cread (con�ned-read) right for O

S1 : s S2 : s O : co S3 : cs : : :

S1 : s own, read, write
S2 : s cread parent
S3 : cs child
: : :

(c) S2, jointly with O, creates the con�ned subject S3

S1 : s S2 : s O : co S3 : cs : : :

S1 : s own, read, write
S2 : s cread parent
S3 : cs child, read
: : :

(d) S3 acquires read right for O

Figure 2: Illustration of the ORCON Policy in Canonical Form

Theorem 1 Every MTAM scheme has an equivalent
scheme in canonical form.

Proof Sketch: Let � be a conditional creating com-
mand. We outline a construction to replace � by two
commands: a non-conditional creating command �0

and a conditional non-creating command �00. (There
are many di�erent ways this can be accomplished. We
outline only one possibility here.) First, we augment
the given MTAM scheme with an additional right that
indicates that an object is \alive." Liveness is encoded
by presence of the \alive" right in the diagonal cells,
i.e., alive 2 [O;O] signi�es that object O is alive. (This
requires that every object is also a subject, which can
be assumed without loss of generality by introducing
an otherwise empty row for each pure object.) We sim-
ulate conditional creation by conditionally controlling
the presence of rights indicating liveness. To ensure
that objects can participate in MTAM commands only

if they are marked as being alive, we augment the con-
ditional expression in each MTAM command to check
that all actual parameters are alive. Now, because of
monotonicity, we can rearrange the body of � so that
all the create primitive operations occur before the
enter's. We construct �0 by (i) using the same pa-
rameters as �, (ii) extracting the create operations
of � into �0, and (iii) appending some number of en-
ter operations to enter special rights unambiguously
binding the parents and children of this command.
(We ensure these special \binding" rights can only be
introduced by the creating commands.) We construct
�00 by (i) using the same parameters as �, (ii) taking
the condition part of � and augmenting it with addi-
tional tests to check for the binding rights introduced
by �0, (iii) extracting the enter operations of � into
�00, and (iv) appending one enter operation per child
object of � to mark that child as being alive. 2

Clearly this construction has linear complexity in the
number of commands. Henceforth, we can assume
without loss of generality that all MTAM schemes are
in canonical form.

To illustrate the intuition behind this construction
consider how the ORCON policy of Section 4 can be
expressed in canonical form. Looking at the mono-
tonic commands of the ORCON scheme, we see that
command c is a conditional creating command. We
can replace this command by the following two com-
mands, to make the scheme canonical.

(c.1) command create-csubject(S2 : s;O : co; S3 : cs)
create subject S3 of type cs;
enter parent in [S2; S3];
enter child in [S3; O]

end

(c.2) command perform-read(S2 : s;O : co; S3 : cs)
if cread 2 [S2; O]^ parent 2 [S2; S3]^

child 2 [S3; O] then
enter read in [S3; S2];

end

The scenario of Figure 1 is now played out as shown
in Figure 2. Note how the \child" right binds S3 to
O, prior to conditional entry of the \read" right in
[S3; O]. The \parent" right similarly binds S2 to S3.
In this example we did not use the \alive" right, be-
cause S3 in the create-csubject command cannot ac-
complish anything until the condition of the perform-
read command is true.

6 Safety Analysis of MTAM

The general undecidability of safety in MTAM fol-
lows from the undecidability results for monotonic
HRU [13, 14], which were reviewed in Section 2. In
particular safety is undecidable for bi-conditional com-
mands (i.e., commands which have more than one
term ri 2 [Xsi; Xoi] in the condition part).

MTAM, however, has decidable safety cases identi-
�ed on the basis of the types of subjects and objects
involved in creation operations. These cases cannot
even be formulated in HRU, due to the absence of
typing. Our principal result in this Section is that
safety is decidable for acyclic MTAM schemes (which
are de�ned in Section 6.1). Acyclic MTAM schemes
are su�cient to express most practical monotonic se-
curity polices. The safety results, moreover, extend to
certain kinds of cycles which then appear to cover all
practical needs for monotonic policies.

6.1 Acyclic Schemes

We begin by introducing the following de�nition.

De�nition 9 Let � be a creating command with for-
mal parameters (X1 : t1, X2 : t2, : : : , Xk : tk). We say
ti is a child type in � if one of the following primitive
operations create subject Xi of type ti, or create
object Xi of type ti occurs in the body of �. Oth-
erwise, we say ti is a parent type in �. 2

For example, command c is the only creating com-
mand in the ORCON scheme of Section 4. In this
command s and co are parent types, whereas cs is a
child type.

Note that a type can be a parent type and a child
type in the same command. For example, consider the
following command:

command foo(S1 : u; S2 : u; S3 : v; S4 : w;O : o)
create subject S2 of type u;
create subject S3 of type v;

end

Here, u is a parent type because of S1 and a child type
because of S2. Also, w and o are parent types and v

is a child type.
This leads us to the following concept of an acyclic

scheme.

De�nition 10 The creation graph of an MTAM
scheme is a directed graph with vertex set T and an
edge from u to v if and only if there is a creating com-
mand in which u is a parent type and v is a child type.
A MTAM scheme is acyclic if and only if its creation
graph is acyclic; otherwise the scheme is said to be
cyclic. 2

The creation graph for the foo command shown above
has the following edges: f(u; u), (u; v), (w; u), (w; v),
(o; u), (o; v)g. A scheme which includes this command
will be cyclic. The ORCON scheme of Section 4 is
acyclic. Its creation graph has the following edges:
f(s; co), (s; cs), (co; cs)g.

6.2 The Unfolding Construction

At a broad level, we adopt the following strategy
for safety analysis:

1. Starting with the given initial state, �rst create
as many objects as are necessary to account for
the worst-case propagation of access rights. Call
this the unfolded state of the system.

2. Given the unfolded state, perform all non-
creating commands until the state does not
change any further. Call this the maximal state

of the system.

A speci�c safety question such as, \Can subject S ob-
tain right r for object O?" is then answered by look-
ing at the maximal state and seeing whether or not
r 2 [S;O] in this worst-case state.

The second step in this procedure is guaranteed to
terminate because the unfolded state has a �nite num-
ber of subjects, objects and rights. Therefore the non-
creating monotonic commands will eventually be un-
able to change the state. The problem lies in the �rst
step where we need some computable criteria to de-
termine when all the necessary create operations have
occurred. In other words we need to be able to recog-
nize an unfolded state.

The undecidability results tell us that, in general,
it is not possible to construct, or recognize, an un-
folded state (even though one is guaranteed to exist
in a monotonic system). However, for an acyclic cre-
ation graph there is a simple algorithm for construct-
ing the unfolded state. To develop this algorithm we
de�ne the following partial ordering on the creating
commands.

De�nition 11 Let � and � be distinct creating com-
mands in a given scheme. We say � < � (� precedes
�) if and only if (i) some child type of � is also a par-
ent type of �, or (ii) there is a directed path in the
creation graph from a child type of � to some parent
type of �. 2

For acyclic creation graphs, < is clearly a strict par-
tial ordering (i.e., it is transitive, anti-symmetric and
irreexive).

We have the following unfolding algorithm for con-
structing the unfolded state from the given initial
state. We assume, without loss of generality, that the
given MTAM scheme is in canonical form (i.e., all cre-
ating commands are unconditional).

Algorithm 1 Unfolding Algorithm

1. Linearly order the creating commands consistent
with the < relation. (This is the familiar opera-
tion of topologically sorting a partial order.)

2. Begin with the given initial state.

3. Proceed down the ordered list of creating com-
mands and apply each command once to each
possible tuple of parent objects. 2

command foo(U : u; V : v)
create subject V of type v;
enter parent in [U; V];

end

command bar(U : u; V : v;W : w)
create subject W of type w;
enter parent in [U;W];
enter parent in [V;W];

end

(a) Creating Commands with foo < bar

t(U) = u �(U) = U

t(V1) = v �(V1) = V1

(b) Initial State 0 with OBJ0 = fU; V1g

t(U) = u �(U) = U

t(V1) = v �(V1) = V1
t(V2) = v �(V2) = foo2(U)
t(W1) = w �(W1) = bar3(U; V1)
t(W2) = w �(W2) = bar3(U; foo2(U))

(c) Unfolded State u with
OBJu = fU; V1; V2;W1;W2g

Table 4: Example of Unfolding and Pedigree

An example is given in Table 4 (ignore the � function
for the moment). Table 4(a) shows two creating com-
mands with foo < bar (because v, the child type of foo
is also a parent type of bar). The initial state, shown
in Table 4(b), has two objects U and V1, respectively
of type u and v. The unfolded state u, in Table 4(c),
is derived from the initial state by the following se-
quence of commands: foo(U; V2), bar(U; V1;W1) and
bar(U; V2;W2).

The following lemma is easily proved.

Lemma 1 The unfolding algorithm terminates for
acyclic creation graphs.

Proof Sketch: No application of a creating command
can result in either that command, or any other com-
mand considered before it, being applicable to a pre-
viously unconsidered tuple of parent objects. Thus for
each creating command, there are a �xed number of
applications possible. Since each command is consid-
ered only once, the algorithm eventually terminates.

2

Note that the unfolded state introduces a possibly ex-
ponential number of new objects, relative to the num-
ber of objects in the initial state.

6.3 The Pedigree Function

Next, we de�ne the pedigree function for the pur-
pose of relating objects from arbitrary derived states
to objects in the unfolded state.

De�nition 12 For any derived state h the pedigree

function � gives the pedigree of every object in OBJh,
recursively, as follows:

1. The pedigree of an object in the initial state is
simply the name of that object, i.e., if V 2 OBJ0

then �(V) = V .

2. The pedigree of an object created subsequent
to the initial state, i.e., V 62 OBJ0, is de�ned
as follows: Let V be created as the kth argu-
ment in the creating command � with parent
arguments U1; U2; : : : ; Um (ordered left to right).
Then, �(V) = �k(�(U1); �(U2); : : : ; �(Um)) 2

An example of the pedigree function is given in Ta-
ble 4. The equation �(W2) = bar3(U; foo2(U)) is in-
terpreted as follows: W2 was created as the third pa-
rameter of the bar command invoked with U as the
�rst parent and an object with pedigree foo2(U) as
the second parent.

We have the following property for the pedigree
function.

Lemma 2 For acyclic MTAM schemes, for every pos-
sible value of the pedigree function there is exactly one
object in the unfolded state with that value.

Proof Sketch: In an acyclic scheme there can only
be a �nite number of generations. By construction
the unfolded state includes one representative of each
pedigree in each generation. A formal proof can be
given by induction on the generation number of a given
object de�ned recursively as follows: the generation
number of an object is one more than the maximum
of the generation numbers for its parents. For the
basis case the generation number of the initial objects
is de�ned as 1. 2

In other words the unfolded state contains exactly one
object of every possible pedigree. We show below that
the object of pedigree x in the unfolded state is able
to simulate all objects of pedigree x in any possible
derived state.

6.4 Safety for Acyclic Schemes

We are now ready to sketch a proof of the central
result of this Section.

Theorem 2 Safety is decidable for systems with
acyclic MTAM schemes.

Proof Sketch: Assume without loss of generality
that the MTAM scheme is in canonical form, i.e., all
creating commands are unconditional (Note that the
construction of Theorem 1 does not change the acyclic
nature of the scheme). We claim that every history for
a given system can be simulated by a history without
create operations applied to the unfolded state. More
precisely, for an acyclic MTAM scheme for every his-
tory H which derives state h from the initial state
there exists a history G which derives state g from the
fully unfolded state u such that

(8(S;O) 2 SUBh �OBJh) : [S;O]h � [�(S); �(O)]g

(1)
On the basis of equation (1) we have the following
algorithm for deciding safety.

1. Use the unfolding algorithm to construct the un-
folded state u.

2. Perform all non-creating commands until the
state does not change any further. Call this state
m.

Due to monotonicity and construction of m it follows
that for all states g derived from u by non-creating
commands, we have

(8(S;O) 2 SUBu �OBJu) : [S;O]g � [S;O]m (2)

By specializing equations (1) and (2) to SUB0 and
OBJ0 (i.e., the initial set of subjects and objects) it
follows that for all derivable states h we have

(8(S;O) 2 SUB0 �OBJ0) :
[S;O]h � [�(S); �(O)]g � [�(S); �(O)]m

(3)

Since �(S) = S and �(O) = O in this case, we have

(8(S;O) 2 SUB0 �OBJ0) : [S;O]h � [S;O]m (4)

From equation (4) it is clear that the state m allows
us to answer all safety questions with respect to the
initial set of subjects and objects.

It remains to prove the existence of G with the
property asserted in equation (1). G is obtained from
H by replacing the individual command of H as fol-
lows, while preserving their relative order.

1. Ignore all creating commands in H.

2. Replace every non-creating command �(X1 :
t1; X2 : t2; : : : ; Xk : tk) in H by �(�(X1) :
t1; �(X2) : t2; : : : ; �(Xk) : tk) in G.

The proof proceeds by proving the two assertions given
below, from which the required equation (1) follows.

� Assertion 1. Every command in G is authorized
(i.e., its condition part is true before the com-
mand is executed).

� Assertion 2. r 2 [S;O]h) r 2 [�(S); �(O)]g

These assertions can be proved by induction on the
number of non-creating commands inH. For the basis
case, assume H consists entirely of unconditional cre-
ating commands so G is empty. Assertion 1 is there-
fore trivially true. Assertion 2 is easily veri�ed from
construction of the unfolded state. The induction step
follows from the manner in which the non-creating
commands of H are simulated in G. 2

6.5 Complexity of Safety Analysis

Unfortunately the complexity of safety analysis in
MTAM is most likely intractable due to the following
result.

Theorem 3 Safety is NP-hard (i.e., no better
than NP-complete) for systems with acyclic MTAM
schemes.

Proof Sketch: Harrison, Ruzzo, and Ullman [13]
have shown that monotonic mono-operational HRU,
without creates, has NP-Complete safety analysis.
(This is not precisely the result shown in [13].
However, the proof of Theorem 1 and its NP-
completeness corollary in [13] essentially establish this
fact.) Any model which can subsume monotonic
mono-operational HRU therefore has NP-hard safety.

2

Clearly the above proof applies to MTAM schemes
which have no creation. We therefore have the follow-
ing corollary.

Corollary 1 Safety is NP-hard for MTAM schemes
without creation.

6.6 Safety with Attenuating Loops

For a number of technical reasons, it is impor-
tant to extend the decidable safety results for acyclic

MTAM to include the case of creation with \attenu-
ating loops." A loop is a cycle of length one in the
creation graph. Loops allow a parent to have children
of its own type. In SPM and ESPM the safety algo-
rithm for acyclic creation extends, with minor modi�-
cations, to include loops with some additional assump-
tions (called attenuating) regarding rights introduced
by loop creations [3, 4, 21]. The intuitive idea behind
the attenuating requirement is that the child in a loop
creation should be no more powerful than its parent.
Attenuating loop creations are required in SPM to im-
plement some of the constructions of [23]. They will
be needed in MTAM for similar reasons. Fortunately,
a suitable concept of \attenuating" loops can be for-
mulated in MTAM with minor modi�cations to the
safety analysis algorithm for the acyclic case. Due to
lack of space this important detail is omitted here.

7 The Ternary MTAM Model

In the previous Section we have seen that although
safety is decidable for acyclic MTAM schemes, its com-
plexity is NP-hard (even if creation is completely elim-
inated). In this Section we show how this negative re-
sult can be circumvented by a simple technique, with-
out signi�cant loss of expressive power. Speci�cally
we show that the followingmodel has polynomial time
safety for its acyclic cases.

De�nition 13 Ternary TAM is identical to TAM ex-
cept that all commands are limited to three param-
eters. Ternary MTAM is the monotonic version of
ternary TAM. 2

We say that ternary MTAM has local authorization
for its commands, in the sense that only a small frag-
ment of the access matrix is examined to evaluate the
condition part.

Note that the ORCON scheme of Section 4 is
ternary. In fact ternary MTAM formally has the same
expressive power as MTAM, as shown below.

Theorem 4 Ternary MTAM is equivalent in expres-
sive power to MTAM.

Proof Sketch: The following sequence of reductions
give us the desired result: MTAM � monotonic HRU
� ESPM with two-parent creates � ternary MTAM.
We sketch each reduction in turn from left to right.
First, it is clear that any MTAM scheme can be ex-
pressed as a monotonic HRU scheme. One way to do
this is by encoding the type information of MTAM
in the diagonal cells of the access matrix so that

to 2 [O;O] signi�es that object O is of type to. (This
construction requires that every object is also a sub-
ject, which can be assumed without loss of generality
by introducing an otherwise empty row for each pure
object.) Second, it has been shown by Ammann and
Sandhu [2, 4] that any monotonic HRU scheme can be
expressed in the ESPM model. Moreover this can be
achieved by means of two-parent creates (which have
two parents jointly creating one child). Third, with
the above encoding of types in the diagonal cells, the
copy operation of ESPM can be simulated in ternary
MTAM. Therefore ESPM with two-parent creates can
be simulated in ternary MTAM. 2

Remarkably, in spite of this equivalence of expres-
sive power, we have the following result for ternary
MTAM.

Theorem 5 Safety for acyclic ternary MTAM is de-
cidable in polynomial time in the size of the initial
access matrix.

Proof Sketch: Note that the canonical form for
ternary MTAM obtained by the construction in the
proof of Theorem 1 is itself ternary. So we can assume
without loss of generality that ternary MTAM schemes
are in canonical form (i.e., all creating commands are
unconditional). The result is then established by anal-
ysis similar to that in [3, 4, 21]. The proof consists
of establishing that (i) the unfolded state introduces
a polynomial number of new objects (relative to the
number of objects in the initial state), and (ii) the
number of non-creating command invocations is at
most polynomial relative to the number of objects in
the unfolded state. 2

This result is in sharp contrast to the NP-hard result
for acyclic MTAM.

There is no contradiction between Theorems 3, 4
and 5. The implication is simply that the acyclic cases
of ternary MTAM and MTAM cannot be co-extensive
without having P=NP. The equivalence result of The-
orem 4 does not speak about the acyclic cases or about
the relative sizes of the simulations.

Binary and Unary MTAM

We conclude this Section with a brief considera-
tion of the relative power of some other variations of
MTAM. In analogy to ternary MTAM, binary MTAM
limits its commands to two parameters and unary
MTAM does so to one parameter. Unary MTAM
is obviously too restricted to be of any use. Binary
MTAM amounts to either (i) having single parent

creation where one parameter creates the other, or
(ii) creation of both parameters (Recall there is no
concept of who invokes the command in TAM, and
therefore spontaneous creation of this kind is mean-
ingful). Spontaneous creation does not a�ect the re-
sult of Ammann, Lipton and Sandhu that multi-parent
creation is strictly more powerful than single-parent
creation [5] in monotonic models.. Therefore binary
MTAM is strictly weaker than ternary MTAM. In fact
MTAM with binary creating commands, but without
any restrictions on non-creating commands, is strictly
weaker than ternary MTAM.

8 Conclusion

In this paper we have de�ned the typed access ma-
trix model (TAM) by introducing the notion of strong
typing into the well-known Harrison, Ruzzo and Ull-
man model (HRU) [13, 14]. We have shown that
monotonic TAM (MTAM) has decidable, but NP-
hard, safety for its acyclic creation cases. Further,
we have shown that ternary MTAM has polynomial
time safety analysis for its acyclic cases, even though
it is in general equivalent to MTAM. Ternary MTAM
thus has strong safety properties similar to those of
Sandhu's Schematic Protection Model [21, 22, 23] and
its recent extension by Ammann and Sandhu [2, 3, 4].
The expressive power of ternary MTAM has been
shown to be equivalent to MTAM in general.

Our results establish that (i) strong typing is cru-
cial to achieving a useful demarcation between decid-
able and undecidable safety, and (ii) ternary mono-
tonic commands are critical for tractable safety anal-
ysis.

Besides providing rich expressive power and strong
safety analysis, a useful security model must also be
implementable with a high degree of assurance. In
recent work we have considered the implementation of
TAM in a distributed environment. Our initial results
are promising [24]. Our goal is to �nd some small set
of e�cient primitives to implement a simpli�ed form of
TAM, which nevertheless theoretically retains TAM's
full expressive power.

Acknowledgments

I am indebted to Howard Stainer and Sylvan Pin-
sky for their support and encouragement, making this
work possible.

References

[1] Abrams, M., Heaney, J., King, O., LaPadula,
L., Lazear, M. and Olson, Ingrid. \Generalized
Framework for Access Control: Toward Proto-
typing the Orgcon Policy."NIST-NCSC National

Computer Security Conference, 257-266 (1991).

[2] Ammann, P.E. and Sandhu, R.S. \Extending the
Creation Operation in the Schematic Protection
Model." Proc. Sixth Annual Computer Security

Applications Conference, 340-348 (1990).

[3] Ammann, P.E. and Sandhu, R.S. \Safety Anal-
ysis for the Extended Schematic Protection
Model." Proc. IEEE Symposium on Research in

Security and Privacy, 87-97 (1991).

[4] Ammann, P.E. and Sandhu, R.S. \The Extended
Schematic Protection Model." Journal of Com-

puter Security, to appear.

[5] Ammann, P.E., Lipton, R.J. and Sandhu, R.S.
Private communication.

[6] Bell, D.E. and LaPadula, L.J. \Secure Computer
Systems: Uni�ed Exposition and Multics Inter-
pretation." MTR-2997, MITRE (1975).

[7] Bishop, M. and Snyder, L. \The Transfer of Infor-
mation and Authority in a Protection System."
7th ACM Symposium on Operating Systems Prin-

ciples, 45-54 (1979).

[8] Bishop, M. \Theft of Information in the Take-
Grant Protection Model." Computer Security

Foundations Workshop, 194-218 (1988).

[9] Biskup, J. \SomeVariants of the Take-Grant Pro-
tection Model." Information Processing Letters

19(3):151-156 (1984).

[10] Budd, T.A. \Safety in Grammatical Protection
Systems." International Journal of Computer and

Information Sciences 12(6):413-431 (1983).

[11] Denning, D.E. \A Lattice Model of Secure
Information Flow." Communications of ACM

19(5):236-243 (1976).

[12] Graubart, R. \On the Need for a Third Form
of Access Control." NIST-NCSC National Com-

puter Security Conference, 296-303 (1989).

[13] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D.
\Protection in Operating Systems." Communica-

tions of ACM 19(8):461-471 (1976).

[14] Harrison, M.H. and Ruzzo, W.L. \Monotonic
Protection Systems." In DeMillo et al (Editors).
Foundations of Secure Computations. Academic
Press (1978).

[15] Lampson, B.W. \Protection." 5th Princeton

Symposium on Information Science and Systems,
437-443 (1971). Reprinted in ACM Operating

Systems Review 8(1):18-24 (1974).

[16] Lipton, R.J. and Snyder, L. \A Linear Time Al-
gorithm for Deciding Subject Security." Journal

of ACM 24(3):455-464 (1977).

[17] Lockman, A. and Minsky, N. \Unidirectional
Transport of Rights and Take-Grant Control."
IEEE Transactions on Software Engineering SE-
8(6):597-604 (1982).

[18] McCollum, C.J., Messing, J.R. and Notargia-
como, L. \Beyond the Pale of MAC and DAC -
De�ning New Forms of Access Control." IEEE

Symposium on Security and Privacy, 190-200
(1990).

[19] McLean, J. \A Comment on the `Basic Secu-
rity Theorem' of Bell and LaPadula." Informa-

tion Processing Letters 20(2):67-70 (1985).

[20] McLean, J. \Specifying and Modeling Computer
Security." IEEE Computer 23(1):9-16 (1990).

[21] Sandhu, R.S. \The Schematic Protection Model:
Its De�nition and Analysis for Acyclic Attenu-
ating Schemes." Journal of ACM 35(2):404-432
(1988).

[22] Sandhu, R.S. \Undecidability of the Safety Prob-
lem for The Schematic Protection Model with
Cyclic Creates." Journal of Computer and Sys-

tem Sciences, in press.

[23] Sandhu, R.S. \Expressive Power of the The
Schematic Protection Model." Journal of Com-

puter Security, in press.

[24] Sandhu, R.S. and Suri, G.S. \Implementation
Considerations for the Typed Access Matrix
Model in a Distributed Environment." George
Mason University, Technical Report, Feb. 1992.

[25] Snyder, L. \Formal Models of Capability-Based
Protection Systems." IEEE Transactions on

Computers C-30(3):172-181 (1981).

[26] Snyder, L. \Theft and Conspiracy in the Take-
Grant Model." Journal of Computer and Systems

Sciences 23(3):337-347 (1981).

