
Proceedings of IEEE Symposium on Security and Privacy, Oakland, California, May 20-22, 1991, pages 300-313.

A Novel Decomposition of Multilevel Relations

Into Single-Level Relations�

Sushil Jajodia and Ravi Sandhu

Center for Secure Information Systems

and

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030-4444

Abstract

In this paper we give a new decomposition algorithm
that breaks a multilevel relation into single-level rela-
tions and a new recovery algorithmwhich reconstructs
the original multilevel relation from the decomposed
single-level relations. There are several novel aspects
to our decomposition and recovery algorithms which
provide substantial advantages over previous propos-
als: (1) Our algorithms are formulated in the context
of an operational semantics for multilevel relations, de-
�ned here by generalizing the usual update operations
of SQL to multilevel relations. (2) Our algorithms,
with minor modi�cations, can easily accommodate al-
ternative update semantics which have been proposed
in the literature. (3) Our algorithms are e�cient be-
cause recovery is based solely on union-like operations
without any use of joins. (4) Our decomposition is
intuitively and theoretically simple giving us a sound
basis for correctness. In this paper we also argue that
some of the alternate update semantics which have
been proposed for multilevel relations should be avail-
able as options, but should certainly not be made an
integral part of the data model.

1 INTRODUCTION

In recent years, there have been several e�orts to build
multilevel secure relational database management sys-
tems (DBMSs). A major issue is how access classes
are assigned to data stored in relations. The propos-
als have ranged from assigning access class to relations
(as in [9]), assigning access classes to individual tuples
in a relation (as in [6]), or assigning access classes to
individual attributes of a relation (as in [11]).

Unlike these proposals, in the Secure Data Views
(SeaView) project security classi�cations are assigned
to individual data elements of the tuples of a rela-
tion [3, 4, 17]. For example see �gure 1. Subjects
having di�erent clearances see di�erent versions of the

�This work was partially supported by the U.S. Air Force,
Rome Air Development Center through subcontract #C/UB-
49;D.O.No.0042 of prime contract #F-30602-88-D-0026, Task
B-O-3610 with CALSPAN-UB Research Center.

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Mine C Sirus C C
Ent U Spy S Rigel S S
Ent U Coup TS Orion TS TS

Figure 1: A multilevel relation SOD

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Mine C Sirus C C

Figure 2: Con�dential view of SOD

multilevel relation: A user having a clearance at an ac-
cess class c sees only that data which lies at class c or
below. Thus, a user with Top Secret clearance will see
the entire relation in �gure 1 while a user having Con-
�dential clearance will see the �ltered relation given
in �gure 2.

Multilevel relations in SeaView exist only at the logical
level. In reality multilevel relations are decomposed
into a collection of single-level base relations which
are then physically stored in the database. Com-
pletely transparent to users, multilevel relations are
reconstructed from these base relations on user de-
mand. There are several practical advantages of being
able to decompose and store a multilevel relation by
a collection of single-level base relations. In particu-
lar the underlying trusted computing base (TCB) can
enforce mandatory controls with respect to the single-
level base relations. This allows the DBMS to mostly
run as an untrusted application with respect to the
underlying TCB.

In SeaView, the decomposition of multilevel relations
into single-level ones is performed by applying two dif-
ferent types of fragmentation: horizontal and vertical.
Thus the multilevel relation in �gure 1 will be stored



D1;U
SHIP

Ent U

(a) Primary Key Group Relation

D2;U
SHIP OBJ

Ent U Exp U

SHIP DEST

Ent U Talos U
D3;U

D2;C
SHIP OBJ

Ent U Mine C

SHIP DEST

Ent U Sirus C
D3;C

D2;S
SHIP OBJ

Ent U Spy S

SHIP DEST

Ent U Rigel S
D3;S

D2;TS
SHIP OBJ

Ent U Coup TS

SHIP DEST

Ent U Orion TS
D3;TS

(b) Attribute Group Relations

Figure 3: SeaView decomposition of �gure 1 into 9 single-level base relations

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Exp U Sirus C C
Ent U Mine C Talos U C
Ent U Mine C Sirus C C
Ent U Exp U Rigel S S
Ent U Mine C Rigel S S
Ent U Spy S Talos U S
Ent U Spy S Sirus C S
Ent U Spy S Rigel S S
Ent U Exp U Orion TS TS
Ent U Mine C Orion TS TS
Ent U Spy S Orion TS TS
Ent U Coup TS Talos U TS
Ent U Coup TS Sirus C TS
Ent U Coup TS Rigel S TS
Ent U Coup TS Orion TS TS

Figure 4: SeaView recovery algorithm applied to the
single-level base relations of �gure 3

as nine single-level fragments (one primary key group
relation and eight attribute group relations) shown in
�gure 3. This leads to many problems with the Sea-
View decomposition and recovery algorithms:

1. Repeated Joins. The vertical fragmentation used
in SeaView results in single-level relations that
consist of the key attribute, a single non-key at-
tribute and their classi�cations attributes. This
means that nearly all queries involving multiple

attributes necessitate repeated (left outer) joins
of several single-level relations. It is well-known
that join is an expensive operation and should
be avoided whenever possible (see, for example,
[20]).

2. Spurious Tuples. Whenever a relation is stored
as one or more fragments, it must be possible
to reconstruct the original relation exactly from
fragments. This, however, is not the case with
the SeaView decomposition. When the SeaView
recovery algorithm is applied to the single-level
relations in �gure 3, a Top Secret user will be
shown the relation given in �gure 4. While the
original Top Secret instance in �gure 1 describes
four missions for the Enterprise, a Top Secret user
will see the sixteen missions of �gure 4 using the
SeaView approach.

3. Incompleteness. The SeaView decomposition
puts severe limitations on the expressive capabil-
ity of the database. Several instances that have
realistic and useful interpretations cannot be re-
alized in SeaView [13, 15].

4. Left Outer Joins. The SeaView recovery algo-
rithm is based on the left outer join of relations.
There are many theoretical complications and pit-
falls which arise with outer joins (see, for exam-
ple, [2]).

In [13], Jajodia and Sandhu have given a modi�ed ver-
sion of the SeaView decomposition and recovery algo-
rithms. They store the relation in �gure 1 as a collec-
tion of twelve single-level relations (four primary key



group relations and eight attribute group relations)
given in �gure 5. Their recovery algorithm when ap-
plied to these single-level base relations yields exactly
the original instance SOD in �gure 1. While their al-
gorithms eliminate the last three problems, the �rst
problem remains: satisfying queries involving multi-
ple attributes requires taking repeated natural joins
of several single-level relations.

In this paper, we take a fresh look at the decompo-
sition algorithm that breaks a multilevel relation into
single-level ones and the recovery algorithm which re-
constructs the original multilevel relation from the de-
composed single-level relations. We give decomposi-
tion and recovery algorithms that have several advan-
tages over previous algorithms [13, 17]:

1. Unlike the previous algorithms, the new decom-
position and recovery algorithms are based on
operational semantics for the update operations
on multilevel relations. The semantics of multi-
level relations are de�ned here by generalizing the
usual update operations of SQL.

2. Our algorithms, with minor modi�cations, can
easily accommodate alternative update semantics
which have been proposed in the literature. It is
even possible to keep the decomposition �xed and
vary the recovery algorithms to realize these al-
ternate semantics.

3. Our algorithms are computationally e�cient be-
cause the new decomposition uses only horizontal
fragmentation to break multilevel relations into
single-level ones. The decomposition for the re-
lation in �gure 1 is shown in �gure 6. Since the
decomposition does not require any vertical frag-
mentation, it is possible to reconstruct a mul-
tilevel relation from the underlying single-level
base relations without having to perform any (left
or natural) joins; only unions are required to be
taken.

4. The recovery and decompositions are simple to
state and prove correct.

This paper is organized as follows. In section 2, we
begin by giving basic de�nitions related to multilevel
relations, and then we state four core integrity require-
ments which we feel must be satis�ed by all multilevel
relations. In section 3, we examine the semantics of
various update operations in the context of multilevel
relations. To this end, the familiar INSERT, UPDATE
and DELETE operations of SQL are suitably gener-
alized to deal with polyinstantiation. In section 4, we
give our new decomposition and recovery algorithms
that preserve the update semantics proposed in section
3. In section 5, several examples are given to illustrate
the behavior of the update semantics as well as the de-
composition and recovery algorithms. In section 6 we
show how our algorithms, with minor modi�cations,
can easily accommodate alternative update semantics
which have been proposed in the literature. In section

D1;U
SHIP C2 C3

Ent U U U

D1;C
SHIP C2 C3

Ent U C C

D1;S
SHIP C2 C3

Ent U S S

D1;TS
SHIP C2 C3

Ent U TS TS

(a) Primary Key Group Relations

Eight Relations Identical to Figure 3(b)

(b) Attribute Group Relations

Figure 5: Jajodia-Sandhu decomposition of �gure 1
into 12 single-level base relations

DU
SHIP OBJ DEST

Ent U Exp U Talos U

DC
SHIP OBJ DEST

Ent U Mine C Sirus C

DS
SHIP OBJ DEST

Ent U Spy S Rigel S

DTS
SHIP OBJ DEST

Ent U Coup TS Orion TS

Figure 6: New decomposition of �gure 1 into 4 single-
level base relations



7 we argue that some of the alternate update seman-
tics which have been proposed should be available as
options but should certainly not be made an integral
part of the data model. Section 8 concludes the paper.

2 MULTILEVEL RELATIONS

In this section, we briey review basic de�nitions
and assumptions used with multilevel relations. The
reader is assumed to be familiar with basic concepts of
relational database theory. A multilevel relation con-
sists of the following two parts.

De�nition 1 [RELATION SCHEME] A state-
invariant multilevel relation scheme is denoted by

R(A1; C1; A2; C2; : : : ; An; Cn; TC)

where each Ai is a data attributey over domain Di,
each Ci is a classi�cation attribute for Ai and TC is
the tuple-class attribute. The domain of Ci is speci�ed
by a range [Li;Hi] which de�nes a sub-lattice of access
classes ranging from Li up to Hi. The domain of TC
is [lubfLi : i = 1 : : :ng; lubfHi : i = 1 : : :ng], where
lub denotes the least upper bound. 2

De�nition 2 [RELATION INSTANCES] A col-
lection of state-dependent relation instances, each of
which is denoted by

Rc(A1; C1; A2; C2; : : : ; An; Cn; TC)

one for each access class c in the given lattice. Each
instance is a set of distinct tuples of the form

(a1; c1; a2; c2; : : : ; an; cn; tc)

where each ai 2 Di or ai = null, c � ci and tc =
lubfci : i = 1 : : :ng. Moreover, if ai is not null then
ci 2 [Li;Hi]. We also require that ci be de�ned even
if ai is null, i.e., a classi�cation attribute cannot be
null. 2

We assume that there is a user speci�ed (apparent)
primary key AK consisting of a subset of the data
attributes Ai. In general AK will consist of multiple
attributes.

We now list four integrity requirements which we feel
must be satis�ed by all multilevel relations. We refer
the readers to [16] for their intuitive justi�cation. We
use the notation t[Ai] to mean the value corresponding
to the attribute Ai in tuple t, and similarly for t[Ci]
and t[TC].

Property 1 [Entity Integrity] Let AK be the ap-
parent key ofR. A multilevel relationR satis�es entity
integrity if and only if for all instances Rc and t 2 Rc

yIn many cases it is useful to have an Ai represent a collection
of uniformly classi�ed data attributes. This extension requires
straightforward modi�cations to our statements in this paper,
which are all formulated in terms of the Ai's being individual
data attributes.

1. Ai 2 AK ) t[Ai] 6= null,

2. Ai; Aj 2 AK ) t[Ci] = t[Cj] (i.e., AK is uni-
formly classi�ed), and

3. Ai 62 AK ) t[Ci] � t[CAK] (where CAK is de-
�ned to be the classi�cation of the apparent key).

2

The �rst requirement is exactly the de�nition of en-
tity integrity from the standard relational model and
ensures that no tuple in Rc has a null value for any
attribute in AK. The second requirement says that all
attributes in AK have the same classi�cation in a tu-
ple. This will ensure that AK is either entirely visible
or entirely null at a speci�c access class c. The �nal
requirement states that in any tuple the class of the
non-AK attributes must dominate CAK. This rules
out the possibility of associating non-null attributes
with a null primary key.

Notation. In order to simplify our notation, we will
henceforth use A1 instead of AK to denote the ap-
parent primary key. Thus, for the remainder of this
paper R(A1; C1; : : : ; An; Cn; TC) will denote a multi-
level relation scheme with A1 as the apparent primary
key.

At this point it is important to clarify the semantics
of null values. There are two major issues: (i) the
classi�cation of null values, and (ii) the subsumption
of null values by non-null ones. Our requirements are
respectively that null values be classi�ed at the level of
the key in the tuple, and that a null value is subsumed
by a non-null value independent of the latter's classi-
�cation. These two requirements are formally stated
as follows.

Property 2 [Null Integrity] A multilevel relation
R satis�es null integrity if and only if for each instance
Rc of R both of the following conditions are true.

1. For all t 2 Rc, t[Ai] = null ) t[Ci] = t[C1], i.e.,
nulls are classi�ed at the level of the key.

2. We say that tuple t subsumes tuple s if for every
attribute Ai, either (a) t[Ai; Ci] = s[Ai; Ci] or
(b) t[Ai] 6= null and s[Ai] = null. Our second
requirement is that Rc is subsumption free in the
sense that it does not contain two distinct tuples
such that one subsumes the other. 2

We will henceforth assume that all computed relations
are made subsumption free by exhaustive elimination
of subsumed tuples.

The next property is concerned with consistency be-
tween relation instances at di�erent access classes.
The �lter function maps a multilevel relation to di�er-
ent instances, one for each descending access class in
the security lattice. Filtering limits each user to that
portion of the multilevel relation for which he or she
is cleared.



Property 3 [Inter-Instance Integrity] A multi-
level relation R satis�es inter-instance integrity if and
only if for all instances Rc and all c0 � c we have
Rc0 = �(Rc; c

0) where the �lter function � produces
the c0-instance Rc0 from Rc as follows:

1. For every tuple t 2 Rc such that t[C1] � c0 there
is a tuple t0 2 Rc0 with t0[A1; C1] = t[A1; C1] and
for Ai 62 A1

t0[Ai; Ci] =

�
t[Ai; Ci] if t[Ci] � c0

<null; t[C1]> otherwise

2. There are no tuples in Rc0 other than those de-
rived by the above rule.

3. The end result is made subsumption free by ex-
haustive elimination of subsumed tuples. 2

Finally we have the following polyinstantiation in-
tegrity constraint which prohibits polyinstantiation
within a single access class.

Property 4 [Polyinstantiation Integrity] A mul-
tilevel relation R is said to satisfy polyinstantiation
integrity (PI) if and only if for every Rc we have for
all Ai

A1; C1; Ci ! Ai 2

This property stipulates that the user-speci�ed appar-
ent key A1, in conjunction with the classi�cation at-
tributes C1 and Ci, functionally determines the value
of the attribute Ai. In other words the real primary
key of the relation is A1; C1; C2; : : : ; Cn.

There are other de�nitions of the PI property which
have been proposed. They all require the functional
dependency (fd) component given above, but in ad-
dition impose some other condition. For instance the
SeaView de�nition of PI has two requirements: in ad-
dition to the fd component it has a second, multival-
ued dependency (mvd) component [3, 17]. As another
example, Lunt and Hsieh [18] have recently given a
de�nition of PI which has the usual fd requirement
plus a dynamic mvd requirement. We will return to
these two cases later in the paper.

3 UPDATE OPERATIONS

In this section, we give a formal operational seman-
tics for the three update (insert, update, and delete)
operations on multilevel relations. Due to space con-
straints we have chosen to give an abstract description
and complete formal de�nitions �rst and defer consid-
eration of examples to section 5.

In developing the update semantics we are motivated
by the following principles.

1. The update operations should be as close to stan-
dard SQL as possible.

2. An update should result in polyinstantiation only
when absolutely required for closing signaling
channelsz or for deliberately establishing cover
stories.x Moreover, the fewest possible tuples
should be introduced in such cases.

Consider a user logged on at access class c. We also
refer to such a user as a c-user. Now a c-user directly
sees and interacts with the c-instance Rc.{ From the
viewpoint of this user the remaining instances ofR can
be categorized into three cases: those strictly domi-
nated by c, those that strictly dominate c and those
incomparable with c. The following notation is useful
for ease of reference to these three cases.

Rc0<c � Rc0, such that c0 < c
Rc0>c � Rc0, such that c0 > c
Rc0�c � Rc0, such that c0 incomparable with c

Security considerations, and in particular the ?-
property, dictate that a c-user cannot insert, update,
or delete a tuple, directly or indirectly (as a side-e�ect)
in any Rc0<c or Rc0�c. Any e�ects of these operations
must be con�ned to those tuples in Rc with tuple class
equal to c, and in view of the inter-instance property,
these changes must be properly reected in the in-
stances Rc0>c. In general this may require the addi-
tion, modi�cation or removal of some tuples in Rc0>c

whose tuple class strictly dominates c. Unfortunately,
there are several di�erent ways to do this while main-
taining inter-instance integrity. This fact complicates
the semantics of the insert, update and delete opera-
tions.

3.1 The INSERT Statement

The INSERT statement executed by a c-user has the
following general form, where the c is implicitly deter-
mined by the the user's login class.

INSERT
INTO Rc[(Ai[; Aj] : : :)]
VALUES (ai[; aj] : : :)

zWe deliberately use the term signaling channel rather than
covert channel. A signaling channel is a means of information
ow which is inherent in the datamodel and will therefore occur
in every implementation of the model. We are of course only
concerned with signaling channels which violate the ?-property.
A covert channel on the other hand is a property of a speci�c
implementation and not a property of the data model. That is,
even if the data model is free of downward signaling channels,
a speci�c implementation may well contain covert channels due
to implementation quirks.

xSome researchers maintain that using polyinstantiation for
establishing cover stories is a bad idea and should not be permit-
ted. Our algorithms can easily be modi�ed to have this feature.
Rejecting polyinstantiation in such cases is not so straightfor-
ward as it may seem. There are denial-of-service implications
as will be noted in section 3.2.

{Strictly speaking in all cases we should be saying c-subject
rather than c-user. It is however easier to intuitively consider
the semantics by visualizing a human being interactively carry-
ing out these operations. The semantics do apply equally well
to processes operating on behalf of a user, whether interactive
or not.



In this notation the rectangular parenthesis denote op-
tional items and the \: : :" signi�es repetition. If the
list of attributes in omitted, it is assumed that all the
data attributes in Rc are speci�ed. Moreover, note
that only data attributes Ai can be explicitly given
values. The classi�cation attributes Ci are all implic-
itly given the value c.

Let t be the tuple such that t[Ak] = ak ifAk is included
in the attributes list in the insert statement, t[Ak] =
null if Ak is not in the list, and t[Cl] = c for 1 � l � n.
The insertion is permitted if and only if:

1. t[A1] does not contain any nulls.

2. For all u 2 Rc : u[A1; C1] 6= t[A1; C1].

If so, the tuple t is inserted into Rc and by side e�ect
into all Rc0>c. This is moreover the only side e�ect
visible in any Rc0>c.

Thus, the insert statement works in a straightforward
manner. A c-user can insert a tuple t in Rc if Rc

does not already have a tuple with the same apparent
primary key value and key class as t. In the inserted
tuple, the access classes of all data attributes as well
as the tuple class are set to c.

3.2 The UPDATE statement

Our interpretation of the semantics of the UPDATE
command is close to the one in the standard relational
model: UPDATE command is used to change values in
tuples that are already present in a relation. It is a set
operator; i.e., all tuples in the relation which satisfy
the predicate in the update statement are to be up-
dated (provided the resulting relation satis�es polyin-
stantiation integrity). Since we are dealing with mul-
tilevel relations, we may have to polyinstantiate some
tuples; however, addition of tuples due to polyinstan-
tiation is to be minimized to the extent possible.

The UPDATE statement executed by a c-user has the
following general form, where c is implicitly deter-
mined to be the user's login class.

UPDATE Rc

SET Ai = si[; Aj = sj ] : : :
[WHERE p]

Here, sk is a scalar expression, and p is a predicate ex-
pression which identi�es those tuples in Rc that are to
be modi�ed. The predicate p may include conditions
involving the classi�cation attributes, in addition to
the usual case of data attributes. The assignments
in the SET clause, however, can only involve the data
attributes. The corresponding classi�cation attributes
are implicitly determined to be c.

The intent of the UPDATE operation is to modify
t[Ak] to sk in those tuples t inRc that satisfy the given
predicate p. In multilevel relations, however, we have
to implement the intent slightly di�erently in order
to prevent illegal information ows. In particular if
t[Ck] < c and t[Ak] 6= null the ?-property prevents

us from actually updating t[Ak] in place, since this
would amount to a write down. We must instead keep
both values of Ak.

k This is achieved by creating a
new tuple t0 in Rc which is identical to t except for
such attributes Ak in the UPDATE statement. As
discussed earlier the e�ect of the update must also be
propagated up to Rc0>c in a consistent manner. We
now make these statements precise.

3.2.1 E�ect of an UPDATE at the
User's Access Class

First consider the e�ect of an update operation by a
c-user on Rc. Let

S = ft 2 Rc : t satis�es the predicate pg

We describe the e�ect of the UPDATE operation by
considering each tuple t 2 S in turn. The net ef-
fect is obtained as the cumulative e�ect of updat-
ing each tuple in turn. The UPDATE operation will
succeed if and only if at every step in this process
polyinstantiation integrity is maintained. Otherwise
the entire UPDATE operation is rejected and no tu-
ples are changed. In other words UPDATE has an
all-or-nothing integrity failure semantics.

It remains to consider the e�ect of UPDATE on each
tuple t 2 S. There are two components to this e�ect.
Firstly, tuple t is replaced by tuple t0 which is iden-
tical to t except for those data attributes which are
assigned new values in the SET clause. This is the
familiar replacement semantics of UPDATE in single-
level relations. The formal de�nition of the tuple t0

obtained by replacement semantics is straightforward
as follows.

t0[Ak; Ck] =

�
t[Ak; Ck] Ak 62 SET clause
<sk; c> Ak 2 SET clause

Secondly to avoid signaling channels, we may need to
introduce an additional tuple t00 to hide the e�ects of
the replacement of t by t0 from users at levels below
c (c is the level of the user executing the UPDATE).
This will occur whenever there is some attribute Ak in
the SET clause with t[Ck] < c. The tuple t00 is de�ned
as follows.

t00[Ak; Ck] =

�
t[Ak; Ck] t[Ck] < c
<null; t[C1]> t[Ck] = c

Thus, each tuple t 2 S is replaced by t0 and possibly in
addition by t00 (if t00 exists and survives subsumption).
The update is successful if the resulting relation satis-
�es polyinstantiation integrity. Otherwise the update
is rejected and the original relation is left unchanged.
The readers should refer to [16] for additional expla-
nation.

kAnother alternative in such cases is to reject the UPDATE.
This amounts to denial-of-service to the c-user attempting this
UPDATE due to the actions of some user below c. This denial-
of-service may be acceptable in some situations, but it is not a
real general-purpose solution to the problem.



3.2.2 E�ect of an UPDATE Above the
User's Access Class

Next consider the e�ect of the update operation on
Rc0>c. This of course assumes that the update oper-
ation on Rc was successful. Unfortunately, the core
integrity properties do not uniquely determine how
an update by a c-user to Rc should be reected in
updates to Rc0>c. Several di�erent options have been
proposed [10, 16, 17, 18]. In this paper we will adopt
the minimal propagation rule [16] which introduces ex-
actly those tuples in Rc0>c that are needed to preserve
inter-instance property, i.e., put t0 and t00 (if t00 exists
and survives subsumption) in each Rc0>c and nothing
else. Alternate semantics are discussed in section 6.

Formally, the e�ect of the update operation is again
best explained by focusing on a particular tuple t in S.
Let Ak be an attribute in the SET clause such that:
(i) t[Ck] = c and (ii) t[Ak] = x where x is non-null.
That is the c-user is actually changing a non-null value
of t[Ak] at his own level to sk. Now consider Rc0>c.
Due to polyinstantiation there may be several tuples
u in Rc0>c which have the same apparent primary key
as t (i.e., u[A1; C1] = t[A1; C1]) and match t in the
Ak and Ck attributes (i.e., u[Ak; Ck] = t[Ak; Ck]). To
maintain polyinstantiation integrity we must therefore
change the value of u[Ak] from x to sk. This require-
ment is formally stated as follows.

1. For every Ak 2 SET clause with t[Ak] 6= null
de�ne U to be the set

fu 2 Rc0>c :
u[A1; C1] = t[A1; C1] ^
u[Ak; Ck] = t[Ak; Ck]

g

Polyinstantiation integrity dictates that we re-
place every u 2 U by u0 identical to u except
for

u0[Ak; Ck] = <sk; c>

This rule applies cumulatively for di�erent Ak's
in the SET clause.

This requirement is an absolute one and must be
rigidly enforced by the DBMS. The next requirement
is imposed by the inter-instance integrity property of
section 2.

2. To maintain inter-instance integrity we insert t0

and t00 (if it exists and survives subsumption) in
Rc0>c.

This second requirement is a weaker one than the �rst,
in that inter-instance integrity only stipulates what
minimum action is required. We can insert a num-
ber of additional tuples v in Rc0>c with v[A1; C1] =
t0[A1; C1] so long as the core integrity properties are
not violated. In particular if t0 subsumes the tuple
in �(fvg; c) inter-instance integrity is still maintained.
Minimal propagation makes the simplest assumption
in this case, i.e., only t0 and t00 are inserted in Rc0>c

and nothing else is done.

3.3 The DELETE statement

The DELETE statement has the following general
form:

DELETE
FROM Rc

[WHERE p]

Here, p is a predicate expression which helps identify
those tuples in Rc that are to be deleted. The intent
of the DELETE operation is to delete those tuples t
in Rc that satisfy the given predicate. But in view
of the ?-property only those tuples t that additionally
satisfy t[TC] = c are deleted from Rc. In order to
maintain inter-instance integrity polyinstantiated tu-
ples are also deleted from Rc0>c.

In particular, if t[C1] = c, then any polyinstantiated
tuples in Rc0>c will be deleted from Rc0>c, and so
the entity that t represents will completely disappear
from the multilevel relation. On the other hand with
t[C1] < c the entity will continue to exist in Rt[C1] and
in Rc0>t[C1].

4 DECOMPOSITION AND

RECOVERY

In this section, we give our decomposition and recov-
ery algorithms which have been formulated in terms
of update operations de�ned in the previous section.
Again due to space constraints we have chosen to give
an abstract description and complete formal statement
�rst and defer consideration of examples to section 5.

4.1 DECOMPOSITION

Our decomposition has for each multilevel relation
scheme

R(A1; C1; : : : ; An; Cn; TC)

a collection of single-level base relations

Dc(A1; C1; :::; An; Cn)

one for each access class c in the security class lattice.
This is in contrast to the SeaView decomposition [17]
and the Jajodia-Sandhu decomposition [13], both of
which require several single-level relations at each ac-
cess class (compare �gures 3 and 5 with �gure 6).

A c-user always sees and interacts with the c-instance
Rc. Whenever a c-user issues an insert, update, or
delete command against Rc, tuples are added, modi-
�ed, or removed from the underlying base relation Dc.
Any change in Rc must be properly reected in Rc0>c

(and in Dc0>c), but this is accomplished during the
recovery of a Rc0>c. Thus, when Dc is modi�ed as the
result of an update by a c-user, there are no changes
made to any other Dc0 , c0 6= c. Changes in Rc0>c due
to updates by c-users are accounted for by our recov-
ery algorithm which uses

S
c0�cDc0 to reconstruct a

Rc0>c.



4.1.1 The INSERT Statement

Suppose as a result of the INSERT statement given in
section 3.1 a c-user successfully inserts the following
tuple t in Rc: t[Ak] = ak if Ak is included in the
attributes list in the insert statement, t[Ak] = null if
Ak is not in the list, and t[Cl] = c for 1 � l � n. In
this case our decomposition will also insert the tuple
t into Dc.

There are no other insertions. Our recovery algorithm
will use

S
c0�cDc0 to reconstruct a Rc0>c, and since t

is in Dc, it will be in Rc0>c as well.

4.1.2 The UPDATE statement

We next consider the e�ect of an update operation by
a c-user on Rc. As we have indicated earlier, only Dc

will be modi�ed by our decomposition algorithm.

Suppose that a c-user successfully executes the update
statement in section 3.2. Once again, let

S = ft 2 Rc : t satis�es the predicate pg

For each t 2 S, there are two cases to consider:

1. t[A1; C1] = c. In this case there can be no
polyinstantiation of tuple t at the c level. There
is exactly one tuple u 2 Dc with u[A1; C1] =
t[A1; C1]. We replace u by the following tuple
u0: u0[A1; C1] = u[A1; C1] and for k 6= 1,

u0[Ak; Ck] =

�
<sk; c> Ak 2 SET clause
u[Ak; Ck] Ak 62 SET clause

Note that in this case u0[Cl] = c for 1 � l � n:

2. t[A1; C1] < c. In this case tuple t will be polyin-
stantiated at the c-level. There are two separate
subcases depending upon whether or not t has
been polyinstantiated at level c prior to the up-
date. These subcases are as follows.

(a) t is not polyinstantiated at level c prior to
the update. In this case there does not exist
a tuple u 2 Dc with u[A1; C1] = t[A1; C1].
(Note that the tuple class of t must be
strictly less than c.)
We add a tuple u to Dc where u is de�ned as
follows: u[A1; C1] = t[A1; C1] and for k 6= 1,

u[Ak; Ck] =

�
<sk; c> Ak 2 SET clause
<?; t[Ck]> Ak 62 SET clause

The symbol `?' is a special symbol which can
never be an actual value for an attribute. It
plays an important role during recovery as
we will see in a moment. Informally, a `?'
means that this value is to be obtained from
the corresponding tuple in Dt[Ck].

(b) t is polyinstantiated at level c prior to the
update. In this case there will be one or
more tuples u 2 Dc which satisfy the condi-
tion: u[A1; C1] = t[A1; C1], and for k 6= 1,
(i) if t[Ci] = c, then u[Ai; Ci] = t[Ai; Ci] and
(ii) if t[Ci] < c, then u[Ai; Ci] = <?; t[Ci]>.
For each tuple u which satis�es this condi-
tion we replace u by the following tuple u0:
u0[A1; C1] = u[A1; C1] and for k 6= 1,

u0[Ak; Ck] =

�
<sk; c> Ak 2 SET clause
u[Ak; Ck] Ak 62 SET clause

4.1.3 The DELETE statement

Finally, suppose a c-user executes the DELETE state-
ment given in Section 3.3, and as a result all tuples t
that satisfy the predicate p and t[TC] = c are deleted
from Rc. In terms of the decomposition, for each such
t, we delete fromDc the tuple u which satis�es the fol-
lowing condition: u[A1; C1] = t[A1; C1], and for k 6= 1,
(i) if t[Ci] = c, then u[Ai; Ci] = t[Ai; Ci] and (ii) if
t[Ci] < c, then u[Ai; Ci] = <?; t[Ci]>.

4.1.4 Summary

To summarize then, whenever a c-user updates the in-
stance Rc, all changes are con�ned to the underlying
base relation Dc. These changes leave ripple marks on
Rc0>c, but this is accomplished when an Rc0>c is con-
structed using our recovery algorithm to be described
next.

4.2 RECOVERY ALGORITHM

We are now prepared to give our recovery algorithm.
To recover the instance Rc at an access class c, follow-
ing steps are taken:

1. Form the union
S
c0�cDc0 . Extend each tuple t

in the result by appending to it its tuple class
computed as t[TC] = lubft[Ci] : i = 1 : : :ng. Call
the end result Rc.

2. Next apply the following Key Deletion Rule to
Rc:

Let t1 2 Rc be such that t1[C1] < c and Rc does
not contain a t2 such that t2[A1; C1] = t1[A1; C1]
and t2[TC] = t1[C1]. Then we delete t1 from Rc.
If t1[TC] = c, then we delete t1 from Dc as well.

(Comment. The motivation for the key deletion
rule is that a low user has deleted the tuple key.
We therefore delete all higher tuples with that
low key as well. Clearly t1 is no longer needed
and its elimination amounts to garbage collection.
We could alternately place tuples such as t1 in a
separate relation and have them examined by a
suitably cleared subject before physically purging
them from the database.)



3. Apply the following ?-replacement rule to Rc:

Let t be a tuple in Rc with t[Ak] = `?'. There are
two cases.

(a) There is a tuple u 2 Rc with u[A1; C1] =
t[A1; C1] and TC[u] = t[Ck].
In this case we replace `?' in t[Ak] by u[Ak].

(b) There does not exist a tuple u 2 Rc with
t[A1; C1] = u[A1; C1] and TC[u] = t[Ck].
In this case we replace `?' by `null' in t[Ak].

4. Finally, make Rc subsumption-free by removing
all tuples s such that for some t 2 Rc and for
all i = 1 : : :n either (i) t[Ai; si] = s[Ai; si] or (ii)
t[Ai] 6= null and s[Ai] = null.

4.3 PROOF OF CORRECTNESS

It is easy to intuitively see why our algorithms are cor-
rect. Consider for example the INSERT statement.
If a tuple t is inserted in Rc, it is also inserted in
Dc. Since our recovery algorithm uses

S
c0�cDc0 to

reconstruct Rc, t will be in the reconstructed rela-
tion. Similarly, in case of an UPDATE, any changes
made to a tuple t in Rc are preserved in the corre-
sponding tuple in Dc. Finally for DELETE, when a
tuple t with t[C1] = c is deleted from Rc, it is also
deleted from Rc0>c. Although in our decomposition,
the corresponding tuple is deleted only from Dc, not
from Dc0>c, when we recover a Rc0>c, the correspond-
ing tuples in Dc0>c are deleted using the key deletion
rule. These arguments can be formalized; a complete
proof is omitted due to lack of space.

It is also easy to see that our algorithms are free of
downward signaling channels because all actions a c-
user will only directly impact Dc, will never impact
Dc0<c or Dc0�c and will impact Dc0>c only during the
key deletion phase of recovery. Furthermore any Rc is
recovered solely from

S
c0�cDc0 .

5 EXAMPLES

In this section, we give several examples to illustrate
the update semantics as well as our decomposition and
recovery algorithms.

5.1 The INSERT statement

To illustrate how the INSERT statement works, con-
sider SODU and DU as shown in �gure 7. Suppose a
U-user wishes to insert a second tuple to SODU. He
does so by executing the following insert statement.

INSERT
INTO SOD
VALUES (`Voy', `Exp', `Mars')

As a result of the above insert statement, SODU and
DU will change to the relations shown in �gure 8. If
we wish to recover SODU, after step 1 of the recovery
algorithm SODU is identical to DU of �gure 8. Since
steps 2, 3, and 4 of the recovery algorithm make no
changes to SODU, we have the desired result.

5.2 The UPDATE statement

To illustrate the e�ect of an UPDATE statement, con-
sider the instance SODU and the corresponding base
relation DU given in �gure 9. Let the instance SODS
be identical to SODU, in which case DS is empty, as
shown in �gures 10. Suppose an S-user makes the fol-
lowing update to SODS.

UPDATE SOD
SET DEST = `Rigel'
WHERE SHIP = `Ent'

Using our update semantics then SODS will have one
tuple, as shown in �gure 11, and by step 1 of our de-
composition algorithm, DS, which was empty prior to
this update, will have a single tuple, call it u, as shown
in �gure 11. Notice that u contains the pair <?,U>
which indicates that during the recovery, `?' is to be be
replaced by the attribute value in the corresponding
U-tuple. Speci�cally, let us use the recovery algorithm
to reconstruct SODS. The �rst step of the algorithm
forms the union of relations DU and DS in �gures 9
and 11. Since the key deletion rule does not apply, we
move to step 3 (?-replacement rule) of the recovery
algorithm, which will replace <?,U> in u by <Exp,
U> (i.e., the corresponding attribute values for `Ent'
in the lower level relation DU in �gure 9). After the
union is made subsumption-free (step 4), we end up
with the instance SODS in �gure 11, as desired.

Next, suppose an U-user executes the following com-
mand against SODU shown in �gure 9:

UPDATE SOD
SET DEST = `Talos'
WHERE SHIP = `Ent'

As a result of this update, our decomposition algo-
rithm only modi�es DU from the instance in �gure 9
to the one in �gure 12. Readers should verify that
if we use our recovery to obtain SODS we obtain the
instance given in 13, although no changes were made
to the underlying DS as a result of the above update.
Of course, SODU will change to the relation shown in
�gure 12.

Finally, suppose starting with the instance SODS
shown in �gure 13 a S-user invokes the following up-
date.

UPDATE SOD
SET OBJ = `Spy'
WHERE SHIP = `Ent' AND

DEST = `Rigel'

Using our update semantics, the SODS will change to
the instance given in �gure 14, not to the instance
given below.

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Exp U Rigel S S
Ent U Spy S Rigel S S



SHIP OBJ DEST TC

Ent U Exp U Talos U U

SHIP OBJ DEST

Ent U Exp U Talos U

Figure 7: SODU and DU

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Voy U Exp U Mars U U

SHIP OBJ DEST

Ent U Exp U Talos U
Voy U Exp U Mars U

Figure 8: SODU and DU after INSERT

SHIP OBJ DEST TC

Ent U Exp U null U U

SHIP OBJ DEST

Ent U Exp U null U

Figure 9: SODU and DU

SHIP OBJ DEST TC

Ent U Exp U null U U

SHIP OBJ DEST

Figure 10: SODS and DS

SHIP OBJ DEST TC

Ent U Exp U Rigel S S

SHIP OBJ DEST

Ent U ? U Rigel S

Figure 11: SODS and DS after UPDATE by S-User

SHIP OBJ DEST TC

Ent U Exp U Talos U U

SHIP OBJ DEST

Ent U Exp U Talos U

Figure 12: SODU and DU after UPDATE by U-User

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Exp U Rigel S S

SHIP OBJ DEST

Ent U ? U Rigel S

Figure 13: SODS and DS after UPDATE by U-User

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Spy S Rigel S S

SHIP OBJ DEST

Ent U Spy S Rigel S

Figure 14: SODS and DS after UPDATE by S-User



This follows from our underlying philosophy: we need
to polyinstantiate to either close a signaling channel or
provide a cover story. In terms of the decomposition
DS will change from the instance in �gure 13, to the
one in �gure 14. We leave it to the reader to verify
that our recovery algorithm operates correctly.

5.3 The DELETE statement

To illustrate how the DELETE statement works, sup-
pose a U-user executes the following DELETE state-
ment against the relation SODU shown in �gure 12.
(Assume S-users see the instance given in �gure 13,
DU is as in �gure 12 and DS is as in �gure 13.)

DELETE
FROM SOD
WHERE SHIP = `Ent'

Following our DELETE semantics not only will SODU
become empty, SODS will become empty as will. As
a consequence of the above DELETE, our decompo-
sition algorithm will make DU in �gure 12 empty.
Reader should verify that although DS (shown in �g-
ure 13) does not change, if we were to recover SODS
at this point, the key deletion rule in the recovery al-
gorithm will delete the tuple for the starship `Ent.'

6 OPTIONS AND EXTENSIONS

As we indicated earlier, the core integrity properties
do not uniquely determine how an update by a c-user
to Rc should be propagated to Rc0>c, and several dif-
ferent options have been proposed. This section dis-
cusses the relationship between our algorithms and
these options.

Our algorithms can accommodate the SeaView MVD
requirement [3, 4, 17] most easily. No changes are re-
quired in the decomposition algorithm; only recovery
algorithm needs to be modi�ed. Steps 1 and 2 of the
recovery algorithm remain the same as before. Steps
3 and 4 are changed as follows:

30. For each i; 2 � i � n, repeat the following:

Whenever t1 and t2 are two tuples in Rc such
that t1[A1; C1] = t2[A1; C1], we add to Rc tuples
t3 and t4 de�ned as follows:

t3[A1; C1] = t1[A1; C1]

t3[Ai; Ci] = t1[Ai; Ci]

t3[Aj; Cj] = t2[Aj; Cj]; 1 < j � n; j 6= i

t4[A1; C1] = t1[A1; C1]

t4[Ai; Ci] = t2[Ai; Ci]

t4[Aj; Cj] = t1[Aj; Cj]; 1 < j � n; j 6= i

40. Delete fromRc any tuple that has a `?' as a value.

50. Same as step 4 of the original algorithm.

Our decomposition as well as recovery algorithms will
have to be modi�ed to accommodate the single tuple
per tuple class approach of [19] or the closely related
single maintenance level attribute approach adopted
by the LDV model [10, 21]. These modi�cations are
straightforward.

This brings us to the dynamic mvd requirement pro-
posed in [18]. It too will require modi�cations to both
our decomposition and recovery algorithms along the
lines discussed in [15]. The major di�erence is that in
the single-level relations Dc we will sometimes require
`?' for classi�cation attributes (rather than just for
data attributes as in section 3). Details on the exact
modi�cations are omitted due to lack of space.

It is also possible to have a single decomposition al-
gorithm for updates and realize the several alternate
semantics discussed above (and others from the liter-
ature) by varying only the recovery algorithm. Again
due to limitation of space we are unable to elaborate
on this idea here.

7 SEMANTICS OF POLYINSTAN-

TIATION

A power of a data model is determined by its abil-
ity to accurately represent requirements of di�erent
users. It is important, therefore, that a data model
be exible and general enough so that it can support
the needs of all applications over a long period of time
(due to longevity of databases). Constraints are also
important in a data model. They provide necessary re-
strictions on database instances: those that satisfy the
constraints are allowable, while those that do not are
not allowable. They are needed for integrity reasons
in traditional databases, and additionally, for security
reasons in multilevel secure databases.

In a data model, there are two basic types of con-
straints: inherent constraints and explicit constraints
(see, for example, [22]). The former type of constraint
is an integral part of the structure of the data model.
For example, in the hierarchical model all relationships
must be in the form of a tree; in the relational model
all data must be stored in a tabular form. Another
inherent constraint in the relational model is that du-
plicate tuples are not permitted in a relation (which
translates into the requirement that each relation must
have a key).

Unlike inherent constraints which are quite rigid, the
explicit constraints provide a exible mechanism for
augmenting the set of inherent constraints with addi-
tional constraints that further restrict the set of al-
lowable database states. A big advantage of the re-
lational model over other data models (hierarchical,
network, and others) is that it has very few inher-
ent constraints, viz., entity integrity and referential
integrity. All other constraints are in the form of ex-
plicit constraints which allows a great deal of freedom
in terms of representing requirements of di�erent ap-
plications.

It is our view that we should try our best to preserve
this advantage when we move to the multilevel secure



relational model. There is a need to keep inherent
constraints to a minimum, while allowing for a wider
variety of explicit constraints which can be added on
a relation to relation basis. With the functional de-
pendency condition as the only inherent requirement
for polyinstantiation integrity (i.e., property 4 of sec-
tion 2), a user has the maximum possible exibility
of being able to represent as many instances as pos-
sible. If we need to further restrict these instances,
we can always do so by imposing additional explicit
constraints on them.

In this respect we are particularly troubled by some
of the proposals being made for update semantics in
prototypes of multilevel relational DBMS's. While we
believe these semantics are acceptable as options in
certain speci�c situations, we object to e�orts to build
these semantics into the data model and impose them
on each and every application.

As a concrete illustration of our concern consider the
dynamic mvd PI property of [18] which has been pro-
posed as a replacement for the original mvd PI prop-
erty of SeaView [3, 4, 17] in response to criticism of
the latter in [15]. To understand the implications of
dynamic mvd consider the relation SOD given in �g-
ure 15 where it is shown that initially U, C, and S users
see the same data. Now suppose a S-user executes the
following update.

UPDATE SOD
SET DEST = `Rigel'
WHERE SHIP = `Ent'

As per our earlier discussion SODS changes to the in-
stance shown in �gure 16 while SODU and SODC re-
main unchanged as in �gure 15.

Next suppose a C-user executes the following update.

UPDATE SOD
SET OBJ = `Spy'
WHERE SHIP = `Ent'

Now SODC will change from �gure 15 to �gure 17.

The question arises as to how this change should prop-
agate to SODS. With the minimal propagation rule of
section 3 the e�ect on SODS is as shown in �gure 18.
With the dynamic mvd rule of [18] the e�ect on SODS
is as shown in �gure 19. The di�erence in this exam-
ple lies in the bottommost tuple of �gure 19 which is
not present in �gure 18. In more elaborate examples
these extra tuples multiply rapidly.

The justi�cation given by [18] for the dynamic mvd
amounts to the argument that if the two update state-
ments above were executed in the opposite order, i.e.,
the C-user went �rst followed by the S-user, then
SODS would go from �gure 15 to �gure 17 and then to
�gure 19. The dynamic mvd is therefore introduced to
keep the semantics of update order independent. (It
should be noted that for this opposite order of updates
the update semantics of section 3 will also take SODS
from �gure 15 to �gure 17 and then to �gure 19.)

SHIP OBJ DEST TC

Ent U Exp U Talos U U

Figure 15: Initial SODU = SODC = SODS

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Exp U Rigel S S

Figure 16: Updated SODS

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Spy C Talos U C

Figure 17: Updated SODC

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Spy C Talos U C
Ent U Exp U Rigel S S

Figure 18: Updated SODS by minimal propagation

SHIP OBJ DEST TC

Ent U Exp U Talos U U
Ent U Spy C Talos U C
Ent U Exp U Rigel S S
Ent U Spy C Rigel S S

Figure 19: Updated SODS by dynamic mvd



We �nd the justi�cation of order independence for dy-
namic mvd to be quite unacceptable in general, be-
cause there are many situations where order depen-
dence is important. In a speci�c situation one might
argue that the order independence of dynamic mvd's
is the required semantics. However, this is properly an
issue of application semantics to be determined by the
Database Administrator and not something that one
embeds as a fundamental property of a data model.

In fact the most common situation in database sys-
tems is that order of updates is extremely signi�cant.
Two familiar examples are given below.

Example 1. Consider that one transaction gives a 5%
raise to all employees. This is followed by a second
transaction which enrolls a new employee with a spec-
i�ed salary. It is unlikely that any organization would
want the new employee to get a 5% raise. However
if the semantics of update are order independent this
will happen. After all if the two transactions executed
in the opposite sequence the new employee would get
a raise.

Example 2. Consider a debit transaction followed by
a credit transaction on an account. Suppose the debit
transaction is rejected due to insu�cient balance. Also
suppose the subsequent credit transaction raises the
account balance su�ciently so that the previous debit
transaction would have succeeded. That is if the trans-
actions had executed in the opposite sequence both
would succeed. Clearly no organization can a�ord
to have order-independent update semantics in such
cases.

There are any number of such examples which can be
described and their extension to multilevel relations is
straightforward.

8 CONCLUSION

In this paper we have described a new decomposition
algorithm that breaks a multilevel relation into single-
level relations and a new recovery algorithm which
reconstructs the original multilevel relation from the
decomposed single-level relations. We have demon-
strated that there are several novel aspects to our de-
composition and recovery algorithms which provide
substantial advantages over previous proposals. We
have also made the case that some of the alternate
update semantics which have been proposed|notably
the dynamic mvd of [18]|should be available as op-
tions but should certainly not be made an integral part
of the data model.

Several researchers [1, 5, 7, 8, 12] have expressed con-
cern about the expected performance of database sys-
tems based on kernelized architecture. We believe that
the new decomposition algorithm can be e�ectively
used to alleviate many of these concerns. As part of
our future work, we will develop a stochastic model
that is powerful enough to help us measure the actual
performance improvements.

Acknowledgment

We are indebted to John Campbell, Joe Giordano and
Howard Stainer for their support and encouragement,
making this work possible. The opinions expressed in
this paper are of course our own and should not be
taken to represent the views of these individuals.

References

[1] \Multilevel Data Management Security," Com-
mittee on Multilevel Data Management Secu-
rity, Air Force Studies Board, National Research
Council, Washington, DC (1983).

[2] Date, C.J. An Introduction to Database Systems.
Volume II, Addison-Wesley, (1983).

[3] Denning, D.E., Lunt, T.F., Schell, R.R., Heck-
man, M., and Shockley, W.R. \A Multilevel Re-
lational Data Model." Proc. IEEE Symposium on
Security and Privacy, 220-234 (1987).

[4] Denning, D.E., Lunt, T.F., Schell, R.R., Shock-
ley, W.R. and Heckman, M. \The SeaView Secu-
rity Model." Proc. IEEE Symposium on Security
and Privacy, 218-233 (1988).

[5] Froscher, J. N. and Meadows, C., \Achieving
a Trusted Database Management System Us-
ing Parallelism," Database Security, II: Status
and Prospects, Landwehr, C.E. (editor), North-
Holland, pages 151-160 (1989).

[6] Garvey, C. \Multilevel Data Storage Design."
TRW Defense Systems Group (1986).

[7] Garvey, C., Hinke, T., Jensen, N., Solomon, J.,
and Wu, A., \A Layered TCB Implementation
Versus the Hinke-Schaefer Approach," Database
Security, III: Status and Prospects, Spooner, D.
L. and Landwehr, C. (editors), North-Holland,
pages 151-165 (1990).

[8] Graubart, R., \A Comparison of Three Se-
cure DBMS Architectures," Database Security,
III: Status and Prospects, Spooner, D. L. and
Landwehr, C. (editors), North-Holland, pages
167-190 (1990).

[9] Grohn, M.J. \A Model of a Protected Data Man-
agement System." Technical Report ESD-TR-76-
289, I.P. Sharp Associates Ltd., (1976).

[10] Haigh, J. T., O'Brien, R. C., and Thomsen, D.
J. \The LDV Secure Relational DBMS Model."
Database Security IV: Status and Prospects, Ja-
jodia, S. and Landwehr, C. (editors), North-
Holland, to appear.

[11] Hinke T.H. and Schaefer M. \Secure Data Man-
agement System." Technical Report RADC-TR-
75-266, System Development Corporation (1975).



[12] Jajodia, S. and Kogan, B. \Transaction Process-
ing in Multilevel-Secure Databases Using Repli-
cated Architecture," IEEE Symp. on Research in
Security and Privacy, Oakland, Calif., May 7-9,
pages 360-368 (1990).

[13] Jajodia, S. and Sandhu, R.S. \Polyinstantiation
Integrity in Multilevel Relations." Proc. IEEE
Symposium on Security and Privacy, Oakland,
California, May 1990, pages 104-115.

[14] Jajodia, S. and Sandhu, R.S. \A Formal Frame-
work for Single Level Decomposition of Multilevel
Relations." Proc. IEEE Workshop on Computer
Security Foundations, Franconia, New Hamp-
shire, June 1990, pages 152-158.

[15] Jajodia, S. and Sandhu, R.S. \Polyinstantia-
tion Integrity in Multilevel Relations Revisited."
Database Security IV: Status and Prospects, Ja-
jodia, S. and Landwehr, C. (editors), North-
Holland, to appear.

[16] Jajodia, S. , Sandhu, R.S., and Sibley E., \Up-
date Semantics of Multilevel Relations."Proc. 6th
Annual Computer Security Applications Conf.,
Tucson, AZ, December 1990, pages 103-112.

[17] Lunt, T.F., Denning, D.E., Schell, R.R., Heck-
man, M. and Shockley, W.R. \The SeaView Se-
curity Model." IEEE Transactions on Software
Engineering, 16(6):593-607 (1990).

[18] Lunt, T.F. and Hsieh, D. \Update Semantics for
a Multilevel Relational Database." Database Se-
curity IV: Status and Prospects, Jajodia, S. and
Landwehr, C. (editors), North-Holland, to ap-
pear.

[19] Sandhu, R.S., Jajodia, S. and Lunt, T. \A
New Polyinstantiation Integrity Constraint for
Multilevel Relations." Proc. IEEE Workshop on
Computer Security Foundations, Franconia, New
Hampshire, June 1990, pages 159-165.

[20] Schkolnick, M. and Sorenson, P. \The E�ects
of Denormalization on Database Performance."
The Australian Computer Journal, 14(1):12-18
(February 1982).

[21] Stachour, P. D. and Thuraisingham B. \Design
of LDV: A Multilevel Secure Relational Database
Management System." IEEE Trans. on Knowl-
edge and Data Engineering, 2(2):190-209 (June
1990).

[22] Tsichritzis, D. C. and Lochovsky, F. H. Data
Models. Prentice-Hall, (1982).


