
Authorization Federation in IaaS Multi Cloud

Navid Pustchi
Institute for Cyber Security
Department of Computer

Science
Univ of Texas at San Antonio
tam498@my.utsa.edu

Ram Krishnan
Institute for Cyber Security

Department of Electrical and
Computer Engineering

Univ of Texas at San Antonio
ram.krishnan@utsa.edu

Ravi Sandhu
Institute for Cyber Security
Department of Computer

Science
Univ of Texas at San Antonio
ravi.sandhu@utsa.edu

ABSTRACT
As more and more organizations move to cloud, it is in-
evitable that cross-organizational collaboration will need to
be supported in the cloud. In this paper, we explore mod-
els for collaboration among clouds whose resources are dis-
tributed across multiple cloud service providers. In particu-
lar, we focus on collaboration and sharing of resources in an
infrastructure as a service cloud, where compute resources
complemented with storage and networking are offered as
a service to customers by cloud service providers. We de-
velop a multi-cloud trust model at different scopes of ad-
ministration. At cloud level, infrastructure resources can
be shared between clouds. At lower administrative scopes,
cloud service providers are able to share their resources and
service instances among customers within multiple clouds.
Finally, we formally specify the administrative aspects of
multi-cloud collaboration models we develop. We have im-
plemented a proof of concept prototype based on the ad-
ministrative model of OpenStack, the de facto open-source
software for building infrastructure as a service clouds.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Access Controls; H.3.5 [Information Storage and Re-
trieval]: Online Information Services—Data sharing

Keywords
Cloud Computing; Multi Cloud; Authorization Federation;
Cloud Federation; Distributed Access Control; Security; Trust
Management.

1. INTRODUCTION
Cloud computing is revolutionizing the way organizations
avail IT resources. Its service models and on-demand fea-
tures have been embraced by cloud service consumers and
motivated enterprises to move towards integrating their com-
puting resources into cloud. Cloud computing pay-per-use
business model can lower costs for organizations, and its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SCC’15, April 14-17, 2015, Singapore, Singapore
Copyright 2015 ACM 978-1-4503-3447-1/15/04 ...$15.00.
http://dx.doi.org/10.1145/2732516.2732523

agile infrastructure leads to modulated investment for busi-
nesses. Elasticity and low-maintenance cost makes it attrac-
tive for organizations to deploy their resources in cloud.

There are two main scenarios that arise for multi-cloud col-
laboration. Firstly, as organizations move more and more
of their IT resources to cloud, it is likely that collabora-
tion activities with other organizations will need to occur in
the cloud platform as well, since many resources of organiza-
tions will be hosted in the cloud. Secondly, a relatively large
organization might utilize multiple cloud service providers
for reasons including availability and reliability, and hence
will need the ability to consolidate resources across multiple
cloud service providers for day to day operations. This sit-
uation may also arise due to merger and acquisitions where
the underlying companies are deployed on different cloud
providers.

In order to make use of services from multiple clouds a re-
ality, several technical barriers need to be resolved. The
research community is beginning to establish architectures
and standards for collaboration across multiple clouds [3,
18, 19, 20]. Collaboration activity in multi-cloud is primar-
ily concerned about what operations that users who belong
to a customer in one cloud can perform on resources owned
by a customer in another cloud. Thus a critical challenge in
facilitating multi-cloud collaboration is to allow customers
across multiple clouds to precisely control what resources
they are willing to share with other customers, and what
operations are authorized on those shared resources.

In this paper we focus on trust models for collaboration
across multiple infrastructure as a service (IaaS) cloud ser-
vice providers [13]. We assume cloud collaborations we are
dealing with are all on homogeneous platforms, i.e., running
the same cloud IaaS system. This allows us to focus more
on the trust models for multiple cloud, and bypass integra-
tion issues regarding operations of different clouds. To be
concrete we utilize OpenStack [16], the open-source cloud
platform for IaaS, for our discussion.

To motivate the problem, we use an example illustrated in
Figure 1, in which an inter-university research community is
formed. We use The European Organization for Nuclear Re-
search (CERN) example where the amount of data captured
currently is 110 petabytes and 50 petabytes are added each
year. The amount of data stored in participating institutes
is so large that transmitting data to perform analysis is not

practical. Moreover adding accounts for all the participating
institutes’ users in each individual cloud is also impractical.

Figure 1: A Multi-Cloud Collaboration Example

A natural way to solve the issue is to get institutes collabo-
rating together to form an inter-university research commu-
nity called CERN. We have two CERN member universities
Acme and Zenith running OpenStack as their cloud plat-
form. Bob is a professor in physics domain in Zenith. For
Bob to properly perform his analysis he should have access
to Acme Cloud’s project Condensed Matter. There should
be cross-cloud access which enables Bob to perform his anal-
ysis. This can allow Bob to create a virtual machine (VM)
in Acme cloud’s Condense Matter project and perform anal-
ysis. Meanwhile David a postdoc in Acme Cloud requests
to access Molecular domain in Zenith Cloud which he nor-
mally cannot access with current specifications of cloud sys-
tems such as OpenStack. This example is a typical use case
for collaboration among multiple cloud providers. There are,
similar use cases such as an organization which has resources
distributed across multiple cloud service providers for cer-
tain security reasons and wishes to merge the administrative
controls over all resources while each cloud still has separate
administration. By enabling cross-cloud access we achieve
the following benefits.

• We eliminate the need to provision users in every col-
laborating organization.

• Inter-cloud and intra-cloud assignments are differenti-
ated and administered separately.

• Each participating organization has some degree of
control over organizations’ relationship.

The remainder of this paper is organized as follows. Sec-
tion 2 characterizes federation, cloud federation, and multi-
cloud, and defines a trust framework and scope of collabo-
ration. Accordingly multi-cloud trust model and formaliza-
tion of administrative models are presented. In Section 3
implementation of proposed model is discussed. Section 4
discusses related work and section 5 gives our conclusions.

2. MULTI CLOUD COLLABORATION
In real life, collaboration among organizations is inevitable
due to growing challenges of global competition, rapid changes
and increasing complexity of organizational structures. Or-
ganizations should be able to quickly come together and
collaborate to solve a specific problem or exploit a specific
opportunity. Such a group of collaborative organizations

forms a federation. A federation can be defined as an orga-
nizational structure where multiple organizations have set
up collaborative agreements [6]. Each organization has a
separate administration and domain bounded to other orga-
nizations by trust agreements. The concept of federation has
a long and varied history in computer systems. Just as one
example, the notion of virtual organizations [15] has been
developed in the distributed systems and grid computing
communities going back almost two decades. It is beyond
the scope of this paper to give a comprehensive review of
federation in computer systems.

Our focus in this paper is on cloud federation. For sim-
plicity we will henceforth understand the term federation to
mean cloud federation. Cloud federation is a multi-faceted
concept and has been treated in different ways in the liter-
ature. A cloud federation can be defined as a collaboration
of cloud service providers and identity providers in order to
share their services and resources within participating clouds
based on trust agreements. In the following we characterize
cloud federation which is compliant with NIST definition
of cloud computing [14]. We can distinguish cloud feder-
ations based on type of service, platform, trust, and cou-
pling offered in a federation. For our purpose in this paper,
cloud federation can be described by specific characteristics
in terms of service, platform, trust and coupling of services,
as shown in Figure 2. The indicated red path is the one we
are particularly focussed on in this paper.

Figure 2: Characteristics of Cloud Federation

Service (IaaS vs PaaS vs SaaS). Cloud federation ser-
vice models illustrate the homogeneity or heterogeneity of
services offered to federated cloud participants. In IaaS, ser-
vices are generally homogeneous because services are gener-
ally computation, storage, networks, etc. Whereas, in PaaS
and SaaS the services offered can be heterogeneous as well.
For example, Google account (OpenID 2.0) is a heteroge-
neous federation within the Google organization for different
services from email and storage to mobile payment.

Platform (Heterogeneous vs Homogeneous). Cloud
federation deployment models such as Private, Public and
Hybrid clouds, based on their platform can form homoge-
neous or heterogeneous cloud federations. For example, a
federation of an OpenStack Private cloud and an OpenStack
Public cloud would form a homogeneous multicloud. On the
other federation of an OpenStack Private cloud with a pro-

prietary Public cloud such as AWS or Azure would form a
heterogeneous multicould.

Trust (Circle-of-Trust vs Peer-to-Peer). In a cloud
federation trust relations among federating cloud members
defines the type of collaboration that is enabled. In Circle-
of-Trust type of federation, a group of clouds shares specific
resources where trust relationships are usually established
by a set of contracts defining the obligations and rights each
party has. Adding additional clouds requires all cloud fed-
eration members to agree on trusting the new member [11].
CERN is such a cloud federation in which institutions join-
ing its Circle-of-Trust can gain certain access to analytic
data and computation resources across its cloud federation
members. In a Peer-to-Peer trust agreement, the trust is
established between each two members. In the commercial
setting, federating clouds with peer-to-peer trust is more
appropriate due to limited trust, and presumably enhanced
security. Identity federation proposed by Chadwick et al [5]
in OpenStack Icehouse [17] is such an example, wherein an
identity provider can federate its users to OpenStack. Key-
stone (OpenStack identity service) to Keystone federation in
the OpenStack Juno release enables two OpenStack clouds
to form a federation with Peer-to-Peer trust.

Coupling (Authentication vs Authorization). In a
cloud federation users from a cloud should be able to ac-
cess services from trusted clouds. Authentication federation
and authorization federation are concerned with such mech-
anisms. Authentication federation is concerned with mecha-
nisms to authenticate users in clouds other than their home
cloud (where they are initially authenticated). Authoriza-
tion federation, on the other hand, is concerned with mech-
anisms to determine which authenticated users from trusted
clouds have access to which resources in federated service
providers. It is necessary for both participating clouds to
have some degree of control over the authorization of feder-
ated user’s access to shared resources. We further discuss
these concepts in the following sections.

Cloud federation is a broad term which includes federations
of clouds and identity providers. Multi-cloud has been used
in the literature [20] extensively as a federation term as well.
For our purpose multi-cloud is a cloud federation where all
collaborating members are exclusively clouds. In particular,
we do not consider a cloud and an external identity provider
to constitute a multi-cloud. Specifically, we define multi-
cloud as a collaboration of multiple cloud service providers
(Private or Public) within different administrative domains
to provide integrated services at different service models (In-
frastructure, Platform and Software). In this paper, we fo-
cus on authorization federation in homogeneous multi-cloud
systems in Infrastructure as a Service as highlighted in red
in Figure 2. Whether a multi-cloud is a Circle-of-Trust or
Peer-to-Peer, it is important to characterize the trust rela-
tions among clouds in a multi-cloud environment. Figure 3,
characterizes potential trust relations between two clouds in
a multi-cloud. In this paper, we identify what a simple yet
very useful Peer-to-Peer trust relation means in cross-cloud
authorization, and how the trust relation interacts with the
existing intra-cloud access control model.

Figure 3: Trust Characteristics

When a trust relation is initiated, if both trustor and trustee
agreement on trust establishment is required, then the trust
is regarded as bilateral, otherwise it is unilateral. In Peer-
to-Peer trust both initiation types are possible, but in a
Circle-of-Trust, the initiation should be confirmed by all
federation members. Consequently, it is a bilateral (actu-
ally multilateral) trust relation. In a trust relation, when
both participating clouds are equally enabled by the trust,
it is considered bidirectional. Conversely, in a unidirectional
trust, the actions are available only on one side or the other.
Unilateral trust should typically leads to a unidirectional
trust, whereas bilateral trust can be bidirectional or unidi-
rectional. In a multi-cloud federation such as A, B and C, if
A trusts B and B trusts C implies A trusts C, then trust is
said to be transitive. Otherwise, the trust is non-transitive.
In this paper, trust relations in multi-clouds are specified as
Peer-to-Peer, unilateral, unidirectional and non-transitive.
Moreover, they are reflexive meaning each cloud trusts it-
self.

In this section, we discus authentication federation in 2.1. In
section 2.2, authorization federation within a homogeneous
multi-cloud system, trust types and administrative bound-
aries are discussed. We propose our multi-cloud trust model
in section 2.3. The administrative model formalization is
presented in section 2.4.

2.1 Authentication Federation
The basic concept of authentication federation is trusted
relationship between identity providers and service providers
(who themselves can also be identity providers). Federation
Identity Management has been widely researched, providing
solutions by enabling propagation of identity information to
services located in different administrative domains [4, 5].

For our purpose, we define identity federation in multi-cloud
as authenticating users in a cloud service provider other than
their registered identity provider based on existing trust be-
tween the two parties. Several frameworks have been devel-
oped such as SAML 2.0 [10], Liberty Identity Web Services
Framework (ID-WSF) 2.0 [23], and WS-Federation [1] to
enable authentication federation. Currently, proposed solu-
tions for federation in cloud platforms such as OpenStack
federation, use SAML for exchanging authentication data
between federated parties.

2.2 Authorization Federation
Authentication data in authentication federation will gen-
erally include some authorization information. In practice,
however, the two parties typically have to manually pro-

gram the translation of authorization data from one cloud
to the other, which is labor intensive and error-prone. This
requires special privileges in the identity accepting cloud,
contrary to the self-service spirit of cloud computing.

It is clear that a provider wants to control access to its re-
sources in a multi-cloud system. Mechanisms to deal with
access rights of identities, must enable mapping and admin-
istration of access control policies from user’s cloud to service
providers within existing trust without requiring special pro-
visioning. In other words multi-cloud sharing mechanisms
must retain the essential self-service nature of cloud services.

We define authorization federation as assigning authenti-
cated users to resources based on trust relations in a multi-
cloud federation. Authorization federation in multi-cloud
must be adoptable (with minimal modifications by current
cloud platforms), decentralized, scalable (each cloud may
have multiple trust relations), dynamic (federation can be
established and ended at any time), and reflective (any ad-
ministrative changes in user-role assignments locally reflects
related cross-cloud assignments).

Currently, authorization protocols such as OAuth [9] enables
a simple way to verify the access level of a request for a web
service. Such authorization protocols provide a mechanism
for application users to delegate access to a third-party to
work on behalf of the user (within authorization server and
token delegation). Such mechanisms could be suitable in
authorization federation within SaaS service models. How-
ever, they are not suitable for IaaS service models. Recently,
OpenStack Keystone’s federation extension for Juno release,
introduced a SAML generator to map token permissions to
SAML assertions and a mapping engine to map these asser-
tions to groups (in OpenStack a group is simply a collection
of users) and roles on service provider side. This enables
each cloud administrator to map local users and groups to
trusted cloud’s users and groups manually for each trust re-
lation in Peer-to-Peer multi-cloud federation within Open-
Stack clouds. While these efforts create a basic OpenStack
to OpenStack federation, they lack the characteristics of a
multi-cloud authorization federation outlined above. In or-
der to develop such a fine grained authorization federation,
it is necessary to define trust relations and specify scope of
cross-cloud access within homogeneous multi-cloud environ-
ment.

2.2.1 The Concept of Trust
Trust determines how clouds interact with each other, in-
cluding which and how much information they share in a
trust relationship. Based on such trust properties, in the
following we identify four potential types of trust relations
to establish and control cross-cloud access in multi-cloud
federation. Of these types α, β and γ are adapted from sim-
ilarly defined trust types in intra-cloud systems [21], whereas
type δ is newly introduced.

In such trust relations who controls the trust relation’s exis-
tence and who controls the authority to issue cross-cloud as-
signments determines the type of trust. In the following, we
use two clouds A and B where each has a set of users and re-
sources and cross-cloud assignments are users → resources.

We use “�” as a trust relation notion where A � B, states
that A trusts B.

Type-α. Trustor grants inter-cloud access to trustee. It
is perhaps the most intuitive trust meaning. By trusting a
cloud, trustor shares certain resources with trusted cloud. If
A �α B, cloud A is authorized to assign B’s users to cloud
A’s resources. In such trust type, A controls trust relation
existence and cross-cloud assignments. Type-α trust is use-
ful when cloud A is a resource provider and cloud B is an
identity provider.

Type-β. Trustee grants inter-cloud access to trustor. If
A �β B, cloud B is authorized to assign A’s users to its
resources. In such trust type, A controls trust relation and
B controls cross-cloud assignments. In order for cloud A
to access shared resources in cloud B, it should trust B
with exposing its user set and trust B’s authorization with
assignments (UserA → ResourceB).

Type-γ. Trustee takes inter-cloud access to trustor. If A�γ

B, cloud B is authorized to assign its users to cloud A’s
resources. In such trust type, A controls trust relation and
B controls cross-cloud assignments. Cloud A exposes its
selected resources to share with trusted cloud B (UserB →
ResourceA).

Type-δ. Trustee controls intra-cloud access within trustor.
If A�δ B, cloud B is authorized to assign A’s users to A’s
resources. In such trust type, A controls trust relation and
B controls intra-cloud assignments within A. Cloud A ex-
poses part or entire set of users and resources to cloud B
(UserA → ResourceA). This trust type is necessary for
delegating administration across two clouds.

2.2.2 The Administrative Realms of Collaboration
When dealing with the concept of trust in a multi-cloud en-
vironment, we can identify how types of trust define author-
ity over trust relations and assignments. Similarly, in such
a federation, the scope of authorization federation within
a trust relation defines type of federated resources being
shared such as services, resource containers, operations, or
data objects. In order to characterize scope of trust in autho-
rization federation, we identify three administrative realms:
Cloud, Domain (Tenant), and Project within a cloud sys-
tem. In Figure 4, the conceptual administrative boundary
of each realm with relation to services and users in a cloud
is illustrated. Such conceptual structure of entities presents
an extension the OSAC model for OpenStack [22].

In an IaaS cloud system, Cloud realm holds authority over
services such as compute, storage, network, and identity, as
well as over lower administrative realms such as domains
and projects. If scope of trust between two clouds is cloud
realms, then such services can be shared depending upon the
trust type. Such collaboration is helpful for load balancing
within a multi-cloud federation. A Domain is an admin-
istrative realm of users, groups and projects. If adminis-
trative scope of trust is Domain, users and projects within
two clouds can be shared by cross-domain assignments. It
is useful to enable access within a multi-cloud federation by
enabling cross-cloud assignment for federated users and re-
sources. A Project administrative realm is a container for

Figure 4: Administrative Realms in a Cloud

cloud resources. Each project owns its service instances (op-
erations and data objects instantiated from services), such
as VMs which are an instance of compute service. While
services are within cloud realm, such as compute service
which is responsible for VM provisioning, a project man-
ages multiple service instances and each services segregates
its resources across multiple projects. Such scope of trust
is desirable when the objective of collaboration is enabling
cross-cloud assignment for a specific service instance. For
example, within a trust between two clouds, a cloud wishes
to only share online sales project from sales domain.

Based on the scopes of trust characterized above, each cloud’s
administrative realm active in a trust relation can share its
specific type of resources within the trust relationship to
another cloud in a multi-cloud federation.

2.3 Multi Cloud Trust
In the following we discuss some use cases for trust models
at different realm granularity to enable inter-cloud access in
a multi-cloud federation.

2.3.1 Cross Cloud Trust
It is natural for clouds to share their infrastructure resources.
Sharing infrastructure is useful in case of handling large
bursts of traffic, load balancing, outsourcing, etc. In or-

Figure 5: Cross-Cloud Resource Allocation in Two Feder-
ated Clouds

der to enable clouds to share their physical infrastructure, it
is necessary to create a controlled trust relation within cloud
administration realm of participating clouds. In type-β by
trusting a cloud, trustor agrees that trustee allocates its ser-
vices to trustee’s infrastructure. In Figure 5, such a β cross-
cloud trust is depicted. It illustrates cloudA�βcloudB mean-
ing cloudB is authorized to assign VMs in cloudA to its phys-
ical shared resources while cloudA can initiate and end this
collaboration. In such a collaboration, in order for clouds to
have access within shared infrastructure they should agree
on granting trustee cloud, assignment authorization and vis-
ibility to VMs they wish to federate. Such trust enables
cloudA, when there is shortage of available physical resources
to still provision users with VMs in trusted cloudB . Fig-
ure 6, depicts sequences to establish, assign and remove re-
sources within cloudA �β cloudB between two cloud service
providers.

Figure 6: Cross-Cloud Trust Type-β Enforcement Sequence

In a multi-cloud federation when a cloud is willing to share
its resources by delegating access control to trusted cloud,
type-γ is useful. In type-γ by trusting a cloud, trustor
shares its physical resources with trusted clouds and autho-
rize trusted clouds to assign their VMs to its resources.

2.3.2 Cross Domain Trust
In an organization which owns multiple clouds across in-
dependent cloud service providers or a collaboration group
with many member institutes, enabling users to access re-
sources across clouds is desirable. In our multi-cloud trust
model, we enable user assignment to shared projects be-
tween two clouds upon the trust relation among trusted do-
mains. As defined in section 2.2.2 each domain realm has
its set of users and projects. Users are assigned roles with
respect to projects or project-role-pairs (PRPs).

We apply four trust types (α, β, γ, δ) to authorize cross-
domain assignments within homogeneous multi-cloud col-
laboration. Type-α is illustrated in Figure 7a. It enables
user assignments between an identity provider’s users and
cloud’s PRPs. This intuitive trust type enables a domain
such as domainA to share its PRPs by trusting an IdP such
as IdPB (domainA �α IdPB). domainA is authorized to es-
tablish trust relation and control user assignments from B
to its PRPs. Type-β is practical for sharing resources while
privacy of resources is a concern in collaboration. In Fig-
ure 7b, domainA �β domainB states that domainA agrees
to grant user visibility (users to be shared) to domainB .
In such a trust relation domainB administers cross-domain
user assignments. Type-γ is useful to share projects within a

collaboration group of clouds. Figure 7c depicts that trustee
domainB controls user assignments to domainA’s PRPs.
Type-δ in Figure 7d enables trusted cloud (domainB) to
administer intra-cloud assignments in trustor (domainA).
Such trust type is useful to achieve administration federa-
tion in a multi-cloud environment.

(a) A trusts B in Type-α

(b) A trusts B in Type-β

(c) A trusts B in Type-γ

(d) A trusts B in Type-δ

Figure 7: Cross-Domain Trust User Assignments

2.3.3 Cross Project Trust
Trust between clouds’ projects in a multi-cloud federation
authorizes sharing of their service instances. Trust relations
α, β, γ, and δ are applicable to such administration realm
similar to user assignments in section 2.3.2. In such trust re-
lations users are assigned to projects’ service instances such
as VMs or object storages within a project trust scope. For
example, when sales project wishes to share its sales VMs
or sales databases cross-project trust is sufficient and there
is no need to establish a domain trust between collaborating
clouds.

2.4 Administrative Model
In this section, we formalize the multi-cloud trust model
presented in section 2.3. Due to space limitations, we for-
mally specify a set of administrative operations necessary for
Type-β cross-cloud trust in table 1 (administrative models

for type α, γ, and δ is provided in appendix A). Semantics
for cloud and domains to establish Type-β trust and corre-
sponding cross-domain user assignments are as follows.

Establishβ: An administrator (cloud or domain) user es-
tablish trust to another domain in trusted cloud. In table 1
U is global set of users and D set of domains. In column
2, for Establish trust to succeed, the trustor user must have
admin role in its domain. Subsequently, in column 3, do-
main trust set DTβ is updated with collaborating domains.
Assignmentβ: A domain admin user u1 is allowed to assign
trustor domain’s user u2 to its PRP (p1, r1). Subsequently,
user assignment set UA in trustor domain is updated to re-
flect that trustor user u2 is assigned to trustee PRP (p1, r1).
In table 1 P is set of projects and R is set of roles in each
cloud.
Unassignmentβ: Unassignment operation is similar to as-
signment, except assignment by user admin u1 should be
removed from user assignment set UA in trustor domain.
To this end, we update UA by removing (u2, p1, r1) from
UA.
Disbandβ: The semantics for this operation is to end col-
laboration between two domains. To this end, first we re-
move all assignments from trustee domain admin u1 in trustor’s
domain UA set, then we remove trust relation (user owner(u1)
, d1) between two domain from domain trust set DT .

3. IMPLEMENTATION
Currently, OpenStack is de facto open-source software to
deploy IaaS platforms. In order to explore the feasibility of
our multi-cloud trust model, we implemented a prototype
in a single cloud for a cross-domain trust running Icehouse
release of Keystone [17] in Devstack (OpenStack develop-
ment environment). In current state Keystone although
cloud admin can assign users to roles (in OpenStack roles
are cloud global) within projects in other domains, it does
not support any trust between domains for cross-domain ac-
cess by domain admin. Our implementation should support
two capabilities: (a) CRUD operations for administration of
trust types between domains and (b) enabling user access to
shared PRPs. We take into consideration that efficiency of

Figure 8: Cross-Cloud Domain Trust Requests Sequence

trust models enforced depends on many factors, such as the
number of requests, levels of policy checks in policy engine
and so on.

Implementation. The architecture of our prototype fol-
lows the Keystone design. Keystone uses MySQL database
to store all user, domain, and assignments information. In

Operations Authorization Requirements (→) Updates

∀u1 ∈ U,∀d1 ∈ D,
Establishβ(u1, d1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user cloud(u1), domain owner(d1)) ∈ CT

DT
′
β = DTβ ∪ (user owner(u1), d1)

∀u1, u2 ∈ U,∀p1 ∈ P, ∀r1 ∈ R,
Assignmentβ (u1, u2, p1, r1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1) = project owner(p1)) ∧
(user owner(u2), user owner(u1)) ∈ DTβ

UA
′
β = UAβ ∪ (u2, p1, r1)

∀u1, u2 ∈ U,∀p1 ∈ P, ∀r1 ∈ R,
Unassignmentβ (u1, u2, p1, r1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1) = project owner(p1)) ∧
(user owner(u2), user owner(u1)) ∈ DTβ

UA
′
β = UAβ − (u2, p1, r1)

∀u1 ∈ U,∀d1 ∈ D,
Disbandβ(u1, d1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1), d1) ∈ DTβ

UA
′
β = UAβ − {(u, p, r) | u ∈ U, p ∈

P, r ∈ R, (user owner(u),

project owner(p)) ∈ DTβ}, DT
′
β =

DTβ − (user owner(u1), d1)

Table 1: Cross-Domain Trust Type-β Administrative Model

our implementation, we added a table Domain trust to store
trust types and collaboration domains information. Also
modified Assignment table in Keystone database to store re-
quired cross-domain trust information for assignments. We
developed our own Keystone client for added domain admin-
istration capabilities in OpenStack and our developed mod-
ifications to Keystone. By adding trust to assignment table
a domain admin with trust relation with another domain
can assign users to PRPs based on trust type. In Figure 8,
the sequence of administrative operations added to Keystone
is shown. It depicts two collaborating domains, A and B
and Keystone’s inner components we added or modified for
cross-domain trust. It is showing the sequence of domain A
trusting domain B with type-β in our implementation. In
order to establish trust among two domains, the domain ad-
ministrator initiates a trust request to Keystone and based
on the type of trust initiated, either trustor or trustee do-
main admin can establish cross-domain assignments. Since
we modified user assignment process to enable cross-domain
trust, there is no overhead on the operational part. When
a user requests access to a service, the usual process of to-
ken and permission generation by keystone is followed as
it is implemented in Icehouse. Such approach benefits the
overall performance because there is no overhead on token
generation, so our system performance is intact.

4. RELATED WORK
Role-Based Access Control (RBAC) [7] is the leading model
for single organizations access control. Many cloud plat-
forms such as OpenStack [16] adopted appropriate varia-
tions of RBAC for their access control mechanisms. In order
to benefit RBAC capabilities across multiple organizations,
model extensions such as ROBAC [25] and GB-RBAC [12]
have been proposed. ROBACmanages authorization in mul-
tiple organizations which is comparable to multi-cloud, but
organization collaboration is not explicitly granted in this
RBAC extension. In GB-RBAC collaboration is allowed
among groups, but it lacks the administration management
since the administrator cannot manage users in the groups.
Other RBAC extensions towards collaboration uses central-
ized authority to manage collaboration which is not applica-

ble in multi-cloud scenarios. Recent work on collaboration
such as CTTM [21] and OSAC-DT [22] extended RBAC
to inherit its benefits toward collaboration. CTTM enables
trust between tenants in a single cloud. OSAC-DT which is
closely related to CTTM, extends CTTM towards compati-
bility with OpenStack. Our contribution is beyond domains
in multi-cloud environments. Role-based delegation [2, 8,
24] models proposed to permit delegation of administration,
but chained delegation relations are not dynamic and flexi-
ble enough to be deployed in multiple cloud providers since
trust relations are dynamic. In multi-cloud trust model, the
trust relation is initiated and controlled by trustor which
makes the trust management transparent to multiple CSPs
relations.

5. CONCLUSION
In this paper, we described the concept of authorization fed-
eration and presented a multi-cloud trust model to autho-
rize collaboration at cloud, domain, and project scope of
administration. We identified four types of trust applicable
to administrative realms in a cloud to better facilitate cross-
cloud authorization. This work was motivated in the context
of homogeneous Peer-to-Peer IaaS multi-cloud federation.
Further, we implemented a proof of concept prototype in
Keystone Icehouse release of OpenStack. The experiments
showed that the integrated cross-domain trust model is not
affecting the performance.

Acknowledgement
This research is partially supported by NSF Grants CNS-
1111925 and CNS-1423481.

6. REFERENCES
[1] S. Bajaj, G. Della-Libera, B. Dixon, M. Dusche,

M. Hondo, M. Hur, C. Kaler, H. Lockhart,
H. Maruyama, A. Nadalin, et al. Web services
federation language (WS-Federation). Retrieved April,
14:2005, 2003.

[2] E. Barka and R. Sandhu. Framework for role-based
delegation models. In Computer Security Applications,

2000. ACSAC’00. 16th Annual Conference, pages
168–176. IEEE, 2000.

[3] D. Bernstein and D. Vij. Intercloud security
considerations. In Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International
Conference on, pages 537–544. IEEE, 2010.

[4] D. W. Chadwick. Federated identity management. In
Foundations of Security Analysis and Design V, pages
96–120. Springer, 2009.

[5] D. W. Chadwick, K. Siu, C. Lee, Y. Fouillat, and
D. Germonville. Adding federated identity
management to openstack. Journal of Grid
Computing, 12(1):3–27, 2014.

[6] M. Decat, B. Lagaisse, D. Van Landuyt, B. Crispo,
and W. Joosen. Federated authorization for
software-as-a-service applications. In On the move to
meaningful internet systems: OTM 2013 Conferences,
pages 342–359. Springer, 2013.

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for
role-based access control. TISSEC, 4(3):224–274, 2001.

[8] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and
V. Karamcheti. dRBAC: distributed role-based access
control for dynamic coalition environments. In
Distributed Computing Systems, 2002. Proceedings.
22nd International Conference on, pages 411–420.
IEEE, 2002.

[9] D. Hardt. The OAuth 2.0 authorization framework.
2012.

[10] J. Hughes and E. Maler. Security Assertion Markup
Language (SAML) V2. 0 Technical Overview. OASIS
SSTC Working Draft
sstc-saml-tech-overview-2.0-draft-08, pages 29–38,
2005.

[11] U. Kylau, I. Thomas, M. Menzel, and C. Meinel.
Trust requirements in identity federation topologies.
In Advanced Information Networking and
Applications, 2009. AINA’09. International
Conference on, pages 137–145. IEEE, 2009.

[12] Q. Li, X. Zhang, M. Xu, and J. Wu. Towards secure
dynamic collaborations with group-based RBAC
model. Computers & Security, 28(5):260–275, 2009.

[13] P. Mell and T. Grance. The NIST definition of cloud
computing. National Institute of Standards and
Technology, 53(6):50, 2009.

[14] P. Mell and T. Grance. The NIST definition of cloud
computing. 2011.

[15] Open Science Grid, Virtual Organization Summary.
http://myosg.grid.iu.edu/vosummary?all_vos=on&

active=on&active_value=1&datasource=summary.

[16] OpenStack. http://www.openstack.org/.

[17] OpenStack-Icehouse.
http://www.openstack.org/software/icehouse/.

[18] M. P. Papazoglou and W.-J. van den Heuvel.
Blueprinting the cloud. IEEE Internet Computing,
15(6):74–79, 2011.

[19] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas,
I. Loy, K. Nagin, J. Tordsson, C. Ragusa, M. Villari,
S. Clayman, et al. ReservoirŮwhen one cloud is not
enough. IEEE computer, 44(3):44–51, 2011.

[20] M. Singhal, S. Chandrasekhar, T. Ge, R. S. Sandhu,
R. Krishnan, G.-J. Ahn, and E. Bertino. Collaboration
in multicloud computing environments: Framework
and security issues. IEEE Computer, 46(2):76–84,
2013.

[21] B. Tang and R. Sandhu. Cross-tenant trust models in
cloud computing. In Information Reuse and
Integration (IRI), 2013 IEEE 14th International
Conference on, pages 129–136. IEEE, 2013.

[22] B. Tang and R. Sandhu. Extending openstack access
control with domain trust. In Network and System
Security, pages 54–69. Springer, 2014.

[23] J. Tourzan, Y. Koga, et al. Liberty id-wsf web services
framework overview. Liberty Alliance, 2004.

[24] X. Zhang, S. Oh, and R. Sandhu. PBDM: a flexible
delegation model in RBAC. In Proceedings of the
eighth ACM symposium on Access control models and
technologies, pages 149–157. ACM, 2003.

[25] Z. Zhang, X. Zhang, and R. Sandhu. ROBAC: Scalable
role and organization based access control models. In
Collaborative Computing: Networking, Applications
and Worksharing, 2006. CollaborateCom 2006.
International Conference on, pages 1–9. IEEE, 2006.

APPENDIX
A. ADMINISTRATIVE MODELS
In this section, we formalize multi-cloud trust types α, γ
and δ presented in section 2.3. Establishing cross-domain
trust relation is similar to type-β, establishβ administra-
tive operation, hence we focus on assignment, unassignment
and disband operations. In table 2, type-α operations are
shown. In assignmentα, a domain or cloud admin user u1

from trustor is authorized to assign trustee’s user u2 to it’s
PRP (p1, r1). Authorization requirements are u1, p1 and
r1 must belong to same trustor domain for operation to
succeed. Subsequently, UA in trustee’s domain is updated
with (u2, p1, r1) assignment. In unassignmentα, similar au-
thorization operations to assignment is required. As a re-
sult, (u2, p1, r1) is removed from trustee’s UA set. In type-
α to disband trust relation, initially all user-assignments
(project owner(p), user owner(u)) which is (trustor doma
in, trustee domain) should be removed from trustee’s UA
set, then domain trust relation is disbanded. Type-γ admin-
istrative operations are depicted in table 3. In assignmentγ ,
a domain or cloud admin user u1 from trustee is authorized
to assign it’s user u2 to trustor’s PRP (p1, r1). Authorization
requirements are that u1 and u2 must belong to same trustee
domain. Subsequently, UA in trustee’s domain is updated
with (u2, p1, r1) assignment. Unassignmentγ operation is
similar to assignment, except assignment by user admin u1

should be removed from user assignment set UA in trustee’s
domain. To disband type-γ trust relation, it is mandatory to
remove all user assignments (project owner(p), user owner
(u)) from trustee’s UA set before removing trust. Type-δ
administrative model is shown in table 4. Assignmentδ de-
picts an intra-domain user assignment by trustee cloud or
domain admin user u1, assigning trustor user u2 to trustor
PRP (p1, r1). For assignmentδ and unassignmentδ, it is
required that u2 and p1 domains are same trustor domain.
In disbandδ, first we remove all intra-domain assignments in
trustor domain , then we remove trust relation from DTδ.

Operations Authorization Requirements (→) Updates

∀u1 ∈ U,∀d1 ∈ D,
Establishα(u1, d1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user cloud(u1), domain owner(d1)) ∈ CT

DT
′
α = DTα ∪ (user owner(u1), d1)

∀u1, u2 ∈ U,∀p1 ∈ P, ∀r1 ∈ R,
Assignmentα(u1, u2, p1, r1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1) = project owner(p1)) ∧
(user owner(u1), user owner(u2)) ∈ DTα

UA
′
α = UAα ∪ (u2, p1, r1)

∀u1, u2 ∈ U,∀p1 ∈ P, ∀r1 ∈ R,
Unassignmentα(u1, u2, p1, r1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1) = project owner(p1)) ∧
(user owner(u1), user owner(u2)) ∈ DTα

UA
′
α = UAα − (u2, p1, r1)

∀u1 ∈ U,∀d1 ∈ D,
Disbandα(u1, d1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1), d1) ∈ DTα

UA
′
α = UAα − {(u, p, r) | u ∈ U, p ∈

P, r ∈ R, (project owner(p),
user owner(u)) ∈ DTα},
DT

′
α = DTα − (user owner(u1), d1)

Table 2: Cross-Domain Trust Type-α Administrative Model

Operations Authorization Requirements (→) Updates

∀u1 ∈ U,∀d1 ∈ D,
Establishγ(u1, d1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user cloud(u1), domain owner(d1)) ∈ CT

DT
′
γ = DTγ ∪ (user owner(u1), d1)

∀u1, u2 ∈ U,∀p1 ∈ P, ∀r1 ∈ R,
Assignmentγ(u1, u2, p1, r1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1) = user owner(u2)) ∧
(project owner(p1), user owner(u1)) ∈ DTγ

UA
′
γ = UAγ ∪ (u2, p1, r1)

∀u1, u2 ∈ U,∀p1 ∈ P, ∀r1 ∈ R,
Unassignmentγ(u1, u2, p1, r1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1) = user owner(u2)) ∧
(project owner(p1), user owner(u1)) ∈ DTγ

UA
′
γ = UAγ − (u2, p1, r1)

∀u1 ∈ U,∀d1 ∈ D,
Disbandγ(u1, d1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1), d1) ∈ DTγ

UA
′
γ = UAγ − {(u, p, r) | u ∈ U, p ∈

P, r ∈ R, (project owner(p),
user owner(u)) ∈ DTγ},
DT

′
γ = DTγ − (user owner(u1), d1)

Table 3: Cross-Domain Trust Type-γ Administrative Model

Operations Authorization Requirements (→) Updates

∀u1 ∈ U,∀d1 ∈ D,
Establishδ(u1, d1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user cloud(u1), domain owner(d1)) ∈ CT

DT
′
δ = DTδ ∪ (user owner(u1), d1)

∀u1, u2 ∈ U,∀p1 ∈ P, ∀r1 ∈ R,
Assignmentδ(u1, u2, p1, r1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u2) = project owner(p1)) ∧
(user owner(u1), user owner(u2)) ∈ DTδ

UA
′
δ = UAδ ∪ (u2, p1, r1)

∀u1, u2 ∈ U,∀p1 ∈ P, ∀r1 ∈ R,
Unassignmentδ(u1, u2, p1, r1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u2) = project owner(p1)) ∧
(user owner(u1), user owner(u2)) ∈ DTδ

UA
′
δ = UAδ − (u2, p1, r1)

∀u1 ∈ U,∀d1 ∈ D,
Disbandδ(u1, d1)

(domain admin(u1) ∨ cloud admin(u1)) ∧
(user owner(u1), d1) ∈ DTδ

UA
′
δ = UAδ − {(u, p, r) | u, u1 ∈

U, p ∈ P, r ∈ R, (user owner(u1),
user owner(u)) ∈ DTδ},
DT

′
δ = DTδ − (user owner(u1), d1)

Table 4: Cross-Domain Trust Type-δ Administrative Model

