The HABAC Model for Smart Home IoT and Comparison to EGRBAC

Safwa Ameer
Ravi Sandhu

SaT-CPS 2021
Institute for Cyber Security (ICS)
Center for Security and Privacy Enhanced Cloud Computing (C-SPECC)
Department of Computer Science
University of Texas at San Antonio

World-Leading Research with Real-World Impact!
The Internet of Things (IoT) is a new technology paradigm envisioned as a global network of machines and devices capable of interacting with each other.

One of the most popular domains for deploying smart connected devices is the smart home.
In the literature, several AC models have been proposed for IoT in general. Most of them are built on RBAC or ABAC.

Some researchers argue that RBAC is more suitable for IoT, since it is simpler in management and review, while ABAC is complex.

Others argue that ABAC models are more scalable and dynamic, since they can capture different devices and environment contextual information.

However, RBAC models can be extended, such as the recent EGRBAC model [4] for smart home IoT which can express environment and device characteristics.

Hence, when it comes to smart homes, at this point it is not fully clear what is the benefit of ABAC over RBAC, and vice versa.
• Our intuitive insight is that a **hybrid model** will better capture smart home IoT AC requirements as this was already the case for traditional access control models.

• In order to **further investigate this intuition** our approach is to develop **pure RBAC** and **pure ABAC** based models **explicitly defined to meet smart home challenges** and compare their benefits and drawbacks.

• This comparison will provide **insights to guide us in designing “optimal” hybrid models.**
• Scope or threat model:
 In smart houses we have two types of adversaries:

a- Outsider hacker who is trying to get digital or physical access to the house by exploiting system vulnerabilities.

b- The household members themselves. The insiders who have legitimate digital and physical access to the house, such as family members, guests, and workers.

➢ The central focus of our work is making sure that those legitimate users get access only to what they are authorized to by the house owner.
1. Design, formalize ABAC based access control model for smart home IoT (HABAC).

2. Analyze HABAC model relative to the previously published EGRBAC model [4]. Compare the theoretical expressive power of these models by:

a. Introduce HABAC configuration that translates EGRBAC policies in a manner that they can be implemented by HABAC.

b. Provide an algorithm to convert an HABAC specification to EGRBAC.

c. Discuss the insights for practical deployment of these models resulting from these constructions.
1. Design, formalize ABAC based access control model for smart home IoT (HABAC).

2. Analyze HABAC model relative to the previously published EGRBAC model [4]. Compare the theoretical expressive power of these models by:
 a. Introduce HABAC configuration that translates EGRBAC policies in a manner that they can be implemented by HABAC.
 b. Provide an algorithm to convert an HABAC specification to EGRBAC.
 c. Discuss the insights for practical deployment of these models resulting from these constructions.
The HABAC Model

![Diagram of the HABAC model showing the relationships between users, sessions, operations, devices, and environment states. The diagram includes nodes labeled UA, SA, USERS U, SESSIONS S, OPA, OPERATIONS OP, DA, DEVICES D, ENVIRONMENT STATE ES, and ESA, with arrows indicating association, creator, inheritance, and constraints.]

© Safwa Ameer
The goal is to: Authorize teenagers (Anne) to use dangerous kitchen devices (Oven) only when one of the parents is in the kitchen.
Use Case

Relationship (Anne) = teenager

Constraints on Subject attributes

Dangerous Kitchen Devices (Oven) = True

Parent in Kitchen : es: ES → {True, False}
Use Case

Add the authorization rule:

\[(\text{Relationship}(s) = \text{teenager} \land \text{ParentInKitchen}(\text{current}) = \text{True} \land \text{DangerousKitchenDevices}(d) = \text{True}) \lor \]

Relationship (Anne) = teenager

Constraints on Subject attributes

Constraints on User attributes

UA → SA

OPA

Dangerous Kitchen Devices (Oven) = True

OPERATIONS OP

Authorization

ENVIRONMENT STATE ES

ESA

DEVICES D

DA

 photoshop

 Parent in Kitchen : \(es: ES \rightarrow \{\text{True}, \text{False}\} \)
Use Case

Check the authorization policy:

\[(\text{Relationship}(s) = \text{teenager} \land \text{ParentInKitchen}(\text{current}) = \text{True} \land \text{DangerousKitchenDevices}(d) = \text{True}) \lor \]

- **Relationship (Anne) = teenager**
- **Constraints on User attributes**
- **Constraints on Subject attributes**
- **Relationship \((S_X) = \text{teenager}**
- **Dangerous Kitchen Devices (Oven) = True**

Current

Parent in Kitchen: \(es: ES \rightarrow \{\text{True, False}\} \)

- Association
- Creator
- Inheritance
- Constraints
Use Case

Check the authorization policy:

\[(\text{Relationship}(s) = \text{teenager} \land \text{ParentInKitchen}(\text{current}) = \text{True} \land \text{DangerousKitchenDevices}(d) = \text{True}) \lor \]

![Diagram showing the relationship and authorization process]
Use Case

Check the authorization policy:

\[(\text{Relationship}(s) = \text{teenager} \land \text{ParentInKitchen}(\text{current}) = \text{True} \land \text{DangerousKitchenDevices}(d) = \text{True}) \lor \]

Relationship (Anne) = teenager

Parent in Kitchen (Current) = False

Dangerous Kitchen Devices (Oven) = True
The HABAC Model
3- Constraints

World-Leading Research with Real-World Impact!
1- Constraints on user attributes: these constraints enforce restrictions on user attributes.

- \(UAConstraints \subseteq UAP \times 2^{UAP} \). Constitute a many to many user attribute pair to a subset of mutually exclusive user attribute pairs.

- Ex: \(uac = ((Relationship, kid), \{(Adults, True)\}) \)

2- Constraints on session attributes: these constraints enforce restrictions on session attributes.

- \(SAConstraints \subseteq SAP \times 2^{SAP} \). Constitute a many to many session attribute pair to a subset of mutually exclusive session attribute pairs.

- Ex: \(sac = ((Relationship, staying home kid), \{(Relationship, travel abroad kid)\}) \)
1. Design, formalize ABAC based access control model for smart home IoT (HABAC).

2. Analyze HABAC model relative to the previously published EGRBAC model [4]. Compare the theoretical expressive power of these models by:
 a. Introduce HABAC configuration that translates EGRBAC policies in a manner that they can be implemented by HABAC.
 b. Provide an algorithm to convert an HABAC specification to EGRBAC.
 c. Discuss the insights for practical deployment of these models resulting from these constructions.
The main idea in EGRBAC is that a user is assigned to a set of roles and according to the current active sessions, and current active environment roles some role pairs will be active, the user will get access to the permissions assigned to the device roles which are assigned to the current active role pairs.
1. Design, formalize ABAC based access control model for smart home IoT (HABAC).

2. Analyze HABAC model relative to the previously published EGRBAC model [4]. Compare the theoretical expressive power of these models by:

 a. Introduce HABAC configuration that translates EGRBAC policies in a manner that they can be implemented by HABAC.

 b. Provide an algorithm to convert an HABAC specification to EGRBAC.

 c. Discuss the insights for practical deployment of these models resulting from these constructions.
The goal is to construct HABAC elements (U, UA, SA, ES, ESA, D, DA, OP, OPA) and the authorization policy function from EGRBAC policy in such a way that the authorizations are the same as those under EGRBAC.
Constructing HABAC From EGRBAC

- $U_{HABAC} = U_{EGRBAC}$
- $UA = SA = \{\text{Relationship}\}$
- Relationship : $u \in U_{HABAC} \rightarrow 2^R$
- Relationship : $s \in S \rightarrow 2^R$
- $(\forall u_i \in U_{HABAC}) [\text{Relationship}(u_i) = \{r_x | (u_i, r_x) \in UA\}]$

- $UAConstraint = \{uac_i\}$
 - For all $ssdc_i = (r_i, R_j) \in SSDConstraints$:
 $uac_i = (\text{Relationship}, r_i), UAP_j = \{(\text{Relationship}, r_n) | r_n \in R_j\}$

- $SAConstraint = \{sac_i\}$
 - For all $dsdc_i = (r_i, R_j) \in DSDConstraints$:
 $sac_i = (\text{Relationship}, r_i), SAP_j = \{(\text{Relationship}, r_n) | r_n \in R_j\}$

- The set of users are the same in both systems.
- Roles are expressed through the user attribute Relationship in HABAC.
- Relationship is a user and a session attribute that takes a user or a session as an input and returns the set of roles assigned to that user or that session.

- Static separation of duty constraints $SSDConstraints$ are translated into user attributes constraints in HABAC.
- Dynamic separation of duty constraints $DSDConstraints$ are translated into subject attributes constraints in HABAC.
- ES = \{ \text{Current} \}
- ESA = ER
(\forall esa_i \in ESA)[esa_i : es \in ES \rightarrow \{ \text{True}, \text{False} \}]

\[D_{HABAC} = D_{EGRBAC}, OP_{HABAC} = OP_{EGRBAC} \]
- DA = OPA = DR
- (\forall da_i \in DA)[da : d \in D_{HABAC} \rightarrow \{ \text{True}, \text{False} \}]
- (\forall opa_i \in OPA)[opa : op \in OP_{HABAC} \rightarrow \{ \text{True}, \text{False} \}]
- (\forall (dr_y \in DR, p_x \in \{ p_i | (p_i, dr_y) \in PDRA \})[dr_y(p_x.op) = True, dr_y(p_x.d) = True]
- (\forall (dr_y \in DR, p_y \in \{ p_j | (p_j, dr_y) \notin PDRA \})[dr_y(p_x.op) = False, dr_y(p_x.d) = False]

- **Environment roles** are translated into atomic environment state attributes.
- **Device roles** in EGRBAC are translated into atomic operation attributes and atomic device attributes with a range of values equal to \{ \text{True}, \text{False} \}.
Constructing HABAC From EGRBAC

- The final step is to construct the authorization policies.

- In EGRBAC it is the $RPDRA$ that gives specific role pairs and hence users access to specific device roles and hence permissions.
- For each $RPdra_i = ((r_i, ER_i), dr_i) \in RPDRA$, we construct an authorization policy as following:
\[
Authorization_{op}(s : S, es : ES, d : D) \equiv Relationship(s) = r_i \land dr_i(op) = True \land (\bigcap_{esa \in ER_i} esa(current) = True) \land dr_i(d) = True
\]
- The final authorization policy is the disjunction of every created authorization policy.

• Therefore, we translate each $RPdra_i = ((r_i, ER_i), dr_i) \in RPDRA$ into an authorization policy.

• The final authorization policy is the disjunction of every created authorization policy.
1. Design, formalize ABAC based access control model for smart home IoT (HABAC).

2. Analyze HABAC model relative to the previously published EGRBAC model [4]. Compare the theoretical expressive power of these models by:

 a. Introduce HABAC configuration that translates EGRBAC policies in a manner that they can be implemented by HABAC.

 b. Provide an algorithm to convert an HABAC specification to EGRBAC.

 c. Discuss the insights for practical deployment of these models resulting from these constructions.
The goal is to construct EGRBAC elements (U, R, EC, ER, RP, D, OP, P, DR), assignments (UA, EA, PDRA, RPDRA), and associations (RPRA, RPEA) from HABAC policies in such a way that the authorizations are the same as those under HABAC.
Constructing EGRBAC From HABAC

\[U = \{alex, bob, anne\} \]
\[UA = \{Relationship, Location\} \]
\[Relationship : u : U \rightarrow \{parent, kid, teenager\} \]
\[Location : u : U \rightarrow \{Kitchen, MasterBedRoom, BedRoom_1, BedRoom_2, LivingRoom\} \]
\[Relationship(alex) = kid \]
\[Relationship(anne) = teenager \]
\[Relationship(bob) = parent \]

\[S = \{\ldots\} \]
\[SA = \{Relationship, Location\} \]
\[Relationship : s : S \rightarrow \{parent, kid, teenager\} \]
\[Location : s : S \rightarrow \{Kitchen, MasterBedRoom, BedRoom_1, BedRoom_2, LivingRoom\} \]

\[D = \{TV, PlayStation, Oven, Fridge, FrontDoor\} \]
\[DA = \{DangerousKitchenDevices\} \]
\[DangerousKitchenDevices : d : D \rightarrow \{True, False\} \]
\[DangerousKitchenDevices(Oven) = True \]
\[DangerousKitchenDevices(Fridge) = False \]

\[ES = \{Current\} \]
\[ESA = \{day, time, ParentInKitchen\} \]
\[day : es : ES \rightarrow \{S, M, T, W, Th, F, Sa\} \]
\[time : es : ES \rightarrow \{x| x \text{ is an hour of a day }\} \]
\[ParentInKitchen : es : ES \rightarrow \{True, False\} \]

\[OP_{TV} = \{G, PG, \ldots\} \]
\[OP_{PlayStation} = \{A3, A7, A12, BuyGames, \ldots\} \]
\[OP_{Oven} = \{ON, OFF\} \]
\[OP_{Fridge} = \{Open, Close\} \]
\[OP_{FrontDoor} = \{Lock, Unlock\} \]
\[OP = OP_{TV} \cup OP_{PlayStation} \cup OP_{Oven} \cup OP_{Fridge} \cup OP_{FrontDoor} \]
\[OPA = \{KidsFriendly\} \]
\[KidsFriendly : op : OP \rightarrow \{True, False\} \]
\[KidsFriendly(G) = KidsFriendly(A3) = True \]
\[KidsFriendly(A7) = True \]
\[KidsFriendly(BuyGames) = False \]
Constructing EGRBAC From HABAC

\[
Authorization_{op}(s : S, es : ES, d : D) \equiv \\
(\text{Relationship}(s) = \text{kid} \land (\text{day}(\text{current}) \in \{\text{Sa}, \text{S}\} \land 12 : 00 \leq \text{time}(\text{current}) \leq 19 : 00) \lor (\text{day}(\text{current}) \in \{\text{M}, \text{T}, \text{W}, \text{Th}, \text{F}\} \land 17 : 00 \leq \text{time}(\text{current}) \leq 19 : 00)) \land \text{KidsFriendly}(op) = \text{True} \lor \\
(\text{Relationship}(s) = \text{teenager} \land \text{ParentInKitchen}(\text{current}) = \text{True} \land \text{DangerousHouseKitchenDevices}(d) = \text{True}) \lor \\
(\text{Relationship}(s) = \text{teenager} \land \text{DangerousHouseKitchenDevices}(d) = \text{False}) \lor \\
(\text{Relationship}(s) = \text{teenager} \land (\text{KidsFriendly}(op) = \text{True} \lor \text{KidsFriendly}(op) = \text{False})) \lor \\
(\text{Relationship}(s) = \text{parent})
\]
Constructing EGRBAC From HABAC

1. From Authorization Policy to Authorization Array

- First, we convert the authorization policy into a disjunctive normal form (DNF)

\[
\text{Authorization}_{op}(s : S, es : ES, d : D) \equiv \\
(\text{Relationship}(s) = \text{kid} \land \text{day}(current) \in \{S, S\} \land 12 : 00 \leq \text{time}(current) \leq 19 : 00) \lor (\text{day}(current) \in \{M, T, W, Th, F\} \land 17 : 00 \leq \text{time}(current) \leq 19 : 00) \land \text{KidsFriendly}(op) = \text{True} \lor \\
(\text{Relationship}(s) = \text{teenager} \land \text{ParentInKitchen}(current) = \text{True} \land \text{DangerousKitchenDevices}(d) = \text{True}) \lor \\
(\text{Relationship}(s) = \text{teenager} \land \text{DangerousKitchenDevices}(d) = \text{False}) \lor \\
(\text{Relationship}(s) = \text{teenager} \land \text{KidsFriendly}(op) = \text{True} \lor \text{KidsFriendly}(op) = \text{False}) \lor \\
(\text{Relationship}(s) = \text{parent})).
\]
The Next step, is to construct what we call an authorization array \(AA \), from this DNF statement.

To construct the authorization array, we evaluate every \(u_i \in U, d_j \in D, \) and \(op_k \in OP \) combination against each conjunctive clause.

Whenever a combination satisfies every term (condition) in a conjunctive clause except those conditions which involve environment state attributes, we create a raw \((u_i, d_j, op_k, current, C) \) for that combination in the authorization array.

Where, \(C \) is the set of session and environment related conditions in the examined conjunctive clause.
Constructing **EGRBAC** From **HABAC**

1. From Authorization Policy to Authorization Array

<table>
<thead>
<tr>
<th>User u</th>
<th>Device d</th>
<th>Operation op</th>
<th>Environment state es</th>
<th>Conditions C</th>
</tr>
</thead>
<tbody>
<tr>
<td>alex</td>
<td>TV</td>
<td>G</td>
<td>current</td>
<td>X</td>
</tr>
<tr>
<td>alex</td>
<td>PS</td>
<td>A3</td>
<td>current</td>
<td>X</td>
</tr>
<tr>
<td>alex</td>
<td>PS</td>
<td>A7</td>
<td>current</td>
<td>X</td>
</tr>
<tr>
<td>alex</td>
<td>TV</td>
<td>G</td>
<td>current</td>
<td>Z</td>
</tr>
<tr>
<td>alex</td>
<td>PS</td>
<td>A3</td>
<td>current</td>
<td>Z</td>
</tr>
<tr>
<td>bob</td>
<td>TV</td>
<td>G</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>TV</td>
<td>PG</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>PS</td>
<td>A3</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>PS</td>
<td>A7</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>PS</td>
<td>A12</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>PS</td>
<td>BuyGames</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>Oven</td>
<td>ON</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>Fridge</td>
<td>OFF</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>Fridge</td>
<td>Open</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>FrontDoor</td>
<td>Close</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>FrontDoor</td>
<td>Lock</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>bob</td>
<td>FrontDoor</td>
<td>Unlock</td>
<td>current</td>
<td>{\text{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>anne</td>
<td>TV</td>
<td>G</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
<tr>
<td>anne</td>
<td>TV</td>
<td>PG</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
<tr>
<td>anne</td>
<td>PS</td>
<td>A3</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
<tr>
<td>anne</td>
<td>PS</td>
<td>A7</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
<tr>
<td>anne</td>
<td>PS</td>
<td>BuyGames</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
<tr>
<td>anne</td>
<td>Oven</td>
<td>ON</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
<tr>
<td>anne</td>
<td>Oven</td>
<td>OFF</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
<tr>
<td>anne</td>
<td>Fridge</td>
<td>OPEN</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
<tr>
<td>anne</td>
<td>Fridge</td>
<td>CLOSE</td>
<td>current</td>
<td>{\text{Relationship(s) = teenager}}</td>
</tr>
</tbody>
</table>

\[X = \{\text{Relationship(s) = kid}, \]
\[\text{day(current)} \in \{\text{Sa,S}\}, 12:00 \leq \text{time(current)} \leq 19:00 \}.
\[Y = \{\text{Relationship(s) = teenager, ParentInKitchen(current) = True}\}. \]
\[Z = \{\text{Relationship(s) = kid}, \]
\[\text{day(current)} \in \{\text{M,T,W,Th,F}\}, 17:00 \leq \text{time(current)} \leq 19:00 \}. \]
• **Input:** HABAC set of users \(U_{HABAC}\), set of devices \(D_{HABAC}\), set of operations \(OP_{HABAC}\), \(UA\), \(SA\), \(ESA\), \(OPA\), \(DA\), and the **authorization array** \(AA\).

• **Output:** EGRBAC components \(U\), \(R\), \(UA\), \(EC\), \(ER\), \(EA\), \(RP\), \(RPRA\), \(RPEA\), \(D\), \(OP\), \(P\), \(DR\), \(PDRA\), and \(RPDRA\).

• **Steps:**

 Step 1: Initialization.
 • The set of users, devices, and operations are the same in both systems, hence \(U = U_{HABAC}\), \(D = D_{HABAC}\), and \(OP = OP_{HABAC}\).
 • For every operation \(op_i\), and device \(d_j\) pair, where \(op_i\) is assigned to \(d_j\) by the device manufacturers, create a permission \((d_j, op_i)\).
Step 2: Create the set of **device roles**.
 a. Create a device role dr for each operation attribute instance, or device attribute instance.
 b. Create one device role call it remaining permissions $RemPerm$ for all the permissions $p_l = (d_i, op_j)$, where d_i is not assigned to any device attributes, and op_j is not assigned to any operation attribute.

Step 3: Construct the permission device role assignment array $PDRA$.
- $PDRA \subseteq P \times DR$, a many-to-many mapping of permissions and DR.
Constructing **EGRBAC** From **HABAC**

2. From Authorization Array to **EGRBAC** Approach

<table>
<thead>
<tr>
<th>DangerousKitchenDevices = True</th>
<th>DangerousKitchenDevices = False</th>
<th>KidsFriendly = True</th>
<th>KidsFriendly = False</th>
<th>RemPerm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TV, G)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(TV, PG)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(PlayStation, A3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(PlayStation, A7)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(PlayStation, A12)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(PlayStation, BuyGames)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(Oven, ON)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Oven, OFF)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Fridge, Open)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Fridge, Close)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(FrontDoor, Lock)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(FrontDoor, Unlock)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- For every $PDRA[i, j] = 1$, add the pair (p_i, dr_j) to the set $PDRA$ of **EGRBAC**.
Step 4: Construct the user device role authorization array $UDRAA$ from the authorization array AA, and the permission device role assignment array $PDRA$.

- $UDRAA \subseteq U \times DR$, a many-to-many mapping between users and device roles
Constructing EGRBAC From HABAC

2. From Authorization Array to EGRBAC Approach

<table>
<thead>
<tr>
<th>User</th>
<th>Device d</th>
<th>Operation op</th>
<th>Environment state es</th>
<th>Conditions C</th>
</tr>
</thead>
<tbody>
<tr>
<td>alex</td>
<td>TV</td>
<td>G</td>
<td>current</td>
<td>X</td>
</tr>
<tr>
<td>alex</td>
<td>PS</td>
<td>A3</td>
<td>current</td>
<td>X</td>
</tr>
<tr>
<td>alex</td>
<td>PS</td>
<td>A7</td>
<td>current</td>
<td>X</td>
</tr>
<tr>
<td>alex</td>
<td>TV</td>
<td>G</td>
<td>current</td>
<td>Z</td>
</tr>
<tr>
<td>alex</td>
<td>PS</td>
<td>A3</td>
<td>current</td>
<td>Z</td>
</tr>
<tr>
<td>alex</td>
<td>PS</td>
<td>A7</td>
<td>current</td>
<td>Z</td>
</tr>
<tr>
<td>bob</td>
<td>TV</td>
<td>G</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>TV</td>
<td>PG</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>PS</td>
<td>A3</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>PS</td>
<td>A7</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>PS</td>
<td>A32</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>PS</td>
<td>BuyCarmes</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>Oven</td>
<td>ON</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>Oven</td>
<td>OFF</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>Fridge</td>
<td>Close</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>FrontDoor</td>
<td>Lock</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>bob</td>
<td>FrontDoor</td>
<td>Unlock</td>
<td>current</td>
<td>(Relationship(s) = parent)</td>
</tr>
<tr>
<td>annie</td>
<td>TV</td>
<td>G</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>TV</td>
<td>PG</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>PS</td>
<td>A3</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>PS</td>
<td>A7</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>PS</td>
<td>A32</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>PS</td>
<td>BuyCarmes</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>Oven</td>
<td>ON</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>Oven</td>
<td>OFF</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>Fridge</td>
<td>OPEN</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
<tr>
<td>annie</td>
<td>Fridge</td>
<td>CLOSE</td>
<td>current</td>
<td>(Relationship(s) = teenager)</td>
</tr>
</tbody>
</table>

\[
X = \{\text{Relationship(s) = kid, day(current) ∈ \{Sa, S\}, 12:00 ≤ time(current) ≤ 19:00}\},
\]
\[
Y = \{\text{Relationship(s) = teenager, ParentInKitchen(current) = True}\},
\]
\[
Z = \{\text{Relationship(s) = kid, day(current) ∈ \{M, T, W, Th, F\}, 17:00 ≤ time(current) ≤ 19:00}\}.
\]
Step 5: Construct the rest of **EGRBAC elements** \((R, EC, ER, RP)\), assignments \((UA, EA, RPDRA)\), and associations \((RPRA, RPEA)\) by following our proposed **EGRBAC users and environment roles constructing Algorithm**.

- The main idea is to loop through the columns of UDRAAA, each column is corresponding to different user's access rights to a specific device role.
- Inside each columns loop through the fields of different rows to extract and construct different EGRBAC components.

\[
X = \{ \text{Relationship(s) = kid}, \text{day(current) \in \{Sa, S\}, 12 : 00 \leq \text{time(current)} \leq 19 : 00} \}.
\]

\[
Y = \{ \text{Relationship(s) = teenager, ParentInKitchen(current) = True} \}.
\]

\[
Z = \{ \text{Relationship(s) = kid}, \text{day(current) \in \{M, T, W, Th, F\}, 17 : 00 \leq \text{time(current)} \leq 19 : 00} \}.
\]
For example, in this case, the algorithm do the following:

a. Create a **user role** r_m which corresponds to accessing this column device role when Y satisfied.

b. Create an **environment role** er_x, and an **environment condition** ec_x and assign them to each other. These environment role, and environment condition correspond to the environment attribute ($ParentInKitchen$).

c. **Define a role pair** rp_z, where $rp_z.r = r_m$, and $rp_z.ER = \{er_x\}$.

d. Assign the role pair rp_z to the device role corresponding to this column.

e. Finally, assign the role r_m to the user corresponding to this raw.

<table>
<thead>
<tr>
<th></th>
<th>DangerousKitchenDevices = True</th>
</tr>
</thead>
<tbody>
<tr>
<td>anne</td>
<td>${Y}$</td>
</tr>
</tbody>
</table>

\[
Y = \{\text{Relationship(s) = teenager, ParentInKitchen(current) = True}\}.
\]
The algorithm does the same for all the entries in the UDRAA.
By the end of this algorithm, all the EGRBAC elements (U, R, EC, ER, RP, D, OP, P, DR), assignments (UA, EA, PDRA, RPDRA), and associations (RPRA, RPEA) will be constructed.

Step 6: Finally, we merge similar roles.

<table>
<thead>
<tr>
<th>DangerousKitchenDevices = True</th>
<th>DangerousKitchenDevices = False</th>
<th>KidsFriendly = True</th>
<th>KidsFriendly = False</th>
<th>RemPerm</th>
</tr>
</thead>
<tbody>
<tr>
<td>alex</td>
<td>0</td>
<td>0</td>
<td>{X, Z}</td>
<td>0</td>
</tr>
<tr>
<td>bob</td>
<td>{{Relationship(s) = parent}}</td>
<td>{{Relationship(s) = parent}}</td>
<td>{{Relationship(s) = parent}}</td>
<td>{{Relationship(s) = parent}}</td>
</tr>
<tr>
<td>anne</td>
<td>{{Relationship(s) = teenager}}</td>
<td>{{Relationship(s) = teenager}}</td>
<td>{{Relationship(s) = teenager}}</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
X = \{\text{Relationship(s) = kid} \}, \\
\text{day(current)} \in \{\text{Sa, S}\}, 12:00 \leq \text{time(current)} \leq 19:00. \\
Y = \{\text{Relationship(s) = teenager, ParentInKitchen(current) = True}\}. \\
Z = \{\text{Relationship(s) = kid} \}, \\
\text{day(current)} \in \{\text{M, T, W, Th, F}\}, 17:00 \leq \text{time(current)} \leq 19:00.
\]
1. Design, formalize ABAC based access control model for smart home IoT (HABAC).

2. Analyze HABAC model relative to the previously published EGRBAC model [4]. Compare the theoretical expressive power of these models by:
 a. Introduce HABAC configuration that translates EGRBAC policies in a manner that they can be implemented by HABAC.
 b. Provide an algorithm to convert an HABAC specification to EGRBAC.
 c. Discuss the insights for practical deployment of these models resulting from these constructions.
1- In HABAC we can not create something equivalent to EGRBAC PRConstraints.
2- In EGRBAC it is easy to define who has what permissions, and who is not allowed to have a future access to specific permissions.

1- In HABAC we can not create something equivalent to EGRBAC PRConstraints.
2- In EGRBAC it is easy to define who has what permissions, and who is not allowed to have a future access to specific permissions.

3- In EGRBAC, we can’t handle HABAC policies that involve users, devices and operations dynamic attributes. Such handling may lead to role explosion in EGRBAC.

1- In HABAC we can not create something equivalent to EGRBAC PRConstrains.
• We introduce HABAC access control model for smart home IoT.
• It is a dynamic, fine grained ABAC based model that captures different attributes of users, environment, operations, and devices.
• We provide a use case scenario demonstration. Moreover, we compare the theoretical expressive power of our model to EGRBAC which is a dynamic contextual aware RBAC based access control model. We do that by providing approaches for converting an HABAC specification to EGRBAC and vice versa.
• In conclusion, we believe that a hybrid model retaining HABAC and EGRBAC features may be the most suitable for smart home IoT, and likely more generally.
Thank You