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Abstract—Existence of data provenance information in a
system raises at least two security-related issues. One is how
provenance data can be used to enhance security in the system
and the other is how to protect provenance data which might
be more sensitive than the data itself. Recent data provenance-
related access control literature mainly focuses on the latter
issue of protecting provenance data. In this paper, we propose a
novel provenance-based access control model that addresses the
former objective. Using provenance data for access control to the
underlying data facilitates additional capabilities beyond those
available in traditional access control models. We utilize a notion
of dependency as the key foundation for access control policy
specification. Dependency-based policy provides simplicity and
effectiveness in policy specification and access control administra-
tion. We show our model can support dynamic separation of duty,
workflow control, origin-based control, and object versioning.
The proposed model identifies essential components and concepts
and provides a foundational base model for provenance-based
access control. We further discuss possible extensions of the
proposed base model for enhanced access controls.

I. INTRODUCTION

Provenance is the documentation of the origin of a data ob-
ject and the processes that influence and lead to any particular
state of that object. Capturing and storing provenance data
enables higher trustworthiness and utility of the underlying
data. As the importance of its role in application systems
increases, there also arises provenance related security and
trustworthiness issues in the system. While securing prove-
nance data has been studied in recent years, how to utilize
provenance data to control access to the underlying data is
rarely discussed in literature.

The myriad of software applications available in both private
and public sectors demands more complex protection mech-
anisms for the resulting large networks of information flow.
Traditional access control mechanisms are built for specific
purposes and are not easily configured to address the complex
demands associated with these new technologies. We strongly
feel that access control systems built upon provenance data
by fully utilizing its unique characteristics will provide a
foundation for new access control mechanisms that are highly
capable of supporting features that were not easily achievable
with traditional access control solutions. Specifically, as data
provenance provides utilities such as pedigree information
search, usage tracking, and versioning, using provenance data
for access control allows more versatile control capability such
as controls based on pedigree information, past usage of data,
past activity of users and versioning information. This further
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supports dynamic separation of duties and workflow controls.

In this paper, we introduce the framework for a family
of Provenance-based Access Control (PBAC) models with
extensions that can handle traditional access control issues
in a simple and effective manner. We identify the essential
foundations and discuss in depth the base model upon which
additional functionalities can be built. We apply our model
to a case study on a course grading system. We demonstrate
that our model is capable of handling various access control
principles and features such as dynamic separation of duties,
workflow control, origin-based control, and object versioning.

II. PROVENANCE DATA DEPENDENCY AND ACCESS
CONTROL

In this section, we discuss two preliminary topics necessary
for understanding our proposed model. We first discuss our
view on causality dependencies of provenance data identified
in the Open Provenance Model (OPM) [20] and then identify
two approaches related to data provenance in access control.

A. Provenance Data Dependency

In any active system, transactions occur and involve sub-
jects, objects, and the corresponding actions describing the
interaction between these. The log of all such transactions
can be seen as the basis of provenance information. However,
without relevant semantics to be assigned to the transactions
log, not much benefits can be gained. For transactions in-
formation to be considered useful provenance information,
causality dependencies of transaction data should be utilized.
Without causality dependency as semantics foundation, it is
hard to utilize transaction flows and associated information.
We acknowledge this essential provenance property, for which
purpose we need a suitable provenance model. Our work
builds on OPM since it provides a foundation for the causality
dependencies of provenance data.

In essence, the model’s main components consist of arti-
facts, processes, and agents. Five main dependencies between
two components are defined as ‘used’ (process on artifact),
‘wasGeneratedBy’ (artifact on process), ‘wasControlledBy’
(process on agent), ‘wasDerivedFrom’ (artifact on artifact),
and ‘wasTriggeredBy’ (process on process). Altogether the
components and dependencies form a directed acyclic graph
where the main components correspond to nodes and the
dependencies correspond to edges.
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Fig. 1. OPM Causality Dependencies

The most basic graph exhibiting all these graph entities is
depicted in Figure 1. Here the agent Ag controlled the process
pl which used the artifact al to generate the new artifact a2
which was then used by the process p2. Notice the direction
of the arrows specifies a causality relationship. The source of
the arc represents the effect while the destination represents
the cause. Also, the fact that pl used al and generated a2
does not guarantee that a2 was derived from al, hence that
needs to be asserted with the ‘wasDerivedFrom’ edge from a2
to al. Similarly, the ‘wasTriggeredBy’ edge is used to assert
the causality dependency between pl and p2.

We utilize the OPM model to capture base provenance
data in this paper. Artifacts are used to capture data objects
(e.g., submitted paper, review, etc.). Processes are used to
capture the functional actions such as upload, submit, grade,
etc. Agents correspond to users. We only utilize the direct
dependencies of OPM, and omit the indirect dependencies of
‘wasDerivedFrom’ and ‘wasTriggeredBy’ in our base prove-
nance data (variations of these could be utilized in the extended
models). To assign additional semantics to the OPM graph
and facilitate convenient adaptation of OPM to applications of
various domains, the OPM model provides a notion of role that
further specifies dependencies. For example, an object may
have a dependency ‘wasGeneratedBy(submit)’ with a submit
process, meaning that the object was generated by submit
action (as opposed to say the grade action). In OPM the
dependency role is applicable to ‘used’,‘wasGeneratedBy’ and
‘wasControlledBy’ dependencies. For our purpose, we only
adopt roles for ‘used’ and ‘wasGeneratedBy’ dependencies,
as we allow only one agent for each process.

B. Data Provenance in Access Control

Using provenance data in a system raises at least two
security related issues. We identify them as provenance-based
access control (PBAC) and provenance access control (PAC).
PBAC focuses on how provenance data can be used to control
access to data, while PAC concerns how access to provenance
data should be controlled. There has been considerable at-
tention recently on securing provenance data, i.e., PAC [5],
[6], [81, [9], [16], [17], [22], [27]. In this paper we focus on
PBAC. PBAC and PAC are complementary to each other in
that PBAC can be used to control access to provenance data
and PAC can be used to elevate trustworthiness of provenance

data. Furthermore, they both require mechanisms to capture,
store and retrieve provenance data. Therefore, though this
paper focuses on a foundational model for PBAC, we believe
the proposed model also provides a foundation for proper
understanding of PAC since it identifies how provenance data
should be structured and retrieved.

Although provenance-based access control utilizes prove-
nance data to make access decision, it is likely the case that
a real world system will also require other forms of access
control systems together with PBAC. For example, consider
a homework review and grading example in an online course
management system presented in our sample case study. PBAC
can support policies such as only the user who uploaded a
homework can replace it with a newer version or can submit
it, the user who submitted a homework cannot review the
homework, or a user can append reviews to a grade report
only if the review was completed for the homework. This
application system is likely to additionally utilize role-based
access control to enforce policies such as only students can
submit homework or review other student’s homework and
only instructors can grade a homework or append reviews to
a grade report. For this reason, the policies in the proposed
model are defined as necessary rather than sufficient for access,
since additional non-provenance based policies may also come
into play.

III. A FAMILY OF PBAC MODELS

In this section, we identify a family of models for
provenance-based access control based on three criteria.

The first criteria is the kind of provenance data is used in the
system. Provenance-based access control utilizes provenance
data to make decisions on users’ access to data objects. The
provenance data stores transaction records that are captured in
a system from which causality dependencies can be computed.
It may also store dependency information that are identified
by users. For example, a PC member of a conference may
delegate an actual reviewer of the paper that is assigned to
her or an author may identify additional authors of a paper
that he submitted.

The second criteria is whether policies are based on object
dependencies or acting user dependencies. Policies using ob-
ject dependencies verify transaction history of objects while
policies using acting user dependencies utilize history of users.

The third criteria is whether the policies are given and
readily available to the system or they are retrieved from other
users or objects that are discovered by tracing provenance data
based on additional policy retrieval policies.

Based on these criteria, we have identified one base model
and three extended models for provenance-based access con-
trol as shown in Figure 2. PBACE is our base model that fo-
cuses on system captured and system computable provenance
data and object dependencies, and assumes policy is given. In
the three extended models, PBACYy extends the base model
to allow user-declared provenance data, PBAC, extends
the base model to include acting user dependencies, and
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Fig. 3. PBAC Model Components

PBACpg extends the base model by including provenance-
based policy retrieval. Combinations of these extended models
are also possible. In this paper we mainly focus on the base
model which presents essential aspects of PBAC.

IV. PBAC MODEL COMPONENTS

The proposed provenance-based access control model con-
sists of several core components. Figure 3 shows these
components. They are acting users, action instances, action
types, objects, object roles, provenance data, dependency lists,
policies, access evaluation function for user authorization and
action validation, policy retrieval policies, and policy retrieval
function. Those components with solid line boundaries are
necessary for the proposed base model. Others with dashed
line boundaries are part of the extended models. While we
also identify and briefly discuss the additional components
for the extended models in this section, our overall focus is
on the base model.

Acting Users (AU) represent human beings who initiate
requests for actions against objects. To be precise, provenance
data captures acting subjects, not acting users. While this

is true, since one user can have many acting subjects that
are stored in provenance data and provenance-based access
control policies are defined based on acting users, we assume
a corresponding user of an acting subject can be identified. For
the sake of simplicity, we use acting users instead of subjects
in our model.

Action instances (A) are initiated by users for an access to
objects. Provenance-based policies are defined by using action
types (AT) rather than action instances. AT is a fixed finite
set of action types predefined by system architects. We assume
a system can derive action types from given action instances.

Objects (O) are resource data that are accessed by users.
Our provenance-based access control model supports object
versioning and allows multiple versions of an object. Prove-
nance data captures object versions as vertices. When a
transaction modifies an object version, the new version is
represented as a new vertex in provenance data. If an object
version is copied or modified into a new object, the output is
represented as a new object.

A Request consists of an acting user, an action instance
and a set of objects with object roles that are to be accessed.
Specific object roles for each action type are pre-defined
in the system. In a request, the action type of the action
instance may require multiple objects with different object
roles (OR) assigned to them. For example, an append action
type requires one reference object and one source object to
which the contents of the reference are appended. Object
roles are necessary since objects with different roles will, in
general, need different rules for granting an action request.
Once a request is allowed and performed, the corresponding
transaction data is captured and stored as part of the base
provenance data. Transaction data includes acting user, action
instance, input object(s) and output object(s).!

Provenance data (PD) consist of base provenance data
and user-declared provenance data. The base provenance
data (PDp) store transactions data that are captured as a
result of performed actions and form a directed graph that is
similar to the one identified in OPM [20]. Each transaction
is stored as a set of triples that consists of two entities and
one causality dependency. The causality dependency utilizes
three basic dependency types of ‘wasControlledBy’, ‘was-
GeneratedBy’ and ‘used’ out of five causality dependencies
identified in OPM [20].> For example, suppose a user ul
appended object 01 to object 02. The transaction data will be <
ul, appendl, (01, 02),01v2 > and corresponding provenance
data will store < appendl,ul,wasControlledBy >, <
appendl, ol,used(source) >, < appendl, 02,used(ref) >
and < olv2,appendl,wasGeneratedBy(append) >. Here,
ol and 02 are input objects, olv2 is the output object and
source,ref, append are roles. OPM allows a notion of role

I'While other contextual information such as timestamp, location, platform
and purpose can be captured and utilized for provenance-based access control,
we do not consider such auxiliary information in this paper since they are not
the basic ones for provenance-based access control.

2The remaining two dependencies are not used in our base provenance data
since they are indirect dependencies that either can be system-computed from
the direct dependencies or are user-declared.



for these three base dependencies. However we utilize roles
for only ‘wasGeneratedBy’ and ‘used’ dependencies to specify
how objects are generated or used. As mentioned earlier, we
do not allow roles for ‘wasControlledBy’ since we assume
there is only one acting user per action instance.

Unlike OPM, in the provenance data of our model, we
make use of all the matching inverse dependencies of the
dependencies that are captured as a result of transactions.
Using normal dependencies, provenance data can be traced
only backward in time. The inverse dependencies are necessary
for traversing some dependency data since, for example, a
request to modify an object may need some verification
whether its newer version had been viewed or not. This rule
can be verified by traversing the provenance data forward in
time. It may also require changes in direction multiple times
in case, for example, one may want to check whether any of
the related objects and object versions was ever viewed or
accessed by someone.

If allowed, users can declare new dependencies or deny ex-
isting dependencies. While these user-declared dependency
data (PDy) can be utilized in provenance-based access
control together with base provenance data, the proposed
base model only focuses on base provenance data since user-
declared provenance data are not as critical as base provenance
data and can be better discussed only with a precise under-
standing of a model that utilize base provenance data.

Dependency lists (DL) are constructed as pairs of ab-
stracted dependency names (DN) and corresponding depen-
dency path expressions (DPAT H). Each dn € DN is paired
with, and defined by, exactly one dpath € DPATH, where
dpath may use other previously defined dn’s. Recursive or
cyclic definitions are not permitted so each dpath can be
reduced to a regular expression using only base dependency
types by expanding the dn definitions inline. There can be
object dependency lists and acting user dependency lists.
Object dependency lists include dependencies between objects
and other entities in provenance data such as other objects,
acting users (agents in OPM), or action instances. Likewise
acting user dependency lists include dependencies of acting
users. The proposed model consider only object dependency
lists as object dependency is an essential notion of provenance
based access control.?

Policies include a set of rules that need to be evaluated for
granting access. These rules are either for user authorization or
action validation. User authorization rules specify whether
the requester is qualified for the request or not while action
validation rules specify whether the requested action can
be performed against the requested objects. Both types of
rules are specified using dependency names. There is only
one policy per action type.

Access Evaluation function evaluates a request by utilizing
user authorization rules and action validation rules found in

3Note that while acting user dependency information is available in prove-
nance data, it is not likely to be the main information that provenance data
captures. In fact, by definition, provenance is history of objects not acting
users though it also includes user’s activity histories.

the policy for the type of the requested action and returns a
boolean value. The algorithm for access evaluation is provided
in Algorithm 1.

Policy Retrieval Policies and Policy Retrieval Function
shown in the Figure 3 are used to discover policies that need
to be used for access evaluation. The proposed base model
assumes policies are given and readily available to the system
hence does not consider policy retrieval function and policies.
They are identified as components for one of the extended
models, and are not further discussed in this paper.

V. THE PBACgE MODEL

In this section, we first introduce a policy specification
grammar that can support our base provenance-based access
control (PBACg) model. Then we define the base model and
provide an access evaluation algorithm to show how access
control decision in the proposed model is made.

A. Policy Specifications

In this section we define a policy specification grammar PG
as shown in Table 1. Policies for the proposed model consist
of a set of user authorization rules (UARules) and action
validation rules (AV Rules). The overall result of both of these
is combined by conjunction. Each rule is defined using path
rules that consist of a starting node and a dependency name to
which a regular expression-based dependency path pattern is
mapped in a dependency list. (See the model definition section
below.) A user authorization rule is defined using an acting
user, a path rule and an operator and checks (non-)existence
of acting user in the vertices found using the path rule, while
an action validation rule is defined using one or two of the
path rules and an operator and either checks (non-)existence
or frequency of vertices in the path or compares two sets of
vertices found in the two paths. These three types of rules
(one user authorization rule and two action validation rules)
are by no means exhaustive but are sufficient to capture the
sample use case scenario presented in this paper. Each user
authorization rule is individually evaluated to a boolean result.
The individual results are then combined using disjunction and
conjunction as specified. Action validation rules are similarly
individually evaluated and then the results are combined using
disjunction and conjunction as specified.

B. Model Definitions

Based on the core components identified in the previous
section, we define a base model for PBAC as follows.

1) AU, A, AT, O and OR are acting users, action instances,
action types, objects, and object roles respectively.

2) G,U,G~'and U~ are sets of role-specific variations of
‘wasGeneratedBy’ and ‘used’ dependencies and match-
ing sets of inverse dependencies, respectively.

3) {‘¢’,‘c™1'} is the set of ‘wasControlledBy’ dependency
and its inverse dependency.

4) Base provenance data PDp forms a directed graph and
is formally denoted as a triple < Vg, Ep, Dp >:
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TABLE 1

A POLICY SPECIFICATION GRAMMAR PG

e« Vg = AU U AU O, a finite set of acting users,
action instances, and objects that have been involved
in transactions in the system and are represented as
vertices;

e Dp={cUUUGU{c’}UUTUG™, a finite
set of base dependency types;

o Ep C{(AXAUx‘¢)U(AxOxU)U(OxAxG)U
(AUXAx‘c Y U(Ox AxUHU(AXxOxG1)},
denoting dependency edges, is the set of existing
base dependencies in the provenance data.*

5) DNy, disjoint from Dp, is a finite set of abstracted
names for dependencies of objects.

6) Let X be an alphabet of terms in Dp U DNg. The set
DPATH of regular expressions is inductively defined
as follows:

e VpeX,pe DPATH;e ¢ DPATH,
. (P1|P2),(Pl.P2)7P1*,P1+,P1? S DPATH,
where P € DPATH and P, € DPATH.

7) DPATHp C DPATH, is the set of regular expression
using only alphabet of terms in Dp.

8) DLo : DNo — DPATH, defines each dn € DNgp
as a path expression. DLo is also viewed as a list of
pairs of object dependency names and corresponding
dependency paths.

9) Ao : DNo — DPATHpg, maps each dn € DNgo

to a path expression using only base dependency types

dy € Dp by repeatedly expanding the definitions of any
dn; € DNp that occurs in DLo(dn).

PFE is a language specified in the policy expression

grammar PG.

P C PF, is a finite set of policies.

~: AT — P, a mapping of an action type to a policy.

S0 : O x DPATHp — 2VE, a function mapping an

10)

1)
12)
13)

“Note that only certain kinds of edges can exist (no O to O edge for
example) and only certain labels can be applied to certain kinds of edges
(A to AU edge must be labelled ‘¢’ for example). By definition each edge is
accompanied by its inverse edge to facilitate traversal in forward and backward
direction. If the inverse edges are dropped the graph will be acyclic as in the
OPM model.

object and a base dependency path to vertices in PDp
such that oy € d(01,dpath) iff there exists a path in
PDp from o; to oo whose edge labels form a string
that satisfies the regular expression dpath.

Definition 2-3 define base dependencies which are the build-
ing blocks of base provenance data as defined in definition 4.
In definition 4, these dependencies can be used only between
certain kinds of vertices. For example, ‘c’ and ‘¢* can be
used to connect an action instance to an acting user and an
acting user to an action instance, respectively. The simplicity
and effectiveness in policy specification and access control
management are achieved with the utilization of dependency
names and matching dependency paths in dependency list
(DLo) as shown in Definition 5-9. Definition 10-12 provide
the means for defining policies and attaching them to action
types. Definition 13 defines the Jp function necessary for
access request evaluation with respect to the given PDp.

C. Access Evaluation Procedure

The Access Evaluation Procedure is specified in Algorithm
1. In the algorithm, line 2 - 6 shows the rule collecting
phase that identifies all the user authorization rules and action
validation rules from the policy applied to the action type of
the request. The user authorization phase (line 7 - 14) and
action validation phase (line 16 - 25) differ in that action
validation may need to compute multiple sets of vertices from
multiple path rules while user authorization only evaluates one
path rule. The user authorization phase compares the acting
user of the request to the vertices found as a result of checking
the path rules against the base provenance data (PDp) and
returns a boolean value. An action validation rule evaluates
the existence or number of vertices found by a path rule or
compares multiple sets of vertices found by multiple path
rules, and then returns a boolean value. User authorization
rules (as well as action validation rules) are connected using
conjunctive and disjunctive connectives. Once the truth values
of these two phases is computed, the algorithm evaluates the
final truth value using conjunctive connective.

We provide a partial analysis for the complexity of this
algorithm. It is trivial that all steps outside the FOR loop
from line 7 - 13 and the nested FOR loops from line 16 -
24 are in PTIME. Since the number of rules and path rules
are finite, all the extraction steps in the two FOR loops except
lines 11 and 21 are also in PTIME. Hence the complexity
is dominated by lines 11 and 21. Lines 11 and 21 require a
tracing algorithm on the provenance graph. In practice this
tracing algorithm would be embedded in queries that support
regular expression-based path patterns. We conjecture that the
complexity in some subsets of practical problem space is
achievable in PTIME while in other cases may be NP-complete
or worse. While further investigation is necessary, a detailed
complexity analysis is beyond the scope of this paper.

VI. A CASE STUDY ON AN ONLINE GRADING SYSTEM

Consider a homework grading example in an online course
management system with the following policies:



Algorithm 1 AccessEvaluation(au,a,O)

. (Rule Collecting Phase)

: at < a’s action type

:p <+ v(at)

RULEy 4 <+ user authorization rules U A Rule found in p

RULE 4y < action validation rules AV Rule found in p

: (User Authorization Phase)

: for all rules in RULEy 4 do

Extract the path rule (Obj Role, D Name) from rules

Determine the object o € O, whose role is Obj Role

Extract dependency path expression dpathy, in DPATHp from DName

using Ao function

11: Determine vertices by tracing base provenance data PDp through the paths

expressed in dpathy, that start from the object o using do function

12: Determine the truth value by evaluating the result against the rule

13: end for

14: U Auth < a combined truth value based on conjunctive or disjunctive connectives
between rules

15: (Action Validation Phase)

16: for all rules in RULE 5oy do

17:  Extract path rules (Obj Role, DName) from rules

SPRPIDUNB W=

18: for all path rules extracted do

19: Determine the object o € O, whose role is Obj Role

20: Extract dependency path expression dpathy, in DP AT H g from D Name
using Ao function

21: Determine vertices by tracing base provenance data P D g through the paths

expressed in dpathy, that start from the object o using do function
22: end for
23: Determine the truth value by evaluating the results of all the extracted path rules
24: end for
25: AVal < a combined result based on conjunctive or disjunctive connectives
between rules
26: Evaluate a final truth value of U Auth and AV al using conjunctive connective

1) Anyone can upload a homework. 2) A user can replace
an old version of a homework with a new version (versioning
control) if the user is the author of the old version and the
old version has not been submitted. 3) An author can submit
her homework (origin-based control) if it was not submitted
already. 4) A user can review only a submitted homework
(workflow control) if she is neither the author nor one of the
existing reviewers of the homework (dynamic separation of
duty) and the homework has been reviewed less than 3 times
and not been graded. 5) A review can be revised if the user
created the review and the referred homework is not graded
yet. 6) A homework can be graded if it was reviewed at least
2 times. 7) A review can be appended into a grade if the
acting user created the grade and the review was made for the
homework that the grade is made against.

In PBAC, policies are defined using dependency names.
These dependency names are defined in the dependency list
and mapped to a combination of other dependency names and
paths which eventually can be expressed in regular expressions
(DPAT Hp) that only utilizes base dependency types (Dp).
We first define a sample object dependency list to construct
policies for the sample case as shown below:

Object Dependency List DLo:

1) < wasReplacedVof, grepiace Winput >

2) < wasSubmittedVof, gsubmit-Uinput >

3) < wasReviewedOof, greview Winput >

4) < wasRevisedVof, grevise - Uinput >

5) < wasGradedOof, ggrade Winput >

6) < wasAppendedVof, gappend-Usrc >

7) < wasOneO f ReviewO f,wasRevisedVof * .greview Winput >

8) < wasAuthoredBy,wasSubmittedVof?.wasReplacedVof *
‘Gupload-C >

9) < wasReviewedBy,wasReviewedOof 1.greview.c >

10) < wasCreatedReview By, wasRevisedVof * .greview-¢ >
11) < wasGradedBy, wasAppendedVof * .ggrade-¢ >

The dependency list items 1 - 6 define some dependency
names and their dependency path patterns using base depen-
dencies. Items 7 - 11 define additional dependency names
using both base dependencies and previously defined depen-
dency names. Based on this object dependency list, the sample
policies are presented using the proposed policy specification
grammar PG as follows:

Sample Policies:’

1) allow(aw, upload, 0) = true.

2) allow(au, replace,0) = au € (o, wasAuthoredBy) A

|(0, wasSubmittedVof)| = 0.
3) allow(au, submit, 0) = au € (0, wasAuthoredBy) A
|(0, wasSubmittedVof)| = 0.
4) allow(au, review, o) = au ¢ (0, wasAuthoredBy) A
au ¢ (o0,wasReviewedBy) A |(o, wasSubmittedVof)| # 0 A
|(0, wasReviewedOof~1)| < 3 A
|(0, wasGradedOof~1)| = 0.
5) allow(au,revise, 0) = au € (0, wasCreatedReviewBy) A
|(0, wasOneO f ReviewO f.wasGradedOof~1)| = 0.
6) allow(au, grade, 0) = ((|(o, wasReviewedOof~1)| > 2 A
|(0, wasGradedOof~1)| = 0).
7) allow(au, append, 0src, Oref) = au € (0sre, wasGradedBy) A
(0src, wasGradedOof) = (0ref, wasOneO f ReviewO f).

As discussed earlier, transaction data is different from a
request in that transaction data knows exactly what objects
are used and generated, while a request does not include any
objects that will be generated from the performed request. In
the list below, we show some sample transaction data and the
matching base provenance data. The OPM graph diagram of
the resulting base provenance data is illustrated in Figure 4.

Sample Transactions and equivalent Base Provenance
Data:

1) (au1,uploadl,o1,1): < uploadl,aui,c >,

< 01v1, upload17 Gupload >
2) (au1,replacel,o1y1,0102): < replacel,aui,c >,

< replacel, 011, Uinput >, < 0102, Teplacel, grepiace >
3) (aui, submitl, o142, 0103): < submitl, aui,c >,

< S’Zmeitly 01v2, Uinput >, < 0103, S'U'bmitla Jsubmit >
4) (auz,reviewl, 0143, 0201): < reviewl,aus,c >,

< TeviewL 01v3, Uinput >, < 021, rem'ewl, Greview >
5) (aus,review2, 01,3, 0301): < review2,aus,c >,

< review2, 0143, Uinput >3 < 03v1, TEVIeW2, greview >
6) (aug,revisel,02,1,0242): < revisel,aus,c >,

< revisel, 0241, Uinput >, < 0202, revisel, grevise >
7) (aus, gradel, o143, 0401): < gradel,aus,c >,

< gradel, 0143, WUinput >, < 04v1, gradel, Ygrade >

8) (aus, appendl, 041, 0202, 04v2): < appendl,aus,c >,

< appendl, 04y1, Usrc >, < appendl, 02,2, Uref >,
< 0402, appendlz YJappend >

VII. EXTENDED MODELS

The proposed base model is a foundational model for
provenance-based access control and can be further extended
for additional security enhancements. As identified earlier,
one crucial extension that will enhance the base model is
allowing user-declared provenance data (PDy in Figure
3) in addition to the system-computed base provenance data.

SWe assume users can access only the newest object versions in the system.
If not, policies like 2) in the sample will need an additional rule to make
sure the object or the newer versions of the object have not been used for a
submission.
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Fig. 4. Sample Provenance Data for Online Grading System in OPM Graph

This means a user can declare a specific dependency between
entities using a dependency name that is predefined by the
system and available to the user. The user-declared dependency
may cause conflict with the dependencies with the same name
that are computed using base provenance data. For example,
in Figure 4, a user aug may declare another user, say aug as
an actual reviewer who generated a review 09, for the object
01,3 While the system-computed dependency will point to aus
as a reviewer based on the base provenance data. One approach
to address this issue is by explicitly identifying the intentions
of the declaration. For this, we believe there are at least three
types of intentions: inclusive, exclusive and denying types.
The inclusive-intent dependency means, for example, both aus
and aug are considered as reviewers who created o0s,1. If aus
declared aug as an exclusive reviewer, the system computed
dependency will be voided. In addition, if allowed, aus may
deny that he is not the actual reviewer. Furthermore, this
extended model also needs to resolve an authorization issue
of who can declare what kind of dependency intentions under
which circumstance. We believe the proposed base model
provides a concrete foundation for this extension.

Another interesting extension is including acting user de-
pendencies in addition to object dependencies. Unlike object
dependencies, acting user dependencies utilize acting users
as a starting node of a path pattern. This means the rules
using acting user dependencies are based on history of the
user’s previous actions that are independent from the objects
related to a request. While this type of rules may not require
dependency paths to be traced, the necessary information is
captured in provenance data and readily available for this kind
of queries. This extension is likely to allow users’ activity
history-based access controls using provenance data.

The third extension we have identified is policy retrieval

which concerns how to discover necessary policies using
provenance data in case the policies are not readily available
to the system. For example, if a system enforces originator
control policy for certain objects, the system can use prove-
nance data to find all the contributors of an object from whom
the system can retrieve relevant polices. This provenance-
based policy retrieval enriches the base model which assumes
policies are given to the system. Further developments on this
extension will enhance the proposed model.

VIII. RELATED WORKS

Provenance is captured and utilized in many different
application domains [7], [11], [18]. Based on the intrinsic
characteristics of each application domain, different models for
provenance are defined. Ni et al [22] propose a general prove-
nance model to capture provenance information but do not
explicitly capture the causal dependencies between the model
components. OPM [20] is a provenance model that captures
provenance data in terms of causality dependencies between
the provenance data model components and allows different
profile definitions to be constructed to capture multi-domain
environments, one of which is in distributed systems [14]. Park
et al [23] utilized OPM to capture and express provenance
information in the group-centric secure information sharing
environment [19]. In this paper, our proposed access control
model utilizes OPM to capture the dependencies on which
access control policies and decisions are based.

Various aspects of provenance security have been discussed
in the literature [6], [16], [17], [27]. Most of the related works
mainly consider protecting provenance data. Approaches in-
clude building policy languages that provide fine-grained ac-
cess control [22] as well as allow the generation of query-
expressions of paths of arbitrary length on provenance graph
[8]. Other works focus on protecting the sensitivity of path
information on the provenance graph using redaction [9] or
surrogate graphs [S]. To the best of our knowledge, our work
is the first to provide security protection to regular data by
utilizing provenance data and accommodating the intrinsic
property of causality dependency.

History-based Access Control (HBAC) models provide ac-
cess control to data objects based on the action and request
history of the subjects [2], [4], [13]. In HBAC policies, a
subject’s request is decided based on what actions and action-
requests the subject had performed before. In this context, the
main motivation is to differentiate the “goodness” of subjects
from their past behaviors. Such information can be retrieved
from provenance data. More specifically, it is captured in
transactions data in our model. In contrast, PBAC emphasizes
the history of data objects, which creates dependency chains,
and utilizes the intrinsic dependencies, which can also be
extracted from transactions data, between these objects for
access control purposes.

Separation of Duties (SOD) is extensively discussed in the
literature [26]. Transaction Control Expression (TCE) [24],
[25] provide a solution for dynamic SOD (DSOD) in a
role-based environment through predefined sets of transaction



expressions that are attached to objects and subsequently
become the objects’ history once executed. Based on the
stored executed transactions data, access control decisions can
be made to enforce DSOD appropriately. Such transactions
history along with corresponding DSOD enforcement can
be captured and handled in PBAC. Predefined structure of
TCEs can also be used to enforce workflow control. Elements
of workflow requirements exhibited by TCE can also be
expressed in PBAC through the use of predefined dependency
names in the specification of policies.

There are also several implementation frameworks for cap-
turing provenance data with the intent of security in mind. The
PASS system [21] aims to capture provenance information at
the file level. The PLUS system [10] captures provenance at
the application level and use the information for taint analysis
to handle insider threat [3]. In order to retrieve information
from the provenance storage, many implementation of query
languages are available. Park et al [23] employed SPARQL
[15] with GLEEN [12] in a group collaboration environment.
PQL [1] is a language in development that would provide
useful functionalities for provenance data queries.

IX. CONCLUSION

In this paper, we have defined a family of models for
provenance-based access control, then further developed a
base model PBACE that utilizes object dependencies that are
computed based on transactions to evaluate access requests.
In the model, we introduced a novel approach for policy
specification and access evaluation by utilizing abstracted
dependency names and matching dependency path patterns
that are expressed using regular expressions. We believe the
proposed model allows highly expressive policy specification
but simple and effective access control management at the
same time. The proposed model is the first effort in this line
of work and presents a strong foundation for promising future
research.
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