
Towards An Attribute Based Constraints
Specification Language

Khalid Zaman Bijon∗, Ram Krishnan† and Ravi Sandhu∗
∗Institute for Cyber Security & Department of Computer Science

†Institute for Cyber Security & Department of Electrical and Computer Engineering
University of Texas at San Antonio

Abstract—Recently, attribute based access control (ABAC) has
received considerable attention from the security community for
its policy flexibility and dynamic decision making capabilities.
In ABAC, authorization decisions are based on various attributes
of entities involved in the access (e.g., users, subjects, objects,
context, etc.). In an ABAC system, correct attribute assignment
to different entities is necessary for ensuring appropriate access.
Although considerable research has been conducted on ABAC,
so far constraints specification on attribute assignment to entities
has not been systematically studied in the literature. In this paper,
we propose an attribute-based constraints specification language
(ABCL) for expressing a variety of constraints on values that
different attributes of various entities in the system can take.
ABCL can be used to specify constraints on a single attribute
or across multiple attributes of a particular entity. Furthermore,
constraints on attributes assignment across multiple entities (e.g.,
attributes of different users) can also be specified. Finally, we
demonstrate the usefulness of ABCL in practical usage scenarios
including banking domains.

Keywords: attribute based access control, constraints, lan-
guage

I. INTRODUCTION

Over the last few years, attribute based access control
(ABAC) has been emerging as a dominant form of access
control due to its policy-neutral nature (that is, an ability to ex-
press different kinds of access control policies including DAC,
MAC and RBAC) and dynamic decision making capabilities.
Generally, ABAC regulates permissions of users or subjects
to access system resources dynamically based on associated
authorization rules with a particular permission. Thus, a user
is able to exercise a permission on an object if the attributes
of the user and object have a configuration satisfying the
authorization rule specified for that permission. Hence, proper
attribute assignment to these entities is crucially important in
an ABAC system in order to avoid unauthorized accesses.

In this paper, we focus on constraint specifications on
attribute assignment to the entities in ABAC as a mechanism
to determine which entity should get which attribute values.
By entities, we refer to users, subjects and objects which are
common in access control systems. A user is an abstraction
of human being, a subject is an instantiation of a user in
the system and can refer to a particular session much like in
RBAC and an object is a resource in the system. In general,
constraints are an important and powerful mechanism for
laying out higher-level access control policies of an organi-
zation. While ABAC is policy-neutral, it is also complex to

manage. Thus it should have proper constraint specification
and enforcement mechanisms in order to effectively configure
required access control policies for an organization.

Constraint specification in ABAC is more complex than
in RBAC since there are multiple attributes (unlike a single
role attribute in RBAC) and attributes can take different
structures (e.g., atomic or single-valued attributes such as
security-clearance and bank-balance and set-valued attributes
such as role and group). Constraints may exist amongst
different values of a set-valued attribute (e.g. mutual exclusion
on group memberships) and also on values across different
attributes. For instance, suppose that an organization wants
only their vice-presidents to get both a top-secret clearance and
membership in their board-members email group. The ABAC
system should have mechanisms to specify such constraints. In
this case, there are three attributes for each user namely role,
clearance and group. If the role attribute of a user is not ‘vice-
president’, then his clearance and group attributes cannot have
both the value of ‘top-secret’ and ‘board-member-emails’.
Note that these constraints are not concerned about users’
access to objects directly. Instead, they focus on high-level
requirements that a security architect would specify, which
may indirectly translate into enabling or disabling accesses.
This is much like separation of duty constraints in RBAC such
as a particular employee cannot take both ‘programmer’ and
‘tester’ roles for the same project. Such a constraint eventually
prevents the employee from simultaneously working on both
developing code and testing it for a given project.

In general, the more expressive power a model has, the
harder it is (if at all possible) to carry out many types of
security analysis. It has already been shown that the safety
problem of an ABAC system with infinite value domain of at-
tributes is undecidable [22]. Nevertheless, ABAC is the leading
mechanism that overcomes the limitations of discretionary ac-
cess control (DAC) [17], mandatory access control (MAC) [16]
and role-based access control (RBAC) [10]. NIST recognizes
that ABAC allows an unprecedented amount of flexibility and
security that makes it a suitable choice for large and federated
enterprizes over other existing access control mechanisms [2].
Given that ABAC is known to be hard to analyze, constraint
specification on attribute values is a powerful means to ensure
that essential high-level access control requirements are met
in a system that utilizes ABAC.

Our Contributions. We develop an attribute based con-

1

straint specification language (ABCL) for specifying con-
straints on attribute assignments. ABCL provides a mechanism
to represent different kind of conflicting relations amongst
attributes in a system in the form of relation-sets. Relation-
sets contain different attribute values and ABCL expression
expresses constraints on attribute assignments based on these
values. There is considerable literature, such as [4], [7], [9],
[11], [14], [18], [20], on the utility of attributes in managing
various aspects of security in a system. Our work is the first
investigation on how attributes themselves could be managed
based on their intrinsic relationships. We also present an ABCL
configuration for specifying powerful constraints in usage
scenarios such as banking domains.

II. RELATED WORK

Attribute Based Access Control. There is a sizable lit-
erature on ABAC in general. Damiani et al [4] described an
informal framework for ABAC in open environments. Wang et
al [20] proposed a framework that models an ABAC system
using logic programming with set constraints of a computable
set theory. Flexible access control system [9] can specify
features of ABAC policies and provide a language that permits
the specification of general constraints on authorizations. Yuan
et al [21] described ABAC in the aspects of authorization ar-
chitecture for web services. Lang et al [11] provided informal
configuration of DAC, MAC, and RBAC through ABAC. These
authors seek to develop an access control system either for
open systems such as web, internet, etc., or to overcome the
limitations of conventional access control models by utilizing
attributes. Park et al [13] categorized attributes according to
their mutability during execution of operations and developed
a mechanism in which attributes of entities can be updated
as a side-effect of an access. More recently, Jin et al [10]
proposed an attribute based access control model in which
they provide an authorization policy specification language
and formal framework using which DAC, MAC and RBAC
policies can be expressed. This literature focusses on ABAC
in general and not much on constraints in ABAC.

Constraints. Several authors have focussed on issues in
constraints specification in access control systems primarily
in RBAC. Constraints in RBAC are often characterized as
static separation of duty (SSOD) and dynamic separation of
duty (DSOD). These two issues were addressed back to late
1980’s when Clark et al [3] introduced SSOD and Sandhu [15]
DSOD. A number of attempts have been initiated afterwards
to identify numerous forms of SSOD and DSOD policies [5],
[19] and to specify them formally [6], [8] in RBAC systems.
The RCL-2000 language for specifying these policies in a
comprehensive way was proposed by Ahn et al [1].1 More
recently, Jin et al [10] proposed an attribute based access
control model in which they provide an authorization policy
specification language that could also specify constraints on

1Several aspects of ABCL have been inspired by RCL-2000, including the
use of conflict sets and the oneelement and allother operators. In dealing
with general attributes rather than just the single attribute of role ABCL goes
beyond RCL in many aspects.

Fig. 1: ABAC model with ABACα and ABCL Constraints

attribute assignment. However, their constraints specification
focuses on what values the attributes of subjects and objects
may take given that users are currently assigned with particular
attribute values. This is much like constraints on what roles
can be activated in a user’s session in RBAC given that a user
is pre-assigned to a set of roles. Thus, prior work on constraint
specification does not address ABAC comprehensively.

Attribute Based Encryption. This body of literature con-
cerns a particular cryptographic enforcement mechanism for
attribute based access control systems. Sahani et al [14]
introduced the concept of Attribute Based Encryption (ABE)
in which an encrypted ciphertext is associated with a set of
attributes, and the private key of a user reflects an access
policy over attributes. The user can decrypt if the ciphertext’s
attributes satisfy the key’s policy. Goyel et al [7] improved
expressibility of ABE which supports any monotonic access
formula and Ostrovsky [12] enhanced it by including non-
monotonic formulas. Several other attempts examines different
variants of ABE. Basically, all these authors focus on improv-
ing secure encryption process by utilizing attributes.

III. MOTIVATION AND SCOPE

Attributes can capture identities, security clearances and
classifications, roles, as well as location, time, strength of
authentication, etc. As such ABAC supplements and subsumes
rather than supplants currently dominant access control models
including DAC, MAC and RBAC. figure 1 shows a typical
ABAC model structure that contains users (U), subjects (S),
objects (O) and different permissions (P). There are also user
attributes (UA), subject attributes (SA) and object attributes
(OA) associated with users, subjects and objects respectively.
A subject is the representative of a user in the system. Each
permission is associated with an authorization policy that
determines whether a subject should get that permission on
an object. An authorization policy compares the necessary
subject and object attributes and any subject, associated with
required attributes, can get the access. Hence, proper attribute
assignment to the entities is crucially important in ABAC.

As discussed in related work, recently, an ABAC model
called ABACα [10] proposed a policy specification language
that could specify policies for authorizing a permission as
well as constraints on attribute assignment. The constraints of
ABACα are shown in the top row of figure 1 (horizontal solid
lines with a single arrow-head). These constraints apply to
values a subject attribute may get from its owner (user) when
it is created, or an object attribute may get when the object
is created or operated-on by a subject. ABACα constraints
apply only when specific events such as a user modifying

2

a subject’s attributes occur. In other words they are event
specific. They relate the user attributes to the subject or the
subject to the object depending on the event in question. ABCL
constraints on the other hand are event independent and are
to be uniformly enforced no matter what event is causing an
attribute value to change. They are specified as restrictions on a
single set-valued attribute or restrictions on values of different
attributes of the same entity. ABCL constraints are depicted in
the top row of figure 1 as arcs with a single arrow-head.

The central concept in ABCL is conflicting relations on
attribute values which can be used to express notions such
as mutual exclusion, preconditions, and obligations, amongst
attribute values. For instance, suppose a banking organization
utilizes a set-valued user (customer) attribute called benefit
whose allowed values are {‘bf1’, ‘bf2’, ..., ‘bf6’}. Say that
the bank wants to specify the following constraints: (a) a
client cannot get both benefits ‘bf1’ and ‘bf2’, (b) a client
cannot get more than 2 benefits from the subset {‘bf1’, ‘bf3’,
‘bf4’}, and (c) for ‘bf6’ a client first needs to get ‘bf3’. Here,
the first policy represents mutual exclusion conflict between
‘bf1’ and ‘bf2’, the second one is a cardinality constraint on
mutual exclusion and the last one is a precondition constraint.
A number of other conflicts among attributes may also exist.

Figure 2 gives a hierarchical classification of the attribute
conflict-relationships based on two parameters: the number of
entities and number of attributes allowed in a conflict relation.
For example, each constraint in level 0 is concerned with
conflicts among values of a single user attribute and it applies
to each user independently. Level 1 allows constraints across
different attributes of a single user. In level 2, constraints
evaluate conflicting values of each attribute individually but
across multiple users and in level 3 it can be across different
attributes across multiple users. For instance, in above banking
example, if a constraint restricts both benefits ‘bf1’ and ‘bf2’
from offering to a client simultaneously, the constraint falls
in level 0. Here, the constraint concerned with the conflict
between two values of single attribute benefit. Again, suppose,
there is a felony attribute that represents the clients’ felony
history. If any value of felony restricts a client to get any
benefit, this constraint falls in level 1. In this case, a conflict
among certain values of two different attributes benefit and
felony are addressed. Section V-A shows examples of several
other constraints those fall in different levels of the relationship
hierarchy. In the following sections, we present ABCL formal-
ization and discuss them for user attributes in an ABAC model.
However, ABCL is capable of expressing attribute assignment
constraints of other entities as well, e.g. subject and objects.
For simplicity and lack of space we focus exclusively on user
attributes.

IV. ATTRIBUTE BASED CONSTRAINT LANGUAGE (ABCL)

We now formally present the elements of ABCL. ABCL
consists of three basic components: the attributes of different
entities in an ABAC model, a few basic sets and functions to
capture different relationships amongst attributes, and a lan-
guage for specifying constraints using basic sets and functions.

Fig. 2: Attributes Relationship Hierarchy

A. Basic Components of the ABAC Model
For the purpose of this paper, we use the basic framework

of the ABACα model [10] as a representative ABAC model for
ABCL. However, note that ABCL is not tailored for ABACα

and can be similarly applied to other ABAC models.
A brief overview of ABACα is provided in table I. Like

most access control models, ABACα consists of familiar basic
entities: users (U), subjects (S) and objects (O). Each of these
entities is associated with a respective set of attribute functions
or simply attributes (UA, SA and OA respectively). Two types
of attributes are considered in ABACα: set-valued and atomic-
valued. For example, role is a set-valued attribute since a user
may take multiple roles in an organization. However, security-
clearance is an atomic-valued attribute since a user takes only
a single value for security clearance such as ‘top-secret’ or
‘secret’. As shown in table I, an attribute is a function from the
respective entity to a set of values that it can take (the Range
of the attribute). The Range could be set or atomic-valued
depending on the type of the attribute. A special attribute
called SubCreator is used to keep track of the user that created
a particular subject. Note that a user can create any number
of subjects. The permissions that a subject can exercise on
an object depends on the attribute values of the subject and
object and the attribute-based authorization rule expressed for
that permission in the system. Since ABCL is only concerned
about constraints on what values these attributes can take and
not on authorization rules for subject operations on objects or
subject creation and other operations, the overview of ABACα

provided in table I suffices for our purpose.
For specifying ABCL constraints, we specify additional

derived functions for convenience. For each attribute, we
define assignedEntitiesU,att (table II) that identifies the set
of users that are assigned a particular value of that attribute.
Similar functions can also be declared for subjects and objects.

B. Basic Sets and Functions of ABCL
Attribute conflict can occur in several ways. ABCL recog-

nizes two types of conflict: values that have conflict with other
values of the same attribute (referred to as single-attribute
conflict) and values having conflict with the values of other
attributes (referred to cross-attribute conflict). Note that single-
attribute conflict is applicable only for set-valued attributes
(e.g. mutually exclusive roles) while cross-attribute conflict
applies to both atomic and set-valued attributes.

3

TABLE I. Basic sets and functions of ABAC
U, S and O represent finite sets of existing users, subjects
and objects.
UA, SA and OA represent finite sets of user, subject and
object attribute functions.
P represents a finite set of permissions.
For each att in UA ∪ SA ∪ OA, Range(att) represents the
attribute’s range, a finite set of atomic values.
SubCreator: S→ U. For each subject it gives the creator.
attType: UA∪SA∪OA→{set, atomic}. Given an attribute
name, this function will return its type as either set or atomic.
Each attribute function maps elements in U, S and O to atomic
or set values.

∀ua∈ UA. ua: U →
{

Range(ua) if attType(ua)=atomic
2Range(ua) if attType(ua)=set

∀sa∈ SA. sa: S→
{

Range(sa) if attType(sa) = atomic
2Range(sa) if attType(sa)=set

∀oa∈ OA. oa: O→
{

Range(oa) if attType(oa)=atomic
2Range(oa) if attType(oa)=set

TABLE II. Derived Functions from Basic ABAC Sets
For each att ∈ UA

assignedEntitiesU, att: Range (att)→ 2U where
assignedEntitiesU,att(attval)={u| attval∈ Range(att) ∧
u∈ U ∧ (att(u)=attval if attType(att)=atomic or
attval∈ att(u) if attType(att)=set)}

TABLE III. Declared ABCL Conflict Sets
1. Expression for declaring sets that represent conflicts
among the values of a single attribute

For each att∈ UA and attType(att)=set there are zero or more
Attribute SetU,att = {avset1, avset2, ..., avsett}, where avseti=
(attval, limit) in which attval∈ 2Range(att) and 1≤limit≤|attval|.

2. Expression for declaring sets that represent value
conflicts across multiple attributes

For each Aattset⊆ UA and Rattset⊆ UA there is zero or more
Cross Attribute SetU,Aattset,Rattset={attfun1, ..., attfunu},
where attfuni(att)=(attval, limit) in which att∈ Aattset ∪
Rattset and (attval∈ 2Range(att) if attType(att)=set or attval∈
Range(att) if attType(att)=atomic) and 0≤limit≤|attval|.

In order to specify these two types of conflict, ABCL
facilitates the specification of two type of sets that may con-
tain conflicting values for single and cross-attribute conflicts
respectively and a formal language for precisely specifying
constraints based on these conflicts. We discuss these sets in
this subsection and the language in the following.

Item 1 and 2 in table III provide the mechanism for
declaring sets for single-attribute and cross-attribute conflicts
respectively. As shown in item 1, each Attribute Set contains
a set of values of an attribute that may have a particular type
of conflict (mutual exclusion, precondition, inclusion, obliga-
tion, etc.). A separate Attribute Set for each such conflict
could be specified. As previously mentioned, the semantics
of the constraints stated with respect to an Attribute Set will
be discussed in the next subsection. Each element of an
Attribute Set is an ordered pair (attval, limit) where attval
contains the values that have some form of conflict and limit
specifies the cardinality, that is the number of values in attval
for which the conflict applies. The interpretation of limit could
also be different, e.g. at least, exactly, at most, etc. The
Attribute Set declaration and initialization for the banking

example of section III are as follows (the syntax for these
expressions is shown in table IV).
Attribute SetU,benefit UMEBenefit

UMEBenefit={avset1, avset2} where
avset1=({‘bf1’,‘bf2’}, 1) and avset2=({‘bf1’,‘bf3’,‘bf4’}, 2)

Attribute SetU,benefit PreconditionBenefit
PreconditionBenefit={avset1} where
avset1=({‘bf3’, ‘bf6’}, 1)

Here, avset1 in UMEBenefit could indicate that the values
‘bf1’ and ‘bf2’ of the benefit attribute conflict with each other.
Similarly, avset2 could indicate that the benefit cannot take 2
or more of the values in the set {‘bf1’, ‘bf3’, ‘bf4’}. Note that
the limit of UMEBenefit indicates that the number of elements
from attval should be less than or equal to the value of limit.
While, in PreconditionBenefit the number of elements from
attval should be at least equal to limit.

As mentioned earlier, there could also be conflicts amongst
values across different attributes of a user. Let us say in
the banking example of section III, there is another user
attribute called felony and its range is {‘fl1’, ‘fl2’, ‘fl3’}. The
bank seeks to restrict a user to benefit ‘bf1’ if she has ever
committed felony ‘fl1’ or ‘fl2’. This is a mutual exclusive
conflict relation among the values of benefit and felony. These
relations are represented as another type of relation-set called
Cross Attribute Set which is formally defined in table III item
2. Each Cross Attribute Set is declared for two arbitrary sets
of user attributes which are determined at declaration time.
These two sets of attributes are represented as Aattset and
Rattset and combination of certain values of the attributes in
Aattset as a group has specific type of conflicts with certain
values of each attribute in Rattset. In other words, values of
the attributes of Aattset together restrict the values of each
attribute in Rattset. Each element of a Cross Attribute Set
is a function called attfun that returns the values of the
attributes of Aattset and Rattset as an ordered pair (attval,
limit) where attval represents the values and limit is the
cardinality. Cross Attribute Set declaration and initialization
for the banking example are as follows (the syntax for these
expressions is shown in table IV).
Cross Attribute SetU,Aattset,Rattset UMECFB

Here, Aattset= {felony} and Rattset= {benefit}
UMECFB={attfun1} where

attfun1(felony)=(attval, limit)
where attval={‘fl1’, ‘fl2’} and limit=1

attfun1(benefit)=(attval, limit)
where attval={‘bf1’} and limit=0

Using the set above, one can state if at least one value from
{‘fl1’,‘fl2’} is assigned to felony of a user, ‘bf1’ should not be
assigned to the benefit attribute of that user.

ABCL also has two nondeterministic functions, oneelement
and allother. The oneelement(X) returns one element xi from
set X and in a constraint expression it is written as OE(X). Mul-
tiple occurrences of OE(X) in a single ABCL expression selects
the same element xi from X. The allother(X) returns a subset
of elements from X by taking out one element with OE(X). We
usually write allother as AO. These two functions are related

4

TABLE IV. Syntax of Language
Declaration of the Attribute Set and Cross Attribute Set:
<attribute set declaration> ::= <atribute set type> <set identifier>
<attribute set type> ::= Attribute SetU,<attname> | Attribute SetS,<attname> | Attribute SetO,<attname>
<cross attribute set type> ::= Cross Attribute SetU,<Aattset>,<Rattset> | Cross Attribute SetS,<Aattset>,<Rattset>

| Cross Attribute SetO,<Aattset>,<Rattset>

<Aattset> ::= {<attname>, <attname>∗}
<Rattset> ::= {<attname>, <attname>∗}
<set identifier> ::= <letter> | <set identifier><letter> | <set identifier><digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<letter> ::= a|b|c|....|x|y|z|A|B|C|...|X|Y|Z
Constraint Expressions:
<statement> ::= <statement> <connective> <statement> | <expression>
<expression> ::= <token> <atomiccompare> <token> | <token> <atomiccompare> <size>

| <token> <atomiccompare>|<set>| | <token> <atomiccompare> <set> | <token>
<token> ::= <token> <setoperator> <term> | <term> | |<term>|
<term> ::= <function> (<term>) | <attributefun> (<term>) | OE (<relationsets>).<item>

| OE (<term>) | OE (<set>) | AO (<term>) | AO (<set>) | <attval>
<connective> ::= ∧ | ⇒
<setoperator> ::= ∈ | ∪ | ∩ | /∈
<atomicoperator> ::= + | < | > | ≤ | ≥ | ̸= | =
<set> ::= U| S| O
<relationsets> ::= <set identifier>
<attname> ::= ua1 | ua2 | ... | uax | sa1 | sa2 | ... | say | oa1 | ... | oaz

<attval> ::= ‘ua1val1’ | ‘ua1val2’ | ... | ‘uaxvalr’ | ‘sa1val1’ | ‘sa1val2’ | ... | ‘sayvals’ | ‘oa1val1’ | ... | ‘oazvalt’
<size> ::= ϕ | 1 | ... | N
<item> ::= limit| attval| attfun(<attname>).limit| attfun(<attname>).attval
<attributefun> ::= ua1 | ua2 | ... | uax | sa1 | sa2 | ... | say | oa1 | ... | oaz

<function> ::= SubCreator | assignedEntitiesU,<attname> | assignedEntitiesS,<attname> | assignedEntitiesO,<attname>

by context, because for any set S, {OE(S)}∪AO(S)=S, and at
the same time, neither is a deterministic function. An example
use of OE is as follows.

Requirement: No user can get more than three benefits.
Expression: |benefit(OE(U))| ≤ 3
OE(U) means a single user from U and benefit(OE(U)) re-

turns all benefits that are assigned to that user. This expression
ensures that a single user cannot have more than three benefits.
Later, we will see how AO is used in an ABCL expression.

C. Syntax of ABCL

The syntax of ABCL is defined by the grammar given in ta-
ble IV in Backus Normal Form (BNF). The grammar contains
declaration syntax for both type of relation-sets Attribute Set
and Cross Attribute Set and syntax for constraint expressions.

V. ABCL USEAGE SCENARIO

In this section, we present an extensive case study in which
a large set of ABCL expressions is generated to capture various
access control requirements of a banking organization.

A. Security policy specifications for Banking Organizations

We present ABCL constraints for several high-level security
requirements in a banking organization. Due to the space limi-
tation, we only show constraints for user attribute management
in this context. In a banking organization, let us consider a
finite set of existing users (U) in which a user is a human being
and could be of different types, e.g. client, junior employee.

Table V shows different user attributes, their types and
ranges in this system. Each user is assigned an attribute id

which is a unique identifier. Attribute uType represents the
type of a user and orgType represents the organization a user
belongs to. There is a role attribute representing various job
descriptions of a user such as ‘customer’, ‘cashier’, etc. The
bank might provide a number of benefits i.e. bonus, cash back
rate, etc, to the customers which is represented by the benefit
attribute. Attribute felony represents if the user has any felony
record and loan and cCard represent granted loans and credit
cards to a user respectively. Suppose that the banking authority
wishes to specify the following security policy requirements
for user attribute management. The ABCL formalism for these
requirements are given in following subsection. We also show
the conflict-relationship level of each of these constraints.
Req# 1: A user can get at most 5 benefits. (Relationship lev.0)
Req# 2: A user cannot hold the ‘president’ and ‘vice-
president’ roles simultaneously. (Lev.0)
Req# 3: A user cannot get both benefits ‘bf1’ and ‘bf2’. (Lev.0)
Req# 4: A user can get at-most 5 loans and cCards. (Lev.1)
Req# 5: If a user has felony records ‘fl1’ and ‘fl2’, she cannot
get more than one benefit from {bf1, bf2, bf3}. (Lev.1)
Req# 6: If a user is a ‘client’, she cannot get certain roles,
e.g. ‘cashier’, ‘manager’. (Lev.1)
Req# 7: No more than 12 users can get a ‘car’ loan. (Lev.2)
Req# 8: ids of two users cannot get the same value.(Lev.2)
Req# 9: If a user has felony ‘fl1’ and belongs to ‘org1’, no
users from ‘org1’ can get benefit ‘bf1’. (Lev.3)

B. Formal ABCL Specification for Banking Organization

Table VI shows declaration and initialization of the ABCL
sets for representing necessary relations among attributes

5

TABLE V. User Attributes (UA)
Attribute attType Range

id atomic {‘id1’,‘id2’, ..., ‘idx’}
uType atomic {‘client’, ‘junior’, ‘senior’, ‘leader’}

orgType set {‘org1’, ‘org2’, ..., ‘org20’}
role set {‘customer’, ‘cashier’, ‘manager’,

‘president’, ‘vice-president’}
benefit set {‘bf1’, ‘bf2’, ‘bf3’, ..., ‘bf10’}
felony set {‘fl1’, ‘fl2’, ‘fl3’, ..., fl8’}
loan set {‘car’, ‘house’, ‘education’}

cCard set {‘card1’, ‘card2’, ..., ‘card12’}

TABLE VI. ABCL Sets Declaration and Initialization:
1. Attribute Set Declaration and Initialization:

Attribute SetU,benefit UMEBenefit
UMEBenefit={avset1, avset2}
avset1=({‘bf1’, ‘bf2’}, 1), avset2=({‘bf2’, ‘bf3’, ‘bf4’, ‘bf5’}, 2)

Attribute SetU,role UMERole
UMERole={avset1}
avset1=({‘president’, ‘vice-president’}, 1)

2. Cross Attribute Set Declaration and Initialization:
Cross Attribute SetU, {uType}, {role} UMECTR
UMECTR={attfun1}
attfun1(uType)=({‘client’},1)
attfun1(role)=({‘cashier’,‘manager’,‘president’, ‘vice-precident’}, 0)
Cross Attribute SetU, {felony}, {benefit} UMECFB
UMECFB={attfun1, attfun2}
attfun1(felony)=({‘fl1’,‘fl2’},2), attfun1(benefit)=({‘bf1’,‘bf2’,‘bf3’},1)
attfun2(felony)=({‘fl1’},1), attfun2(benefit)=({‘bf2’}, 0)

Cross Attribute SetU, {felony, orgType}, {benefit} UMECFOB
UMECFOB={attfun1}
attfun1(felony)=({‘fl1’},1), attfun1(orgType)=({‘org1’}, 1),
attfun1(benefit)=({‘bf1’}, 0)

for specifying above security policies for the banking
organization. UMEBenefit contains mutual exclusive values
of the benefit attribute and UMERole represents mutual
exclusive roles. Similarly, mutual exclusive conflicts of uType
with role, felony with benefit, and felony and orgType with
benefit attributes are represented by the Cross Attribute Sets
UMECTR, UMECFB, and UMECFOB respectively. ABCL
expressions for the above discussed security policies are:

Req# 1: |benefit(OE(U))| ≤ 5.

Req# 2: |OE(UMERole).attset ∩ role(OE(U))| ≤ OE(UMERole).limit

Req# 3: |OE(UMEBenefit).attset ∩ benefit(OE(U))| ≤ OE(UMEBenefit).limit

Req# 4: |cCard(OE(U)) + loan(OE(U))| ≤ 5

Req# 5: |OE(UMECFB)(felony).attset ∩ felony(OE(U))| ≥
OE(UMECFB)(felony).limit ⇒ |OE(UMECFB)(benefit).attset ∩

benefit(OE(U))| ≤ OE(UMECFB)(benefit).limit

Req# 6: | OE(UMECTR)(uType).attset ∩ uType(OE(U))| ≥
OE(UMECTR)(uType).limit ⇒ |OE(UMECTR)(role).attset ∩
benefit(OE(U))| ≤ OE(UMECTR)(role).limit

Req# 7: |assignedEntitiesU, loan(‘car’)| ≤ 12

Req# 8: id(OE(U)) ̸= id(OE(AO(OE(U))))

Req# 9: |OE(UMECFOB)(felony).attset ∩ felony(OE(U))|
≥ OE(UMECFOB)(felony).limit ∧ |OE(UMECFOB)(orgType).attset
∩ orgType(OE(U))| ≥ OE(UMECFOB)(orgType).limit ⇒
|OE(UMECFOB)(benefit).attset ∩ (benefit(OE(U)) ∪
benefit(OE(AO(U))))| ≤ OE(UMECFOB)(benefit).limit

VI. CONCLUSION

Relationship constraints among attributes is an important
factor for attribute assignment in ABAC. We have developed
ABCL for specifying these constraints on attribute assign-
ments. ABCL configurations for a banking organization pro-
vides its expressiveness for generating various constraints for
fulfilling an organization’s security requirements. In future,
we plan to explore ABCL configurations for various RBAC
constraints specification given in [1] and analyze ABCL en-
forcement complexities.

Acknowledgement. This work is partially supported by the
National Science Foundation and AFOSR MURI projects.

REFERENCES

[1] G. J. Ahn and R. Sandhu. Role-based authorization constraints specifi-
cation. ACM Trans. Inf. Syst. Secur., 3(4):207–226, Nov. 2000.

[2] V. C. Hu et al. Guide to attribute based access control (ABAC) definition
and considerations (draft). NIST Special Publication, 2013.

[3] D. D. Clark and D. R. Wilson. A Comparison of Commercial and
Military Computer Security Policies. In Proc. of the IEEE S&P, 1987.

[4] E. Damiani, S. D. C. Di Vimercati, and P. Samarati. New paradigms
for access control in open environments. In Proc. of the ISSPIT, 2005.

[5] D. Ferraiolo, J. Cugini, and R. Kuhn. Role-based access control (RBAC):
Features and motivations. In Proc. of the 11th ACSAC, 1995.

[6] V. D. Gligor et al. On the formal definition of separation-of-duty policies
and their composition. In Proc. of the IEEE S&P, 1998.

[7] V. Goyal et al. Attribute-based encryption for fine-grained access control
of encrypted data. In Proc. of the ACM CCS, 2006.

[8] T. Jaeger. On the increasing importance of constraints. In Proc. of the
ACM RBAC, 1999.

[9] S. Jajodia et al. Flexible support for multiple access control policies.
ACM TODS, 26(2):214–260, 2001.

[10] X. Jin, R. Krishnan, and R. Sandhu. A Unified Attribute-Based Access
Control Model Covering DAC, MAC and RBAC. In DBSec, 2012.

[11] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman.
A flexible attribute based access control method for grid computing.
Journal of Grid Computing, 7(2):169–180, 2009.

[12] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with
non-monotonic access structures. In Proc. of the ACM CCS, 2007.

[13] J. Park and R. Sandhu. The UCONABC usage control model. ACM
Transactions on Information and System Security (TISSEC), 7(1), 2004.

[14] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Proc. of
the EUROCRYPT. 2005.

[15] R. Sandhu. Transaction control expressions for separation of duties. In
Proc. of the 4th ACSAC, 1988.

[16] R. S. Sandhu. Lattice-based access control models. IEEE Computer,
26(11), 1993.

[17] R. S. Sandhu and P. Samarati. Access control: Principle and practice.
Communications Magazine, IEEE, 32(9):40–48, 1994.

[18] C. Schläger, M. Sojer, B. Muschall, and G. Pernul. Attribute-based au-
thentication and authorisation infrastructures for e-commerce providers.
In Proc. of the EC-Web. 2006.

[19] R. T. Simon and M. E. Zurko. Separation of duty in role-based
environments. In Proc. of the IEEE CSFW, 1997.

[20] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for
attribute based access control. In Proc. of the ACM FMSE, 2004.

[21] E. Yuan and J. Tong. Attributed based access control (ABAC) for web
services. In Proc. of the IEEE ICWS, 2005.

[22] X. Zhang, R. Sandhu, and F. Parisi-Presicce. Safety analysis of usage
control authorization models. In Proc. of the ASIACCS, 2006.

6

