The GURAg Administrative Model for
User and Group Attribute Assignment

Maanak Gupta®™ and Ravi Sandhu

Institute for Cyber Security and Department of Computer Science,
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

gmaanakg@yahoo.com, ravi.sandhu@utsa.edu

Abstract. Several attribute-based access control (ABAC) models have
been recently proposed to provide finer-grained authorization and to ad-
dress the shortcomings of existing models. In particular, Servos et al
[33] presented a hierarchical group and attribute based access control
(HGABAC) model which introduces a novel approach of attribute inher-
itance through user and object groups. For authorization purposes the
effect of attribute inheritance from groups can be equivalently realized
by direct attribute assignment to users and objects. Hence the practi-
cal benefit of HGABAC-like models is with respect to administration. In
this paper we propose the first administration model for HGABAC called
GURAG. GURAG consists of three sub-models: UAA for user attribute
assignment, UGAA for user-group attribute assignment and UGA for
user to user-group assignment.

Keywords: Attribute based access control, attribute inheritance, group
hierarchy, group attribute administration, user-group assignment

1 Introduction

Interest in attribute-based access control (ABAC) has been developing over the
past two decades, in part due to limitations of the widely deployed role-based
access control (RBAC) model [32]. A number of ABAC models have been pub-
lished over the years [10, 11, 12, 15, 27, 34, 36, 37], although none of these is
quite regarded as the definitive characterization of ABAC.

Since ABAC access mechanism revolves around the attributes of entities,
Servos et al [33] proposed the hierarchial group and attribute-based (HGABAC)
model, which leverages user and object groups for allocating attribute values
to users and objects. In this model, a user can be assigned to a user-group and
instead of assigning attributes individually to each user in the group, a collection
of attribute values is assigned to the group and inherited by all users in that
group. A similar mechanism applies on the object side with object groups.

The essential benefit of HGABAC is convenient administration of attribute
values for users and objects. Our contribution in this paper is to present the
first administrative model for HGABAC, called GURAg. GURAg builds upon

2 M. Gupta and R. Sandhu

the GURA model [14] for user attribute assignment (UAA) but further adds
components for user-group attribute assignment (UGAA) and user to user-group
assignment (UGA). For this purpose we introduce an alternate formalization of
the HGABAC model which is compatible with the GURA and GURAg models.

Remaining paper has been organized as follows. An overview of HGABAC
followed with re-formalized model is discussed and specified in Section 2. In
Section 3, we propose a formal role and attribute based administration model
for user and user groups (GURAg). Section 4 discusses some limitations of the
proposed model. Section 5 reviews previous work related to ABAC and admin-
istration models, followed by conclusion in Section 6.

2 HGABAC Model

This section gives an informal characterization of groups in HGABAC [33], fol-
lowed by a formal specification. Our formalization is in the style of ABAC,, [15],
different from but equivalent to the formalization of Servos et al [33]. Our alter-
nate formalization of HGABAC enables us to build upon the GURA adminis-
trative model [14] for ABAC,, in Section 3.

2.1 Groups in HGABAC

Similar to many ABAC models, HGABAC recognizes the entities of users, sub-
jects and objects. A user is a human being which interacts directly with the
computer, while subjects are active entities (like processes) created by the user
to perform actions on objects. Objects are system resources like files, applica-
tions etc. Operations correspond to access modes (e.g. read, write) provided by
the system and can be exercised by a subject on an object. The properties of
entities in the system are reflected using attributes. Users and subjects hold the
same set of attributes whereas objects have a separate set of attributes reflecting
their characteristics. We assume all attributes are set valued. Also each attribute
has a finite set of possible atomic values from which a subset can be assigned to
appropriate entities.

In addition to the above familiar ABAC entities, HGABAC further introduces
the notion of a group as a named collection of users or objects. Each group has
attribute values assigned to it. A member of the group inherits these values from
the group. Users will inherit attributes from user groups and objects from object
groups. A partially ordered group hierarchy also exists in the system where senior
groups inherit attribute values from junior groups.

An example user-group hierarchy is illustrated in Figure 1. Senior groups are
shown higher up and the arrows indicate the direction of attribute inheritance.
Since Graduate group (G) is senior to both CSD and UN, G will hold the at-
tribute values directly assigned to it as well as values inherited from CSD and
UN. The values of univld and college attributes for group G are respectively
inherited from UN and CSD, values of userType and studType are directly as-
signed to G while the values of roomAcc are a mix of directly assigned values,

The GURAG Administrative Model 3

e r .--stTld?y:e:TU?d:r(?raTl}: A
' studType: {Grad} y | userType:{student} I === ===-

| . I userType:{staff}))
roomAcc: {2.03, 2.04,3.02} | roomAcc: {3.02} !

userType:{student} I 1 college: {cos} I'y rooméAcc: {3.02} H
college: {COS) 11 univid:{12345))| colleges{COS}
e I - — = === = =7 | univid:{12345}
sunivid: {12345} ~» Under-Graduate (UGR) N -

Graduate (G)

X |i; roomAcc: {3.02} il
Comp. Sci. Dept. ((:SI_'))II college: {COS} I
univid : {12345} 1}

\ University (UN);' :1;';{1:23:4;) ::1 /

Fig. 1. Example User Groups (values in black are direct and in gray are inherited)

[
Y

2.03 and 2.04, and inherited value 3.02 from CSD. Each user is assigned to a sub-
set of user groups. Similarly there is an object-group hierarchy wherein attribute
values of objects are analogously inherited.

The core advantage of introducing groups is simplified administration of user
and object attributes where an entity obtains a set of attributes values by group
membership in lieu of assigning one value at a time. In context of Figure 1
assigning an attribute value to CSD potentially saves hundreds or thousands of
assignments to individual student and staff. Likewise changing the CSD level
room from 3.02 to, say, 3.08, requires only one update as opposed to thousands.

2.2 HGABAC model: An alternate formalization

We now develop a formalization of the HGABAC model different from that of
Servos et al [33]. This alternate formalization will be useful in the next section
where we develop the GURAq for administration of HGABAC. Our formaliza-
tion uses the conceptual model of HGABAC shown in Figure 2. The complete
HGABAC formalization is given in Table 1, which we will discuss in the remain-
der of this subsection. An example configuration of HGABAC is given in the
next subsection.

Basic sets and functions of HGABAC are shown at the top of Table 1. U,
S, O and OP represent the finite set of existing users, subjects, objects and
operations respectively. UG and OG represent sets of user and object groups in
the system. UA is the set of user attributes for users, user groups and subjects.
OA is similarly the set of object attributes for objects and object groups. All
these sets are disjoint.

Attribute values can be directly assigned to users, objects, user groups and
object groups (we will consider subjects in a moment). These are collectively
called entities. Each attribute of an entity is set valued. The value of an attribute
att for an entity is some subset of Range(att) which is a finite set of atomic values,

4 M. Gupta and R. Sandhu

«— one €€ many +-- Association

Fig. 2. A Conceptual Model of HGABAC

as indicated by the functions att, and att, in Table 1. These functions specify
the attribute values that are directly assigned to entities. The function directUg
specifies the user groups to which the user is assigned, and similarly the function
directOg specifies the object groups to which an object is assigned.

User group hierarchy (UGH) is a partial order on UG, written as >4, where
ug1 ~ug uge denotes ug; is senior to ugs or ugs is junior to ug;. This many to
many hierarchy results in attribute inheritance where the effective values of user
attribute function att, for a user-group ug (defined by effectiveUGqt, (ug)) is
the union of directly assigned values for att, and the effective attribute values
of all groups junior to ug. The assignment of a user to a user-group will inherit
values from this group to that user. The function effective,s, maps a user to the
set of values which is the union of the values of att,, directly assigned to the user
and the effective values of attribute att, from all user groups directly assigned to
the user. Similar sets and functions are specified for objects and object groups.

A subject is created by a user, denoted by the SubUser function. The effective
attribute values of a subject are under control of its creating user. These values
are required to be a subset of the corresponding effective attribute values for
the creator. In general these values can change with time but cannot exceed
the creator’s effective values. The exact manner in which a subject’s effective
attributes are modified by its creator is not specified in the model, and can be
realized differently in various implementations.

Each operation op € OP in the system has an associated boolean authoriza-
tion function Authorization,(s,0) which specifies the conditions under which
subject s € S can execute operation op on object o € O. The condition is speci-
fied as a propositional logic formula using the policy language given in Table 1.
This formula can only use the effective attribute values of the subject and ob-
ject in question. The authorization functions are specified by the security policy
architects when the system is created. Thereafter, a subject s; € S is allowed
to execute operation op on object o o; € O if and only if Authorizationgp(si, 0;)
evaluates to True.

The GURAG Administrative Model

Table 1. HGABAC: An Alternate Formal Model

Basic Sets and Functions

- U, S, O, OP (finite set of users, subjects, objects and operations respectively)

— UG, OG (finite set of user and object groups respectively)

— UA, OA (finite set of user and object attribute functions respectively)

— For each att in UA U OA, Range(att) is a finite set of atomic values

— For each att, in UA, att, : UU UG — 282nee@tt) mapning each user
and user group to a set of values in Range(att,)

— For each att, in OA, att, : O U OG — 2Ranege(atto) mapping each object
and object group to a set of values in Range(atto)

— directUg : U — 2YC mapping each user to a set of user groups

— directOg : O — 2°€, mapping each object to a set of object groups

— UGH C UGxUG, a partial order relation >4 on UG

— OGH € OGxOG, a partial order relation >,4, on OG

Effective Attributes (Derived Functions)
— For each atty, in UA,
o effectiveUGat, : UG — ZRa“ge(att“), defined as
effectiveUGags, (ugi) = attu(ugi) U (U effectiveUGatt, (g))
Vg € {ugjlugi =ug ugj}
o effectiveasr, : U — QRa“ge(att“), defined as
effectiveats, (1) = atty(u) U (U effectiveUGags, (8))
Vg € directUg(u)
— For each att, in OA,
o effectiveOGag, : OG — 2Ranee(atto) " defined as
effectiveOGazs, (0gi) = atto(ogi) U (U effectiveOGast,, (g))
Vg € {ogjlogi =og 0g;}
o effectiveatr, : O — 2Ra“ge(a“°>, defined as
effectivea, (0) = atto(0) U (U effectiveOGatt, (g))
Vg € directOg(o0)
Effective Attributes of Subjects (Assigned by Creator)
— SubUser : S — U, mapping each subject to its creator user
— For each att, in UA, effectivea, : S — 28*&°@) mapping of subject s
to a set of values for its effective attribute att,. It is required that :
effectiveass, (s) C effectiveatt, (SubUser(s))

Authorization Function
For each op € OP, Authorizatione,, (s:S, 0:0) is a propositional logic formula,
returning true or false and is defined using the following policy language:

e ai=aAalaVal|(a)|~a|IxEset.a|VxEset.a | set A set |

atomic € set | atomic ¢ set

QA:::C|Q\¢_|Q\U

o set u= effectiveart,, (s) | effectiveart,, (0) for att,, € UA, att,, € OA

e atomic = value

Access Decision Function

A subject s; € S is allowed to perform an operation op € OP on a given object
0j € O if the effective attributes of the subject and object satisfy the policies
stated in Authorizatione, (s : S, 0 : O). Formally, Authorizationo(si, 0j) = True

5

6 M. Gupta and R. Sandhu

Table 2. Example HGABAC Configuration

Basic Sets and functions
— UA = {studld, userType, skills, studType, univld, roomAcc, college, jobTitle,

studStatus}
— OA = {readerType}
— OP = {read}

- UG = {UN, CSD, G, UGR, S}, OG ={ }
— UGH is given in Figure 1, OGH = { }
— Range of each att, in UA, denoted by Range(atty):

studld = {er35, abc12, fhu53}, userType = {faculty, staff, student},
skills = {c, c++, java}, studType = {Grad, UnderGrad},
univld = {12345}, roomAcc = {1.2, 2.03, 2.04, 3.02},
college = {COS, COE, BUS}, jobTitle = {TA, Grader, Admin},

studStatus = {graduated, part-time, full-time}
— Range of each att, in OA, Range(readerType) = {faculty, staff, student}

Authorization Function:
Authorization ead (s : S,0 : O) = effectiveysertype(s) € effectivercadertype(0) A

java € effectiveskins(s)
access
granted
l readerType:
{faculty, student}
! effective attributes

OBJECT

gl valuation

effective attributes
userType: {student}
skills: {java}

creates request
@ @ read access

USER suplecT @)

studid: {abcl2} \
skills: {c,java}

roomAcc: {1.2,

2.03, 2.04, 3.02}
studType: {Grad}
userType: {student}
«college: {COS}
univid: {12345}

effective attributes

Authorization,.q(s:5,0:0)
POLICIES effective,sermyps (S) € effective wudampe(0)
A java € effectivey; (s)

Fig. 3. Example Access Request Flow

2.3 Example HGABAC Configuration

An example HGABAC configuration is given in Table 2, utilizing the user group
hierarchy of Figure 1. For simplicity, we do not include any object groups. The
authorization policy for the read operation is specified. The access request flow in
Figure 3 assumes the user has the set of effective attributes shown. The subject
has the given subset of its creator’s effective attributes. The subject is thereby
allowed to read the object as the authorization policy for read is satisfied by the
effective attributes of the subject and object.

3 The GURAg Administrative Model

The HGABAC model offers the advantage of easy administration of attributes
for users and objects. The novel approach of assigning attributes to groups and
users to groups is analogous to the permission-role and user-role assignment

The GURAG Administrative Model 7

Table 3. GURAc Administrative Model

Administrative Roles and Expressions

— AR : a finite set of administrative roles

— EXPR(UA) : a finite set of prerequisite expressions composed of user attribute
functions as defined in section 3.1 and 3.2

— EXPR(UA U UG) : a finite set of prerequisite expressions composed of user
attribute functions and user groups as defined in section 3.3

Administrative Relations

— User Attribute Assignment (UAA) & User-Group Attribute Assignment (UGAA):
For each att, in UA,
canAdda, € AR x EXPR(UA) x 2Rense(attu)

canDeleteas, € AR x EXPR(UA) x 2Ranee(attn)
— User to User-Group Assignment (UGA):
canAssign C AR x EXPR(UA UUG) x 2V¢
canRemove C AR x EXPR(UA UTUG) x 2Y¢

in RBAC [32]. By assigning a user to a user-group, the user inherits all the
effective attribute values of that group in a single step, as compared to one by
one attribute value assignment. Further, if an inherited attribute value has to
be changed for multiple users, instead of changing per user, the value in a group
can be changed, making administration very convenient.

The essence of HGABAC model is in simple administration as the effect
of attribute inheritance can also be realized by direct attribute assignment for
authorization purposes. Changing the attribute values of a group can impact
large numbers of users and objects, thus reducing the administrative effort, and
leading to better comprehension of attribute values. For example, in Figure 1
the fact that groups G, UGR and S inherit the roomAcc value 3.02 from CSD
is visible because of the group structure.

This section presents the GURAg administrative model for managing the
user side of HGABAC. GURAg is inspired by the GURA model [14] which in
turn evolved from URA97 [30]. All these models require a set of administrative
roles AR that will be assigned to security administrators. Administrative role hi-
erarchy also exists, wherein senior administrative roles inherit permissions from
junior ones. GURAg regulates the powers of an administrative role with respect
to user attribute assignment (UAA), user-group attribute assignment (UGAA)
and user to user-group assignment (UGA) (see Figure 2). The Add and Delete
operations enable addition or deletion of attribute values from user and user
groups. Assignment or removal of a user from a user-group is accomplished by
Assign and Remowve operations. Table 3 depicts the various sets and administra-
tive relations required to administer the user side of HGABAC. The prerequisite
conditions are specified with slight modifications to the policy language described
in Table 1. We now define the three sub-models of GURA.

8 M. Gupta and R. Sandhu

Table 4. Example rules in UAA

canAddjobTme rule :

(DeptAdmin, Grad € effectivessuarype (1), {TA, Grader})
canDelete,comace rule :

(BuildAdmin, graduated € effectivesiuastatus (1), {1.2, 2.03, 2.04, 3.02})

3.1 The UAA Sub-Model of GURA¢

The UAA sub-model deals with addition or deletion of values to a set-valued
attribute of a user. It is composed of two relations as shown in Table 3. The
meaning of (ar, Expr(ua),Z) € canAdd,yy, is that a member of an administrator
role ar (or senior to ar) is authorized to add any value in the allowed range
Z of attribute att, of a user whose attributes satisfy the condition specified
in Expr(ua). EXPR(UA) is the set of all prerequisite conditions represented
as propositional logic expressions. The expressions return true or false and are
specified using earlier defined policy language (Table 1) with following changes.

set 1= atty, (u) | effectiveatr, () | constantSet for att,, € UA
atomic == constant Atomic

The meaning of (ar, Expr(ua),Z) € canDelete,yt, is that the member of ad-
ministrator role ar (or senior) is authorized to delete any value in allowed range
Z of attribute att, of a user whose attributes satisfy the condition specified
in Expr(ua). The delete operation will only impact directly assigned attribute
value of the user (i.e. val € atty(u)). If the value to be deleted is inherited from a
group, the operation will not have any effect. Further, if a value is both inherited
and directly assigned to user, deletion will only delete the direct value, thereby,
the user will still hold the value inherited from the group. It is worth mentioning
that any change in prerequisite conditions after the attribute value assignment
has been made, will not have any retrospective effect and the entity involved will
still retain the value. This is consistent with the GURA and URA97 models.

Table 4 illustrates example UAA relation. First rule allows administrator role
DeptAdmin (or senior to DeptAdmin) to add any value in {TA, Grader} to user
attribute jobTitle if the user’s studType attribute includes Grad. Second rule
allows administrator role BuildAdmin (or senior to BuildAdmin) to remove any
of the specified room values from the roomAcc attribute of a user whose status
includes graduated.

3.2 The UGAA Sub-Model of GURAg

This sub-model controls addition and deletion of attributes to user-groups as
shown in Table 3. The relations for UAA and UGAA have slightly different
policy languages for EXPR(UA), which in UGAA is defined as follows.

set = atty, (ug) | effectiveUGags,, (ug) | constantSet for att,, € UA
atomic ::= constantAtomic

The GURAG Administrative Model 9

So, e
BuildAdmin \\".’r e

. ;’ {or senior) \'-‘
- b roomAcc: {3.02, 2.04}
O college: {COS}
wl UGAA [canAddgomeace | ’ “dl uniCode: {12245}

Group CSD ’ ™~ Group CSD

Foe
A

/
raCl
roomAcc: {2.04}
college: {COS}
rd uniCode: {12345}

Group CSD

roomAcc: {3.02}
college: {COS}
uniCode: {12345}

Fig. 4. Example User-Group Attribute Assignment (UGAA)

Table 5. Example rules in UGAA

canAdd;oomace rule: (BuildAdmin, COS € college(ug), {2.04})
canAddgkius rule: (DeptAdmin, Grad € studType(ug), {c++})
canDeleteroomace rule: (BuildAdmin, 2.04 € roomAcc(ug), {3.02})

The meaning of canAdd and canDelete are similar to those in UAA sub-
model. In particular, the delete operation in UGAA only impacts directly as-
signed attribute values of a user-group (i.e val € atty(ug)) and will not delete
inherited values from junior groups.

Figure 4 shows addition and deletion of attribute values to user-group CSD
in context of Table 5. Addition of value 2.04 to roomAcc attribute of CSD group
by administrator role BuildAdmin (or senior to BuildAdmin) is allowed by first
rule in Table 5. Figure also shows deletion of 3.02 value from roomAcc attribute
authorized by third rule.

3.3 The UGA Sub-Model of GURAg

The UGA sub-model is composed of two authorization relations in the lower part
of Table 3. These control the assignment of user to user-groups, as well as removal
of a user from a user-group. The meaning of (ar, expr, {g1,g2,g3}) € canAssign
is that member of administrator role ar (or senior) can assign any user-group
in {g1, 82,83} to a user which satisfy the conditions in expr. EXPR(UA U UG)
now includes the current membership or non-membership of user in user-groups
along with user attributes. The policy language has the following changes.

set = atty, (u) | effectiveas, (u) | directUg(u) | effectiveUg(u) | constantSet
atomic ::= constantAtomic

where effectiveUg(u) = directUg(u) U (U {ugj|ug; >4 ug;})
Vug; € directUg(u)

The canRemove relation in Table 3 controls the removal of a user from user-
group memberships. The remove operation is said to be weak in that it will only

10 M. Gupta and R. Sandhu

Prerequisie Cond:
{c,java} < effectivegy, (u) A
S ¢ effectiveUg (u)

direct & effective
attributes

studld: {abc12}
skills: {c,java}
roomAce: {1.2}

)

\

effective attributes

DeptAdmin
(or senior)

studType: {Grad}
roomAcc: {2.03,
2.04, 3.02}
userType: {student}
college: {COS}
univid: {12345}

L

USER GRADUATE GROUP (G)
studld: {abc12}
skills: {c,java}
roomAcc: {1.2, 2.03,
2.04, 3.02}
studType: {Grad}
userType: {student}
college: {COS}
univld: {12345}

USER

. /

Fig. 5. Example User to User-Group Assignment (UGA)

effective attributes

Table 6. Example rules in canAssign UGA

Admin Role Prereq. Cond AllowedGroups
DeptAdmin le ja\éa; %ﬁifflc\f;\lljegblal)b (w) A {G,CSD}
stadnin | et) s}
DeptAdmin 3.02 € roogiiiiiitggéugff/e\zctiveUg(u) {UGR,CSD}

impact explicit memberships of user. A user is an explicit member of group ug
if ug € directUg(u) whereas a user is an implicit member of ug if for some ug;
€ directUg(u), ug € {ug;| ug; =ug ug;} exists. It should be mentioned that
removal of a user from any explicit membership ug will automatically result in
removal from all implicit membership due to ug.

Figure 5 shows assignment of user to user-group G allowed by first rule
in Table 6. This assignment results in updates on effective attributes of user
as user now inherits all attributes from group G along with direct attributes
assigned through UAA. In case of weak removal (using Figure 1), suppose a user
is an explicit member of groups CSD and G and administrator role DeptAdmin
removes user from CSD (authorized by second rule in Table 7), the user will still
have attributes of CSD through its membership in G.

3.4 Operational Specification of GURAg

Table 8 outlines administrative operations required for user-group membership
and attribute assignment. In all operations: ar € AR,u € U, att, € UA,ug €
UG. A request (first column) succeeds only if a tuple exists in administrative
relation and the entity satisfies the conditions (second column), in which case
the update (third column) is performed.

The GURAG Administrative Model 11

Table 7. Example rules in canRemove UGA

Admin Role Prereq. Cond AllowedGroups
Uniadmin 00 CR) feitocamtnta) o | (UCR)
DeptAdmin COS ¢ effectivecoliege (1) {CSD}

Table 8. Operational Specification
Operations ‘ Conditions ‘ Updates

In following operations: VAL’ € 2Ranee(ette) yq] ¢ V AL/, expr € EXPR(UA)
if 3(ar, expr, VAL') € canAddatt,,

_ att,(u) =

et o a0l

if 3(ar, expr, VAL') € canDeleteqgqt,, " B
Delete(ar, u, atty,val) |A expr(u) = True atty, (u) = ;

A val € atty(u) attu(u)\{val}

if 3(ar, expr, VAL') € canAddatt,, " B
Add(ar, ug, atty,val) |A expr(ug) = True att, (ug) =

Awval & att,(ug) atty (ug)U{val}

if 3(ar, expr, VAL) € canDeleteays, att! (ug) =
Delete(ar, ug, atty, val)|A expr(ug) = True attz (ug) _{'ual}

A wval € atty(ug)

UG € 2Y¢ ug € UG, expr € EXPR(UA U UG)

if 3(ar, expr,UG") € canAssign
A expr(u) = True

A ug ¢ directUg(u)

if 3(ar, expr,UG") € canRemove
A expr(u) = True

A ug € directUg(u)

In following operations:

directUg’(u) =

Assign(ar, u, ug) directUg(u)U{ug }

directUg'(u) =

Remove(ar, u, ug) directUg(u)\ {ug }

3.5 GURAg model extensions

This section proposes some enhancements to GURAg.

Strong Removal: We can define a strong removal operation as per the fol-
lowing example using Figure 1. If a user is explicit member of CSD and G and
administrator role DeptAdmin removes this user from CSD (allowed by second
rule in Table 7), the user will also be removed from group G along with CSD if al-
lowed by authorization rules. If the user cannot be deleted from G, the operation
will have no effect.

Inherited Value Deletion in User: Let Alice have administrator role r; and
Alice tries to delete inherited value val from attribute att, of user u;. Let there
be a canDeleteqy, rule (r,cond,allowedVal) and if r > r,val € allowedVal
and w; satisfies cond, find all user groups ug in directUg(u;) from where the
attribute value val is inherited. There are two possibilities:(i) If there exists a
canRemove rule (r, cond, allowedGroup) and if 1 > r,ug € allowedGroup and
uq satisfies the cond, remove u; from all such ug groups. (ii) If such a rule doesn’t

12 M. Gupta and R. Sandhu

exist or u; cannot be removed from some ug groups, the operation will have no
effect.

Inherited Value Deletion in User Group: Let Alice have role r1, and Alice
tries to delete inherited value val from attribute att,, of user group ug;. Let there
exists a canDeleteqs, rule (r, cond, allowedVal) and if 1 > r,val € allowedVal
and ug; satisfies cond, find all user groups ug junior to ug; which has val directly
assigned. Delete val from all such ug as if Alice did this delete. If any delete fails
this operation is aborted.

4 Discussion and Limitations

The principal advantage of HGABAC model is convenient and simplified admin-
istration of attributes. GURAg proposes first administration model for HGABAC.
Reachability analysis in GURA [16] discusses whether a user can be assigned spe-
cific values with a given set of administrator roles. Since GURAg proposes the
authorization relations in line with GURA, we conjecture that similar reacha-
bility analysis is feasible for GURA.

At the same time, GURAg inherits some weaknesses of URA97 and GURA
as discussed in [23]. Authorization rules in UAA and UGAA may require a user
or user-group to have attribute values to satisfy prerequisite conditions to get
other attribute values. To attain prerequisite attribute values, entity might need
to satisfy another condition which itself would require some other attributes and
so on. A single GURAq attribute assignment may require multiple attribute
assignments to get final attribute values, possibly involving several administra-
tors. These multi-step assignments may also result in some attribute values to
be assigned to an entity solely for administrative purposes, but not otherwise
needed.

Likewise, UGA rules may require a user having existing attribute values or
membership in groups, which might also require multiple user groups or attribute
pre-assignments and security administrators. If some rule has prerequisite junior
groups requirement to assign a senior group membership, it will unnecessarily
necessitate a user to be explicit member of junior groups, though same attribute
inheritance can be achieved through senior group membership only. Thus, junior
group assignments would be redundant and may lead to multiple step revoca-
tions when the user is deleted from system. An approach similar to [23] could be
proposed to resolve these shortcomings where users and user-groups are assigned
to organizational structure based user or group pools. Organizational pool is a
group of users or user-groups with similar goals. Entities are assigned to pools
and then attribute values depending on the requirements. Pools are used in pre-
requisite conditions instead of attributes overcoming multiple pre-assignments
for user and user-groups. A similar approach can also be followed in user to
user-group assignment.

The object side of HGABAC has not been discussed but it seems to be a
pragmatic approach to extend URA97 for object administration as well. Though
user and object have different properties, for attribute assignments we believe it

The GURAG Administrative Model 13

will not make any difference. For user and object group hierarchies, RRA97 [30]
could be a base model to be worked upon.

5 Related Work

Several papers [4, 7, 8, 22] have been published to associate attributes to en-
crypted data, policies and keys. A fine grained ABAC for data outsourcing
system is discussed in [12]. Work in [28] proposes key distribution center and
encryption using cloud owner attributes. RBAC has been extended to use at-
tributes for role assignment [5, 24]. [20] discussed approaches to relate roles and
attributes while RB-RBAC [3] dynamically assign roles to users using attribute
based rules. Role activation based on time constraints is explored in [17]. Muta-
ble attributes in access decisions is discussed in [25]. Xin et al [15] also presented
an ABAC model with DAC, MAC and RBAC configurations. Lang et al [21]
proposed a model by extending XACML [1] and SAML [2] to support multi-
policy ABAC. Using location attribute to secure social networks is discussed in
[9]. [13] enforces separation of duty in ABAC systems. Automatic security risk
adjustment based on attributes is presented in [18]. Yuan et al [37] presented
an authorization architecture and policy formulation for ABAC in web services.
Wang et al [36] provided framework using logic based programming to model
ABAC. Preference based authorization [19] is proposed by extending XACML.
Context based policy redeployment is discussed in [26]. [35] proposes an exten-
sion to assertion based policy language for federated systems. Administrative
models include URA97 [31], PRA97 [29], ARBAC97 [30], GURA [14] and work
by Crampton et al [6].

6 Conclusion and Future work

The paper presents first generalized URA97, called GURAq, for HGABAC ad-
ministration. Propositional logic conditions together with administrative roles
are used to make administrative authorization decisions. GURAg has three
sub-models: user attribute assignment (UAA), user-group attribute assignment
(UGAA) and user to user-group assignment (UGA). The authorization rela-
tions in UAA and UGAA control addition and deletion of direct attributes from
user and user-group. UGA governs assignment and removal of a user from user-
groups based on the current membership (or non-membership) and attributes of
user. Some extensions to GURA g have also been discussed. As GURAg proposes
manual assignment of attribute values and user-groups to users, a potential foray
can be to develop automated GURAg like model. An administrative model for
group hierarchies and objects can also be a future prospect.

Acknowledgement

This research is partially supported by NSF Grants CNS-1111925 and CNS-
1423481.

14

M. Gupta and R. Sandhu

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
Al-Kahtani, M.A., Sandhu, R.: A model for attribute-based user-role assignment.
In: Proc. of IEEE ACSAC. pp. 353-362 (2002)

Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proc. of IEEE Security and Privacy. pp. 321-334 (2007)

Chadwick, D.W., Otenko, A., Ball, E.: Role-based access control with X.509 at-
tribute certificates. IEEE Internet Computing 7(2), 62-69 (2003)

Crampton, J., Loizou, G.: Administrative scope: A foundation for role-based ad-
ministrative models. ACM TISSEC 6(2), 201-231 (2003)

Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In: ISPEC,
pp. 13-23. Springer (2009)

Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proc. of ACM CCS. pp. 89-98 (2006)
Hsu, A.C., Ray, L.: Specification and enforcement of location-aware attribute-based
access control for online social networks. In: Proc. of ACM ABAC’16. pp. 25-34
(2016)

Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell, M.M.,
Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide to attribute based access
control (ABAC) definition and considerations. NIST Special Publication 800-162
(2014)

Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. IEEE Com-
puter (2), 85-88 (2015)

Hur, J., Noh, D.K.: Attribute-based access control with efficient revocation in data
outsourcing systems. IEEE TPDS 22(7), 1214-1221 (2011)

Jha, S., Sural, S., Atluri, V., Vaidya, J.: Enforcing separation of duty in attribute
based access control systems. In: ICISS, pp. 61-78. Springer (2015)

Jin, X., Krishnan, R., Sandhu, R.: A role-based administration model for at-
tributes. In: Proc. of ACM SRAS. pp. 7-12 (2012)

Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering dac, mac and rbac. In: DBSec. pp. 41-55. Springer (2012)

Jin, X., Krishnan, R., Sandhu, R.: Reachability analysis for role-based administra-
tion of attributes. In: Proc. of ACM DIM. pp. 73-84. ACM (2013)

Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE TKDE 17(1), 4-23 (2005)

Kandala, S., Sandhu, R., Bhamidipati, V.: An attribute based framework for risk-
adaptive access control models. In: Proc. of IEEE ARES. pp. 236-241 (Aug 2011)
Kounga, G., Mont, M.C., Bramhall, P.: Extending XACML access control archi-
tecture for allowing preference-based authorisation. In: TrustBus, pp. 153-164.
Springer (2010)

Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-
trol. IEEE Computer 43(6), 79-81 (2010)

Lang, B., Foster, 1., Siebenlist, F., Ananthakrishnan, R., Freeman, T.: A flexible
attribute based access control method for grid computing. Journal of Grid Com-
puting 7(2), 169-180 (2009)

Liang, K., Fang, L., Susilo, W., Wong, D.: A ciphertext-policy attribute-based
proxy re-encryption with chosen-ciphertext security. In: Proc. of IEEE INCoS. pp.
552-559 (2013)

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

The GURAG Administrative Model 15

Oh, S., Sandhu, R., Zhang, X.: An effective role administration model using orga-
nization structure. ACM TISSEC 9(2), 113-137 (2006)

Oppliger, R., Pernul, G., Strauss, C.: Using attribute certificates to implement
role-based authorization and access controls. Sicherheit in Informationssystemen.
pp. 169-184 (2000)

Park, J., Sandhu, R.: The UCON ABC usage control model. ACM TISSEC 7(1),
128174 (2004)

Preda, S., Cuppens, F., Cuppens-Boulahia, N., Garcia-Alfaro, J., Toutain, L.: Dy-
namic deployment of context-aware access control policies for constrained security
devices. Journal of Systems and Software 84(7), 1144-1159 (2011)

Priebe, T., Dobmeier, W., Kamprath, N.: Supporting attribute-based access con-
trol with ontologies. In: Proc. of IEEE ARES. pp. 8-pp (2006)

Ruj, S., Nayak, A., Stojmenovic, I.: DACC: Distributed access control in clouds.
In: Proc. of IEEE TrustCom. pp. 91-98 (2011)

Sandhu, R., Bhamidipati, V.: An Oracle implementation of the PRA97 model for
permission-role assignment. In: Proc. of ACM RBAC workshop. pp. 13-21 (1998)
Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM TISSEC 2(1), 105-135 (1999)

Sandhu, R.S., Bhamidipati, V.: The URA97 model for role-based user-role assign-
ment. In: DBSec. pp. 262-275. Chapman & Hall, Ltd. (1998)

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer (2), 38-47 (1996)

Servos, D., Osborn, S.L.: HGABAC: Towards a formal model of hierarchical
attribute-based access control. In: FPS, pp. 187-204. Springer (2014)

Shen, H.b., Hong, F.: An attribute-based access control model for web services. In:
Proc. of IEEE PDCAT. pp. 74-79 (2006)

Squicciarini, A.C., Hintoglu, A.A., Bertino, E., Saygin, Y.: A privacy preserving
assertion based policy language for federation systems. In: Proc. of ACM SACMAT.
pp. 51-60 (2007)

Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: Proc. of ACM FMSE. pp. 45-55 (2004)

Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Proc. of IEEE ICWS (2005)

	 The GURAG Administrative Model for User and Group Attribute Assignment

