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Abstract. A major barrier to the adoption of cloud Infrastructure-as-a-
Service (IaaS) is collaboration, where multiple tenants engage in collab-
orative tasks requiring resources to be shared across tenant boundaries.
Currently, cloud IaaS providers focus on multi-tenant isolation, and offer
limited or no cross-tenant access capabilities in their IaaS APIs. In this
paper, we present a novel attribute-based access control (ABAC) model
to enable collaboration between tenants in a cloud IaaS, as well as more
generally. Our approach allows cross-tenant attribute assignment to pro-
vide access to shared resources across tenants. Particularly, our tenant-
trust authorizes a trustee tenant to assign its attributes to users from
a trustor tenant, enabling access to the trustee tenant’s resources. We
designate our multi-tenant attribute-based access control model as MT-
ABAC. Previously, a multi-tenant role-based access control (MT-RBAC)
model has been defined in the literature wherein a trustee tenant can
assign its roles to users from a trustor tenant. We demonstrate that MT-
ABAC can be configured to enforce MT-RBAC thus subsuming it as a
special case.

Keywords: Attribute-based access control · Distributed access control ·
Multi-tenant · Authorization federation · Security

1 Introduction

Cloud computing has dramatically altered the delivery of IT infrastructure and
resources to organizations. Characteristics such as on-demand self service and
resource pooling, provide flexibility and dynamicity at scale for cloud service
consumers [16]. The benefits of cloud computing have been well documented in
the literature and proven in the marketplace.

Cloud service providers (CSPs) segregate the resources and customer’s data
into tenants to protect data privacy and integrity. Tenants are isolated containers
with tenant-specific virtual computing environments. Each tenant corresponds
to an organization, a department of an organization, or an individual who uses
cloud services. In this scenario, each tenant is considered as a cloud customer
with resources whose integrity and privacy must be protected. The focus on
tenant isolation diminishes the scope for collaboration across tenants.
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At the dawn of cloud systems, the multi-tenancy concern was resource seg-
regation, whereas recent enterprise cloud adoption has raised the issue of multi-
tenancy resource sharing. The drive for multi-tenant collaboration arises from at
least two distinct directions. First, a large organization may utilize multiple ten-
ants for security and reliability, where each tenant can represent a department.
For example, an organization’s financial department processes sensitive financial
data while its marketing department publishes open information to the public,
so they need to be isolated but yet may need controlled collaboration. Second,
distinct enterprises may have collaborative tasks across their corresponding ten-
ants. Current cloud Infrastructure-as-a-service (IaaS) providers such as Amazon
EC2 [1] or OpenStack [2] offer limited or no cross-tenant access [14].

In this paper we present a novel attribute-based access control model to
enable collaboration between tenants in cloud systems. Our scope is limited
to cross-tenant collaboration in a single cloud. This allows us to focus more
on collaborative access control models, and defer consideration of cross-cloud
integration issues.

To motivate the problem, consider the example illustrated in Figure 1, which
depicts an organization with multiple tenants in a cloud service provider. We
use HP as an organization with multiple locations and departments. In such
organizations it is not feasible to locate all data and users into one tenant due to
different security and reliability levels required as well as management barriers.
Also, adding accounts for users across each collaborating tenant is impractical.

Fig. 1. A Multi-Tenant Collaboration
Example

A practical approach for the cloud
service provider is to support collabo-
ration mechanisms across trusted ten-
ants. Users in one tenant can access
resources in another tenant consis-
tent with cross-tenant trust relation-
ships. It is natural for software devel-
opment, testing, and support teams
to collaborate. Software developers
such as Alice can access cross-tenant
resources in Software Testing and
Software Support tenants to per-
form their assigned tasks. Enabling
seamless collaboration across tenants
is essential for the overall organiza-
tion. Similar scenarios arise for cross-
organization collaboration.

Current cloud IaaS providers such
as Amazon or Rackspace provide
intra-tenant access control using vari-
ations of the well-known role-based
access control (RBAC) [6,20] approach. In RBAC access to a resource is
based upon role-membership of the requesting user and resource-permission.
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The notion of multi-tenant RBAC has been proposed to support multi-tenant
collaboration in single cloud [24,26] or multi-cloud [17] environments.

RBAC has been the dominant access-control paradigm for over two decades.
Nevertheless, various limitations of RBAC have been recognized over this period
and increasingly there is a push to move towards attribute-based access con-
trol [9,10,18] in general. ABAC advantages over RBAC specifically in cloud
computing have been discussed in the literature [5]. A user’s access to a resource
in ABAC depends on the relative values of the user and resource attributes. An
attribute is simply a name:value pair. Attributes are used to represent security-
relevant properties of users and resources. We anticipate that CSPs will incor-
porate ABAC features in addition to their currently implemented RBAC.

Our contribution in this paper is to develop a multi-tenant ABAC model with
cross-tenant trust. To our knowledge this is the first work to consider cross-tenant
attribute assignment in ABAC in a multi-tenant context.

The remainder of this paper is organized as follows. Section 2 introduces our
core ABAC model entities and attribute functions in a single tenant model. In
Section 3, our multi-tenant ABAC (MT-ABAC) model is proposed and specified.
In section 4, we review the multi-tenant RBAC model from the literature and
demonstrate how it can be configured in MT-ABAC. Section 5 discusses related
work and section 6 gives our conclusions.

2 ABAC0 Model

In this section, we present our core ABAC model which we designate as ABAC0.
This model is designed to be sufficient for our purpose in developing MT-ABAC
and is not intended to be a comprehensive ABAC model. ABAC has been defined
in various ways in the literature, usually for some specific purpose. Our model
is specifically motivated by the previously defined ABACα model [11] and is
compatible with the recently defined NIST ABAC framework [9].

Core ABAC0 model element sets and functions are illustrated in Figure 2,
which includes three basic components: users (U), objects (O), and actions (A).
Attributes are properties associated with users and objects which we represent
by UATT and OATT respectively. Users and objects are collectively called enti-
ties. Authorization predicates (Auth) express access rules in the system which
evaluate user attributes against object attributes and render a decision to permit
or deny access to the requested resource with respect to the specific action.

Each attribute is a function which takes users or objects as input and returns
a value from the attribute’s range (we use the terms range and scope inter-
changeably). For example, a user attribute function such as Role ∈ UATT maps
u1 ∈ U to a value cloud admin. Depending upon attribute type each attribute
function will return a single value or a set of values. An atomic-valued attribute
will return one value while a set-valued attribute will return a subset of values
within its defined scope.
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Fig. 2. Core ABAC0 Model Struc-
ture.

A user can be a human or non-person
entity, such as an application, making
requests to perform actions on an object.
We consider a user (u ∈ U) to be a per-
son for simplicity. Each user is represented
by a finite set of user attributes (UATT )
such as name, salary, clearance, role, etc.
User attribute function values are specified
by security architects at system creation or
modification time.

Objects are system resources for which
access should be protected such as files,
applications, virtual machines (VMs), etc.
Objects are associated with attribute func-
tions (OATT ) representing resource proper-
ties such as risk level, location, and clas-
sification. At creation or modification time
object attributes might be constrained by the
attributes of creating user in the system, for
example, a new VM object can inherit attributes such as VM owner from corre-
sponding user attributes such as user id. The details of such constraints are not
material for our purpose in this paper, hence we do not explicitly model them.
The approach of ABACα [11] in this regard could be adapted to ABAC0.

Actions are allowed operations in the system. These operations typically
include create, read, update and delete. We use the terms actions and operations
interchangeably. An action is applied to an object by a user. The term action is
more commonly used in ABAC whereas operation is more common in the RBAC
literature. An RBAC permission is defined to be an object, operation pair, which
terminology we also use in this paper.

Actions are evaluated by authorization policy to enable access of a user to
an object. Authorization policy is expressed as a propositional logic predicate
for each action in the system, which takes as input a user and an object. Based
on the values of the user and object attributes the authorization predicate for a
given action returns true or false.

We formalize the above in the following definition, specifying sets, functions
and authorization policy language.

Definition 1. Core ABAC0 is defined by the basic component sets, functions
and authorization policy language given below.

– U and O represent finite sets of existing users and objects respectively.
– A represents a finite set of actions available on objects. Typically A =

{create, read, update, delete}.
– UATT and OATT represent finite sets of user and object attribute functions

respectively.
– For each att in UATT ∪ OATT , Scope(att) represents the attribute’s scope,

a finite set of atomic values.
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– attType : UATT ∪ OATT → {set, atomic}, specifies attributes as set or
atomic valued.

– Each attribute function maps elements in U and O to atomic or set values
as follows.

∀uatt ∈ UATT.uatt : U →
{

Scope(uatt) if attType(uatt) = atomic
2Scope(uatt) if attType(uatt) = set

∀oatt ∈ OATT.oatt : O →
{

Scope(oatt) if attType(oatt) = atomic
2Scope(oatt) if attType(oatt) = set

– For each a ∈ A, Authorizationa(u : U, o : O) is a propositional logic predi-
cate, defined using the following language:

• ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ϕ | ∃x ∈ set.ϕ | ∀x ∈ set.ϕ | set 	 set |
atomic ∈ set | atomic ∇ atomic

• set ::= setuatt(u) | setoatt(o)
• atomic ::= atomicuatt(u) | atomicoatt(o)
• 	 ::= ⊂ | = | ⊆ | ⊆
• ∇ ::= < | = | ≤
• setuatt ∈ {uatt | uatt ∈ UATT ∧ attType(uatt) = set}
• setoatt ∈ {oatt | oatt ∈ OATT ∧ attType(oatt) = set}
• atomicoatt ∈ {oatt | oatt ∈ OATT ∧ attType(oatt) = atomic}
• atomicuatt ∈ {uatt | uatt ∈ UATT ∧ attType(uatt) = atomic}

Core ABAC0 is a simplified version of ABACα [11], suitable for our purpose
in this paper. In particular it eliminates subjects as being distinct from users as
is in ABACα, and simply treats them to be equivalent.

3 Multi-Tenant ABAC0 Model

In this section we build upon ABAC0 to formulate a multi-tenant attribute-based
access control model enabling cross-tenant collaboration which we designate as
MT-ABAC0. The model structure is depicted in Figure 3, adding the tenant (T )
entity in addition to the users and objects of core ABAC0. Tenants are isolated
operation domains leased by cloud service consumers.

Each user and each object is uniquely owned by a single tenant. For this pur-
pose the model requires each user to have a system defined attribute userOwner
which is a many-to-one atomic-valued function from users U to tenants T . Note
that the arrowhead indicate the many side of the function while the absence of
an arrowhead represents the one side. Likewise the model requires each object
to have a system defined attribute objOwner which similarly is a many-to-one
atomic-valued function from objects O to tenants T .

Further, each user attribute and each object attribute is also uniquely owned
by a single tenant, depicted respectively by the many-to-one atomic-valued func-
tions uattOwner and oattOwner in Figure 3. The crucial concept is that each
tenant is responsible for assigning values to attributes that it owns. With iso-
lated tenants, a user can have assigned values only for those attributes owned
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Fig. 3. Multi-Tenant ABAC0 Model Structure.

by the user’s owning tenant. We will see that, with appropriate trust relation-
ship between tenants, users belonging to one tenant can be assigned values for
attributes belonging to a different tenant. In our model for objects, we require
that an object can have assigned values only for those attributes owned by the
object’s owning tenant. It is not possible for an object to be assigned values for
attributes that belong to a tenant that does not own that object, regardless of
tenant trust relationships. In summary cross-tenant attributes can be assigned
to users under appropriate trust relationships but not to objects.

We define trust as a required attribute function trustedTenants mapping
trustor tenant to trustee tenants which we refer to as tenant-trust. This is a
many-to-many set-valued function. We use “�” to represent the tenant-trust
relation where TA � TB signifies that TB ∈ trustedTenants(TA), i.e., TB is
trusted by TA. In such cases we say TA is the trustor tenant and TB the trustee
tenant. We have the following definition for tenant-trust.1

Definition 2. If TA � TB, Tenant TB is authorized to assign values for TB’s
user attributes to Tenant TA’s users. Tenant TA controls tenant-trust existence
while TB controls cross-tenant attribute assignments.

In general � is required to be a reflexive relation but is not required to be
symmetric, anti-symmetric or transitive.

In light of the above definitions, we need to clarify the validity of attributes
for users and objects. User attribute functions now become partial functions,
because valid attribute values for a given user can only be assigned to certain user
attributes. Specifically, a user u can be assigned a value for attribute uatt only if

1 More generally different kinds of trust could be considered as discussed in Section 3.1.
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uattOwner(uatt) = userOwner(u) ∨
uattOwner(uatt) ∈ trustedTenants(userOwner(u))

Similarly object attributes are also partial functions which are defined only for
object attributes which are from the object’s owner tenant. Specifically, an object
o can be assigned a value for attribute oatt only if

oattOwner(oatt) = objOwner(o)
In other words trust enables cross-tenant assignment of user attributes but does
not impact object attributes.

Finally, each authorization predicate must verify the compatibility of user
and object attribute ownership. For this reason, any user attribute uatt or object
attribute oatt used in a action’s authorization predicate with respect to a par-
ticular user u and object o, must satisfy the following condition.

uattOwner(uatt(u)) = oattOwner(oatt(o)) ∨
oattOwner(oatt(o)) ∈ trustedTenants(uattOwner(uatt(u)))

The above considerations lead to the following definition.

Definition 3. Multi-tenant ABAC0 is defined by the following enhancement and
modifications to core ABAC0.

– U , O, and A are defined as in core ABAC0.
– T represents a finite set of existing tenants.
– UATT , OATT , Scope, and attType are defined as in core ABAC0.
– userOwner : (u : U) → T , required attribute function mapping user u to

owner tenant t.
– objOwner : (o : O) → T , required attribute function mapping object o to

owner tenant t.
– MATT = {uattOwner, oattOwner}, required meta-attribute functions.

• uattOwner : (uatt : UATT ) → T , meta attribute function, mapping
user attribute uatt to attribute owner tenant t.

• oattOwner : (oatt : OATT ) → T , meta attribute function, mapping
object attribute oatt to attribute owner tenant t.

– trustedTenants : (t : T ) → 2T , required attribute function, mapping tenant
t to powerset of trusted T , called tenant-trust, written as � where t1 � t2
iff t2 ∈ trustedTenants(t1) (i.e., trustor tenant t1 trusts trustee tenant t2).
Trustee tenant t2 can assign its attribute values uattt2 to users ut1 from
trustor tenant t1 where t2 ∈ trustedTenants(userOwner(u)).

– Each attribute function uatt ∈ UATT is modified to be a partial function.

∀uatt ∈ UATT.uatt : U ↪→
{

Scope(uatt) if attType(uatt) = atomic
2Scope(uatt) if attType(uatt) = set

uatt(u : U) is defined only if (uattOwner(uatt) = userOwner(u)) ∨
(uattOwner(uatt) ∈ trustedTenants(userOwner(u))).

– Each attribute function oatt ∈ OATT is modified to be a partial function.

∀oatt ∈ OATT.oatt : O ↪→
{

Scope(oatt) if attType(oatt) = atomic
2Scope(oatt) if attType(oatt) = set

OATT (o : O) is defined only if oattOwner(oatt) = objOwner(o).
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– ∀a ∈ A, Authorizationa(u : U, o : O) is a propositional logic predicate (using
language defined in ABAC0), with the additional required condition that
uattOwner(uatt(u)) = oattOwner(oatt(o)) ∨ oattOwner(oatt(o)) ∈ trusted-
Tenants(uattOwner(uatt(u))) which must always be included in conjunction
with all other requirements.

3.1 Concept of Tenant Trust

In a tenant trust relation, in general there are two issues: (i) who controls trust
relation’s existence, and (ii) who has the authority to issue cross-tenant assign-
ments. Together these characterize the trust type. In this paper, for simplicity,
we adopted a specific definition of trust where trustee tenant is authorized to
assign its attribute values to trustor tenant’s user attributes which is analogous
to the type-β tenant-trust of [24–26]. In this section, we briefly discuss trust
types analogous to the type-α and type-γ tenant-trust types of [24–26].

In type-α trust, the trustor is responsible to establish the trust relation-
ship with the trustee, as well as assigns the trustor’s attributes to the trustee’s
users. We use �α to show this trust type where TA �α TB indicates that
TB ∈ trustedTenants(TA). With this notation, type-α tenant-trust is defined
as follows.

Definition 4. If TA �α TB, Tenant TA is authorized to assign values for TA’s
user attributes to Tenant TB’s users. Tenant TA controls tenant-trust existence
and cross-tenant attribute assignments.

In type-α trust, valid attribute values for given users are from owner tenants
and trustor tenants. A user is assigned a value for an attribute uatt only if

uattOwner(uatt) = userOwner(u) ∨
userOwner(u) ∈ trustedTenants(uattOwner(uatt))

Each authorization predicate in type-α must satisfy following user and object
attribute ownership condition.

uattOwner(uatt(u)) = oattOwner(oatt(o))∨
uattOwner(uatt(u)) ∈ trustedTenants(oattOwner(oatt(o)))

In type-γ trust, by trusting a tenant, trustor authorizes trustee to assign its
attribute values to trustee tenant user attributes.We use �γ to represent type-γ
tenant-trust where TA �γ TB signifies that TB ∈ trustedTenants(TA). We define
type-γ trust as follows.

Definition 5. If TA �γ TB, Tenant TB is authorized to assign values for TA’s
user attributes to Tenant TB’s users. Tenant TA controls tenant-trust existence
while TB controls cross-tenant attribute assignments.

Type-γ user attribute assignment and authorization predicate conditions are
similar to above mentioned conditions in type-α. Type-γ differs from type-α, in
which participating tenant has cross-tenant attribute assignment authority.

In relation to figure 1, when software development (SD) tenant trusts software
testing (ST) tenant with type-β, it authorizes ST tenant to assign its attribute
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values to software developers such as Alice to access resources in ST tenant. In
type-α and Type-γ tenant-trust enables ST users such as John to access resources
in SD tenant, where in type-α SD tenant assigns its attributes to John and in
type-γ ST tenant assigns SD attribute values to its user John.

4 MT-ABAC0 Model Covering MT-RBAC0

In this section we first give a definition of multi-tenant RBAC (MT-RBAC0)
adapted from various slightly different but related models given in [24–26]. We
then show how MT-RBAC0 can be configured in MT-ABAC0.

4.1 Multi-Tenant RBAC0 Model

MT-RBAC0 model element sets and relations are illustrated in Figure 4, show-
ing the six components: tenants (T ), users (U), roles (R), operations (OPS),
objects (OBS), and permissions (PRMS). A user is an individual which is
associated with a single tenant via UO relation. We recognize role as a job func-
tion associated with a single tenant while a tenant has multiple roles. Objects
are tenant resources in the system (each object has a single owner tenant) which
are coupled with operations. In RBAC, permissions are operation, object pairs
indicating operations on objects.

MT-RBAC0 model is defined in terms of users, roles, and objects owned by
tenants. These ownership relations are many-to-one representing tenant owner-
ship which is depicted as user-ownership (UO), role-ownership (RO), and object-
ownership (OO) in figure 4.

As core to RBAC, user assignment (UA) and permission assignment (PA)
relations enable assignment of users and permissions to roles. Tenant-trust (TT )

Fig. 4. Multi-Tenant RBAC0 Model Structure.
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identifies a many-to-many trust relation between tenants. Similar to MT-ABAC0

we use � to show trust between two tenants such TA and TB as TA � TB means
trustor tenant TA trusts, trustee tenant TB . With this specification, we define
tenant-trust relation as follows.

Definition 6. If TA �TB, Tenant TB is authorized to assign Tenant TA’s users
to TB’s roles.

In such trust relation, trusting a tenant enables trustee to assign trustor’s users
to its set of roles. This type of trust is intuitive in a sense that resource owners
control access to their shared resources while user domains control their users’
access by granted authority over trust relation continuation.

With existence of trust between tenants, user assignment is defined as many-
to-many user relation mapping users to roles, if and only if users and roles
owned by the same tenant or user owner tenant trusts object owner tenant. We
express user assignment condition as owner user(u) = owner role(r) (where
owner user returns owner tenant of user u and owner role returns role r owner
tenant) or owner user(u) � owner role(r). Permission assignment is a many-
to-many relation which maps permissions to roles requiring both elements owned
by the same tenant.

Each user is assigned to one or many roles within their resident ten-
ants or trusted tenants. The function assigned user roles returns the roles
assigned to a user. The permissions available to a user, are permissions
assigned to roles (permissions available to a role are expressed by function
assigned permissions) that are available to a user which are given by func-
tion authorized user permissions. Function authorized user permissions desig-
nates set of permissions available to each user in the system. We formally define
MT-RBAC0 as follows.

Definition 7. Multi-tenant RBAC0.

– TENANTS, USERS, ROLES, OPS, and OBS (tenants, users, roles,
operations, and objects respectively).

– t ∈ TENANTS, u ∈ USERS, r ∈ ROLES, op ∈ OPS, and ob ∈ OBS.
– PRMS = OPS × OBS , the set of permissions.2

– UO ⊆ USERS×TENANTS, a many-to-one user-to-tenant owner relation.
– RO ⊆ ROLES×TENANTS, a many-to-one role-to-tenant owner relation.
– OO ⊆ OBS × TENANTS, a many-to-one object-to-tenant owner relation.
– owner user : (u : USERS) → TENANTS, the mapping of user u into its

owner tenant. Formally: owner user(u) = t where (u, t) ∈ UO.
– owner role : (r : ROLE) → TENANTS, the mapping of role r into its

owner tenant. Formally: owner role(r) = t where (r, t) ∈ RO.
– owner object : (ob : OBS) → TENANTS, the mapping of object ob into its

owner tenant. Formally: owner object(ob) = t where (o, t) ∈ OO.

2 This is slightly different from NIST standard model where PRMS = 2(OPS×OBS),
and more appropriate for our purpose.
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– TT ⊆ TENANTS × TENANTS, is a many-to-many reflexive relation on
TENANTS called tenant trust relation, written as � where t1 � t2 (trustor
tenant t1 trusts trustee tenant t2) only if all users of t1 can be assigned to
roles of t2.

– trustee tenants : (t : TENANTS) → 2TENANTS, the mapping of ten-
ant t into a set of trusted tenants. Formally: trustee tenant(t) = {t′ ∈
TENANTS | t � t′}.

– UA ⊆ USERS×ROLES, a many-to-many mapping user-to-role assignment
relation requiring that (u, r) ∈ UA ⇒ owner user(u) = owner role(r) ∨
owner user(u) � owner role(r).

– PA ⊆ PRMS × ROLES, a many-to-many mapping permission-to-role
assignment relation requiring that ((op, ob), r) ∈ PA ⇒ owner object(ob) =
owner role(r).

– assigned roles : (op : OPS, ob : OBS) → 2ROLES, the mapping of object
operation pair (op, ob) into a set of roles. Formally: assigned roles(op, ob) =
{r ∈ ROLES | ((op, ob), r) ∈ PA}.

– assigned user roles : (u : USERS) → 2ROLES, the mapping of user u
into a set of roles. Formally: assigned user roles(u) = {r ∈ ROLES |
(u, r) ∈ UA}.

– assigned permissions : (r : ROLES) → 2PRMS, the mapping of role r into
a set of permissions. Formally: assigned permissions(r) = {p ∈ PRMS |
(p, r) ∈ PA}.

– authorized user permissions : (u : USER) → 2PRMS, the mapping of user
u into a set of permissions. authorized user permissions(u) =⋃
r∈assigned user roles(u)

assigned permissions(r).

4.2 Configuring MT-RBAC0 to MT-ABAC0

We show configuring MT-RBAC0 in MT-ABAC0 by adding role as an attribute
function. Once roles become attributes, the consideration that roles are col-
lections of permissions no longer applies since they are merely attribute val-
ues. Consequently, we must define appropriate object attributes and authoriza-
tion predicates in MT-ABAC0. To represent user assigned roles in MT-RBAC0

(assigned user roles function), we use a set-valued attribute function userRole.
However users may be assigned roles owned by distinct tenants, for this purpose
we identified user attributes as userRolej where j represents tenants.

In order to represent permission assignment, we define attribute function
objRole as a set-valued attribute function. Attribute objRole captures roles
related to each object in RBAC (permissions assigned to roles represented by
assigned roles function). In RBAC each object is owned by a tenant and cou-
pled with a set of operations, for this reason we designate object attributes as
objRolei,k where i is an operation in RBAC and k is owner tenant. The scope of
both userRole and objRole attributes are the same as defined set of role names
ROLES. We represent role ownership (RO) in RBAC by atomic-valued meta-
attributes, uattOwner and oattOwner respectively mapping user and object
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role attributes (userRole and objRole) to owner tenants. In the presence of
roles attributes, authorization policy evaluates user and object respective role
name attributes to be equal as well as user and object attributes ownership.

The summary of above is formalized as follows.

Definition 8. A given MT-RBAC0 instance is configured in MT-ABAC0 as
follows.

– U = USERS, O = OBS, A = OPS = {a1, ..., an} where n = |A|, and
T = TENANTS = {t1, ..., tm} where m = |T |.

– UATT = {userRolej | j = 1, ..., |T |}.
– OATT = {objRolei,k | i = 1, ..., |A|, k = 1, ..., |T |}.
– userOwner : (u : U) → T , required attribute function, mapping user u to

owner tenant t. Formally: userOwner(u) = owner user(u).
– objOwner : (o : O) → T , required attribute function, mapping object o to

owner tenant t. Formally: objOwner(o) = owner object(o).
– userRolej : (u : U) → 2ROLES where tj ∈ T , attribute function, mapping

user u to powerset of ROLES. Formally: userRolej(u) = {r ∈ ROLES |
r ∈ assigned user roles(u) ∧ owner role(r) = tj}.

– objRolei,k : (o : O) → 2ROLES where ai ∈ A and tk ∈ T , attribute func-
tion, mapping object o for operation ai to powerset of ROLES. Formally:
objRolei,k(o) = {r ∈ ROLES | r ∈ assigned roles(ai, o) ∧ owner role(r) =
tk}.

– MATT = {uattOwner, oattOwner}.
• uattOwner : (userRolej : UATT ) → T , meta attribute function, map-

ping user role attribute userRolej to attribute owner tenant tj. Formally:
uattOwner(userRolej) = tj.

• oattOwner : (objRolei,k : OATT ) → T , meta attribute function, map-
ping object role attribute objRolei,k for operation ai to attribute owner
tenant tk. Formally: oattOwner(objRolei,k) = tk.

– trustedTenants : (t : T ) → 2T , attribute function, mapping tenant t to
powerset of trusted T . Formally: trustedTenants(t) = trustee tenants(t).

– Authorizationi (u : U, o : O) =
∨

k=1,...,|T |
[userRolek(u) ∩ objRolei,k(o) =

∅ ∧ (tk = userOwner(u) ∨ tk ∈ trustedTenants(userOwner(u))].

5 Related Work

Several attribute-based access control models and systems have been proposed.
In [9,10], ABAC and its functional components, implementation, and opera-
tion considerations are illustrated. This serves as an overview of components
rather than considering modeling issues. Jin et al. [11] proposed ABACα model,
designed to cover simple forms of DAC [21], MAC [19], and RBAC [6,20]. While
this provides a realistic family of attribute-based models within single tenant
environments, it does not consider collaboration and multi-tenancy issues. Smari
et al. [22] investigated trust and privacy in collaborative management systems.
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They extend attributes associated with objects and subjects to address trust
and privacy issues. Although collaboration is considered, multi-tenancy has not
been addressed.

Other approaches extending RBAC with combination of attributes and roles
have been studied widely. Kuhn et al. [13] presented a spectrum of possible
methods to combine RBAC and ABAC, specifically a policy-enhanced RBAC
to accommodate attribute based features. However, the attributes are limited to
user-centered attributes. In RABAC [12], authors integrate roles and attributes
using a role centric approach. Parameterized role [3], object sensitive role [7],
and attributed role [27] have also been proposed in this context.

Recent work on multi-tenancy collaboration such as CTTM [24] and OSAC-
DT [25] extends RBAC to inherit its benefits towards collaboration. CTTM
enables trust between tenants in a single cloud and OSAC-DT which is closely
related to CTTM further extends it towards compatibility with OpenStack [2]
platform. Tang [23] specifies a multi-tenant attribute based access control
enabling cross-tenant access for subjects. Our model differs in structure and
cross-tenant access where attribute value assignment enables such collaboration.

In order to benefit the RBAC capabilities in multiple organizations, prior
extensions such as ROBAC [29] and GB-RBAC [15] have been proposed. ROBAC
manages authorization in multiple organizations which is comparable to multi-
tenancy, however organization collaboration is not considered in this context. In
GB-RBAC collaboration is allowed among groups, yet it lacks the administration
management since the administrator can not manage users in the groups. Role-
based delegation [4,8,28] models have been proposed to permit collaboration,
however chained delegation relations are not dynamic and flexible enough to be
deployed in multi-tenant collaborative environments since trust relations in such
collaborations are dynamic.

6 Conclusion

We presented a multi-tenant attribute-based access control model for resource
sharing, where collaboration is enabled through cross-tenant attribute value
assignments supported by the cloud service provider. In our proposed approach,
we identified trust as a required attribute for tenants where trustee tenants are
authorized to assign attribute values to trustor tenants’ user attributes. In our
approach, we eliminated attribute conflicts in presence of attribute assignments
by isolating attributes to tenants. We believe our approach is applicable to other
types of trust beyond presented trust types. A potential future work is to extend
this model to address various types of trust. Another future research is extend-
ing our model to multi-cloud environments. Finally, our vision is to develop an
implementation within current cloud platforms.

Acknowledgement. This research is supported by NSF Grant CNS-1111925 and
CNS-1423481.
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