
Hierarchical Secure Information and Resource Sharing
in OpenStack Community Cloud

Yun Zhang, Farhan Patwa, Ravi Sandhu and Bo Tang
Institute for Cyber Security and Department of Computer Science

University of Texas at San Antonio, San Antonio, TX, USA
Email: amy.u.zhang@gmail.com, farhan.patwa@utsa.edu, ravi.sandhu@utsa.edu, townbull@gmail.com

Abstract—Community clouds provide efficient and secure
environments for organizations with similar organization struc-
tures or business models to host their systems. Since threat
analysis and incident response infrastructure and resources
can be rapidly shared on a community cloud, the participating
organizations save time and cost in handling cyber incidents.
Unfortunately, contemporary cloud platforms are lacking a
widely accepted access control model for secure informa-
tion and resource sharing. Following the recent innovation
of Hierarchical Multitenancy in OpenStack community, we
propose a hierarchical secure information and resource sharing
model in the context of an OpenStack community cloud. Our
model enables secure and effective management of information
sharing in a community cloud for both routine and cyber
incident response needs. We believe this model is applicable
in community clouds beyond OpenStack as well.

Keywords-Cloud Computing; Hierarchical Multitenancy; In-
cident Response; Security Information Sharing; OpenStack;

I. INTRODUCTION

Threat analysis and incident response information needs
to be shared with collaborative groups formed to handle
both potential and existing cyber incidents. The emergence
of cloud as a shared infrastructure, significantly improves
the efficiency and flexibility of business systems, as well as
incident response processes.

The deployment models of clouds can be categorized into
public, private, community and hybrid clouds [5]. A public
cloud provides services for open use by the general public.
A private cloud provides services for exclusive use by a
single organization. A community cloud provides services
for exclusive use by a specific community, which contains
organizations with shared concern, such as mission, security
requirements, business models, etc. In some cases, a big
corporate group with multiple subsidiaries may own one
community cloud for business needs. A hybrid cloud is
a composition of multiple distinct clouds, which may be
public, private or community clouds. In this paper, we in-
vestigate models information sharing in a community cloud
constructed using OpenStack cloud platform.

Cyber attacks are becoming increasingly sophisticated and
difficult to defend by a single organization on its own.
Cyber attacks have resulted in significant economic losses.
Determined adversaries and organized cyber criminals are

aiming at organizations of all sizes putting their valuable
digital information at risk. Establishing cyber incident re-
sponse mechanisms in an organization improves the deci-
sion making process and internal and external coordination,
which potentially minimize the damage of cyber incidents.
By explicitly designating users and roles who are in charge
of security issues associated with organization systems,
quick decisions can be made if a cyber attack happens.
By explicitly establishing a standard cyber security process,
organizations can easily identify the problems, schedule the
defense process and prevent themselves from further loss
caused by improper handling of cyber incidents.

Currently, the way organizations collaborate on cyber
security is more like a subscription service they get from
a collaboration center. Take FS-ISAC [2] for example.
The member organizations submit their security information
and get security services like reports and alerts from the
collaboration center. This type of cyber collaboration has
several limitations. Organizations manually submit security
information. Organizations are not actively participating in
analyzing and processing the cyber information they submit.
Sharing information is mainly by subscription, rather than
interactive sharing in a group.

With cloud technology development, we believe with or-
ganizations transferring to cloud environment, the way they
share cyber information will change as well. A community
cloud shares the infrastructure across multiple organizations
from a specific community with common concerns in terms
of security, privacy and compliance. We propose a com-
munity cloud model to allow organizations to rapidly and
meaningfully share cyber security information and resources.
The community runs a standing Cyber Security Committee,
which enables executives and technology leaders to provide
oversight of privacy and security while enabling effective
information sharing. This cross-organizational committee is
in constant communication to coordinate such sharing while
meeting privacy and security needs.

Organizations will collect and analyze their security data
as usual, while sharing cyber security information with other
members through community cyber security committee, in
order to make informed decisions about the community
security governance. In most cases, organizations maintain



Incident Response Group

Cyber Security 
Committee

Organization 
Security 

Specialists
External 
Experts

Conditional
Membership

Shared 
Information

Figure 1. Community Cyber Incident Response Governance

their group of security specialists, who manage security poli-
cies, conduct security audits and investigate security related
events. A community also maintains a group of external
security experts, who help organizations with security issues.
During the occurrence of cyber security incident, the Cyber
Security Committee members start an incident response
group with cross-organization security team including or-
ganizations internal security specialists and external security
experts, as illustrated in Figure 1. Security information about
this incident is shared within the incident response group.

In this paper, we present an access control model for cyber
security information sharing within a community cloud for
cyber incident response. This paper proceeds as follows. We
present some related work and background knowledge in
Section 2. We introduce OpenStack Access Control model
with Hierarchical Multitenancy (OSAC-HMT) in Section 3.
In Section 4, we define the OSAC-HMT with Secure Isolated
Domain extension (OSAC-HMT-SID), which is our model
for cyber incident response. We give some enforcement
suggestions in Section 5. Finally we conclude our work in
Section 6.

II. RELATED WORK AND BACKGROUND

A. Related Work

Sharing information and resources for collaboration in
distributed systems has been studied in the literature for
some time [3], [6], [8]. More recently a concept of sharing
information and resources in a group of users, called Group-
Centric Secure Information Sharing (g-SIS) [4] has been
developed. The g-SIS model changes the emphasis of the
access control unit from individual users and objects to a
group of users and objects, which is suitable for collabora-
tion scenarios.

In this paper we explore the application of g-SIS in the
OpenStack cloud platform, particularly in the scenario of
collaboration cyber incident response in a community cloud.
We have previously developed a basic model (OSAC-SID)
for this purpose [10] for the OpenStack Icehouse release.
The model we present in this paper improves OSAC-SID in
several ways. We put additional cyber security control and
sharing on the entire community by adding a security com-
mittee and a public forum in the community. We incorporate

Users
(U)

Domains
(D)

Roles
(R)

User 
Assignment 

(UA)

Permission 
Assignment 

(PA)

Project 
Ownership 

(PO)

Project-Role Pair
(PRP)

Projects
(P)

Tokens
(T)

User 
Ownership 

(UO)

Services
(S)

user_token 

token_project

Groups
(G)

Group 
Ownership 

(GO)

User 
Group 
(UG)

Group 
Assignment 

(GA)

token_roles

PRMS

Operations 
(OP)

Object
Types 
(OT)

ot_service

One-to-one relation:  
One-to-multiple relation:
Multiple-to-multiple relation: 

Figure 2. OpenStack Access Control (OSAC) Model [9]

routine cyber information collection and processing for an
individual organization’s regular security control. We also
provide a more flexible cyber collaboration mechanism.

B. OpenStack Access Control (OSAC) model

Tang and Sandhu [9] present a core OpenStack Access
Control (OSAC) model based on the OpenStack Identity API
v3 and Havana release, as shown in Figure 2. This model
comprises nine entities: users, groups, projects, domains,
roles, services, object types, operations, and tokens.

Users represent people who are authenticated to access
OpenStack cloud resources while groups are sets of users.
Projects are resource containers through which users get
access to cloud services such as virtual machines, stor-
age, networks, identity, and so on. Each project defines a
boundary of cloud resources. Domains are administrative
boundaries of collections of projects, users and groups. Each
domain contains multiple projects, users and and groups.
Conversely, each project, user and group is “owned” by a
single domain. For our purpose in this paper, a domain is
also called a tenant. From the cloud provider’s perspective
each tenant is an independent customer of the cloud. From an
organization’s perspective, in general a single organization
may have a single or multiple tenants in a single cloud. For
simplicity, we assume here that each organization from the
community has exactly one tenant, and thereby exactly one
domain, in the community cloud.

Roles are global in that each role is applicable to every
project. Roles are used to specify access levels of users
to services in specific projects in a given domain. Roles,
and their associated permissions, are defined by the cloud
service provider. Note that users are assigned to projects
with a specific set of roles. By assigning a role to a user in a
project, one can specify different access rights for the user.



Cloud

Domain 1 Domain n

Project 1 Project p Project q

childProject 1 childProject k

child … childProject 1 child … childProject l

Project 1

Figure 3. OpenStack Hierarchical Multitenancy

For instance, by assigning the member role to a user, the
user receives all operational permissions over the resources
in a project. By assigning the admin role to a user, the user
receives admin permissions over a project. In this paper, we
recognize two required roles: admin and member, which are
used in our formalization along the above lines.

An object type and operation pair defines actions which
can be performed by end users on cloud services and
resources. The concept of object types allow specifying dif-
ferent operations for different services. In the Nova compute
service, e.g., an object type is VM and operations on VM
include start, stop, etc. Tokens defines the scope of resources
which users are authenticated to access. Users authenticate
themselves to the Keystone service and obtain a token which
they then use to access different services. The token contains
various information including the domain the user belongs
to, and the roles of the user in specific projects.

Scope: In the model we develop in this paper, we confine
our attention to information and resource sharing among
tenants within a single community cloud. These issues in the
context of multiple/hybrid clouds is an interesting research
problem left for future work.

III. OSAC-HMT MODEL

Hierarchical Multitenancy (HMT) [1] is a new feature
added to OpenStack since Juno release. It changes Open-
Stack from the flat domain-projects structure to a hierarchi-
cal domain-parent project-child project tree structure. Prior
to Juno release, OpenStack allows tenants to have domains
with flat projects in them. Hierarchical Multitenancy allows
tenants to have hierarchical project trees in a domain, as
shown in Figure 3.

In this paper, we enhance OSAC model with the new
feature of Hierarchical Multitenancy (HMT), resulting in the
OSAC-HMT model shown in Figure 4. In this section, we
mainly discuss the new feature of OpenStack relative to the
former OSAC model [9].

The difference HMT brings to OSAC is that it changes
projects and roles entities, along with the administration
relation on projects. The flat projects in OSAC model
become hierarchical trees in OSAC-HMT model. In addition

Users
(U)

Domains
(D)

Roles
(R)

User 
Assignment 

(UA)

Permission 
Assignment 

(PA)

Project 
Ownership 

(PO)

Project-Role Pair
(PRP)

Projects
(P)

Tokens
(T)

User 
Ownership 

(UO)

Services
(S)

user_token 

token_project

Groups
(G)

Group 
Ownership 

(GO)

User 
Group 
(UG)

Group 
Assignment 

(GA)

token_roles

PRMS

Operations 
(OP)

Object
Types 
(OT)

ot_service

One-to-one relation:  
One-to-multiple relation:
Multiple-to-multiple relation: 

Project Hiearachy: 

Role Inheritance:

Figure 4. OpenStack Access Control (OSAC) model with HMT

to explicit assignment of project-role pairs, users also inherit
project-role pairs along the project tree.

Projects and Project Hierarchy: Project hierarchy en-
ables the resources to be divided into smaller management
units, giving tenants more power to control their cloud
resources. A domain can have multiple projects in it, each of
which is a root project for a hierarchical project tree. A child
project has only one parent project. Basically, child projects
are a further division of resources of a parent project.

Roles and Role Inheritance: Without project hierarchy,
a user is explicitly assigned with a role to a project. With
project hierarchy, a user needs to be able to be assigned to
a child project, which is enabled by inherited roles assign-
ment. By assigning an inherited role to a user in a parent
project, the user will automatically have the role in child
projects. Currently, inherited roles assignments only work
from domains to projects. In future releases of OpenStack,
it is expected that the inheritance of roles will work down
the entire subtree of a hierarchical project.

Token: Token allows user to have access to cloud re-
sources in projects. Token must be scoped to the target
project on which the action is performed. Inherited role
allows tokens to be granted for child projects giving access
to child projects.

Users/Groups: HMT does not change user/group man-
agement, which is handled at the domain level.

We formalize the OSAC-HMT model below, part of which
is the same as OSAC model [9].

A. Components in OSAC-HMT

Definition 1. OSAC-HMT model has the following com-
ponents.
- U, G, P, D, R, S, OT and OP are finite sets of existing
users, groups, projects, domains, roles, services, object types



and operations respectively in an OpenStack cloud system.
We require two roles, so {admin, member} ⊆ R.
- User Ownership (UO) : is a function UO : U→ D, mapping
a user to its owning domain. Equivalently viewed as a many-
to-one relation UO ⊆ U × D.
- Group Ownership (GO) : is a function GO : U → D,
mapping a group to its owning domain. Equivalently viewed
as a many-to-one relation GO ⊆ G × D.
- Object Type Owner (OTO) : is a function OTO : OT → S,
mapping an object type to its owning service. Equivalently
viewed as a many-to-one relation OTO ⊆ OT × S.
- UG ⊆ U × G, is a many-to-many relation assigning users
to groups where the user and group must be owned by the
same domain.
- PRP = P × R, the set of project-role pairs.
- PERMS = OT × O, the set of permissions.
- PA ⊆ PERMS × R, a many-to-many permission to role
assignment relation.
- UA ⊆ U × PRP, a many-to-many user to project-role
assignment relation.
- GA ⊆ G × PRP, a many-to-many group to project-role
assignment relation.
- Project Hierarchy (PH) : is a function PH : P→ P, mapping
a project to its parent project. Equivalently viewed as a
many-to-one relation PH ⊆ P × P. This is required to be a
forest of rooted trees.
- Role Inheritance (RI) : allows users’ roles to be inherited
from domain to project and from parent project to child
project as discussed above.
- user tokens: is a function user tokens : U→ 2T , mapping
a user to a set of tokens; correspondingly, token user is a
function token user : T → U, mapping of a token to its
owning user.
- token project: is a function token project : T → P ,
mapping a token to its target project.
- token roles: is a function token roles : T → 2R, map-
ping a token to its set of roles. Formally, token roles(t)
= {r ∈ R|(token user(t),(token project(t),r)) ∈ UA} ∪
(
⋃

g∈user groups(token user(t)) {r ∈ R|(g, (token project(t),
r)) ∈ GA}).
- avail token perms: is a function avail token perms :
T → 2PERMS , mapping the permissions available to a
user through a token. Formally, avail token perms(t) =⋃

r∈token roles(t){perm ∈ PERMS|(perms,r) ∈ PA}.

IV. OSAC-HMT-SID MODEL

In our discussion, we assume that a user belongs to one
organization in the community, which is consistent with
the user home-domain concept in OpenStack. The concept
of home-domain requires that a user can only belong to
one domain in OpenStack. OpenStack allows a user to be
assigned to projects across domains and access those projects

Users
(U)

Project-Role 
Pair
(PRP)

Security
Projects

(SP)

Roles
(R)

Project-Role 
Pair
(PRP)

Projects
(P)

Roles
(R)

User 
Ownership

(UO)

User 
Assignment

(UA)

User 
Assignment

(UA) User Self 
Subscription

(USS)

User 
Assignment

(UA)

SIP 
Ownership

(SIPO)

Secure 
Isolated 
Domain

(SID)

Project-Role 
Pair
(PRP)

Expert User
Ownership

(EUO)

Open Project 
Ownership

(OPO)

Security Project 
Ownership

(SPO)

Project-Role 
Pair
(PRP)

Secure 
Isolated 
Projects

(SIP)

Roles
(R)

Open
Project

(OP)

Roles
(R)

Domains
(D)

Cyber 
Collaboration

Routine Cyber 
Information 

Process

Expert 
UsersProject 

Ownership
(PO) User 

Assignment
(UA)

Cyber 
Security 
Forum

Project-Role 
Pair
(PRP)

Core
Project

(CP)

Roles
(R)

Cyber 
Security 

Committee

Core Project 
Ownership

(CPO)

User 
Assignment

(UA)

Project Hiearachy: 

Role Inheritance:

One-to-one relation:  
One-to-multiple relation:
Multiple-to-multiple relation: 

SIP 
association

(assoc)

Figure 5. Hierarchical Mutitenancy OpenStack Access Control
model with SID extension (OSAC-HMT-SID) (ignore group, token
and services components)

separately using appropriate tokens. Given two storage op-
tions in OpenStack, here we constrain the storage to object
storage only, which is provided by the Swift service. For
simplicity we ignore the group mechanism in OpenStack,
since it is essentially a convenience to group together a set
of users in a domain and can be easily incorporated in a
more complete description.

A. Components in OSAC-HMT-SID

Hierarchical Mutitenancy OpenStack Access Control
model with SID extension (OSAC-HMT-SID): OSAC-
HMT-SID model extends OSAC-HMT model to include
Secure Isolated Domain (SID) [10] functionality. We build
OSAC-HMT-SID model on top of OSAC-HMT model. We
will present the OSAC-HMT-SID model in a way which
covers only the additional components compared to OSAC-
HMT model. Figure 5 shows OSAC-HMT-SID model. We
use circle to represents entities which can be created multi-
ple times in OpenStack, while rectangle represents entities
which can only be created once. The additional entity
components included in OSAC-HMT-SID model are: Secure
Isolated Domain (SID), Expert Users (EU), Core Project
(CP), Secure Isolated Project (SIP), and Open Project (OP).

Secure Isolated Domain (SID): Secure Isolated Domain
[10] is a special domain which holds the security infor-
mation for cross-organization security collaboration in the
community cloud. It provides an administrative boundary for
cyber security information and resource collecting, passing,
analyzing and exporting results, as well as providing a
secure isolated environment for cyber security collaborations



among organizations.
Security Project (SP): Security Projects are hierarchical

projects particularly used to collect, store and analyze cyber
security information for one organization. A SP provides
the same capability of utilizing cloud resources as a normal
project could do. Organizations keep their security infor-
mation and resources in the Security Projects, with their
security staff/users assigned to the corresponding level of
project in the Security Project hierarchy. This separates an
organization’s regular projects from its security project.

Core Project (CP): Core Project is a shared project which
holds the community cyber security committee [7]. Each
organization in the community has at least one user in the
security committee, with one as admin user of the Core
Project and the rest as regular member users. Core Project
holds all Secure Isolated Projects which are designed for
cyber incident response and cyber security collaboration.

Open Project (OP): Open Project is a project where users
share public cyber security information and resources [7].
Information published in Open Project is public to every
user who is subscribed to the project.

Secure Isolated Project (SIP): Secure Isolated Project
[10] is a special project with constraints over its user
membership, information and resources utilization. A SIP
provides a controlled environment for organizations to col-
laborate on security incidents.

Expert Users (EU): To get outside-community profes-
sionals involved, expert users [7] are introduced to SID.
Expert Users originally don’t belong to the community.
They bring expertise from different cyber security categories.
For instance, they may come from a IT consultant com-
pany which focusses on specific cyber attacks. They may
be cyber security law enforcement officers specializing in
cyber crime. The involvement of Expert Users is to help
organizations handle cyber collaborations more effectively.

In the following, we give formalization of concepts intro-
duced above, as well as the relation among them.

Definition 2 OSAC-HMT-SID model has the following
components in addition to OSAC-HMT.
- SID is an implicitly existing Secure Isolated Domain,
which is transparent to users. SID owns Expert Users (EU),
Core Project (CP), Open Project (OP), and Secure Isolated
Projects(SIP), correspondingly represented by Expert User
Ownership (EOU), Core Project Ownership (CPO), Open
Project Ownership (OPO)and Secure Isolated Project Own-
ership (SIPO).
- SP, SIP, EU and SO are finite sets of Security Projects,
Secure Isolated Projects, Expert Users and Swift Objects.
- Security Project Ownership (SPO) : is a function SPO :
SP → D, mapping a Security Project to its owning domain.
Equivalently viewed as a one-to-one relation SPO ⊆ D.
- Swift Object Ownership (SOO) : is a function SOO : SO→
P, mapping a swift object to its owning project. Equivalently
viewed as a many-to-one relation SOO ⊆ SO × P.

- User Self Subscription (USS) : USS ⊆ U × {< OP,
member >}, a many-to-one user to project-role assignment
relation for the member role in the single open project OP.
- SIP association (assoc): is a function assoc : SIP → 2D,
mapping a SIP to all its member domains/organizations.

B. Administrative OSAC-HMT-SID Model

The administrative aspects of OSAC-HMT-SID are dis-
cussed informally below. A formal specification is given in
Table I.

Creation of SID, Core Project, Open Project and
Security Project: SID with Core Project and Open Project
is part of community cloud functionality which the CSP pro-
vides to its customers on behalf of organizations responding
collaboratively to cyber incidents. SID, Core Project and
Open Project are created when the community cloud is set
up. Each domain has one corresponding Security Project
with it. The creation of a Security Project is automatically
done with the creation of a domain.

Initial user assignment for SID, Core Project, Open
Project and Security Project: SID has no admin users
assigned on domain level. The admin users of Core Project
come from organizations’ domain. When a domain is cre-
ated, cloud admin assigns domain admin user as an admin
of Core Project. We assume there is only one admin user
for each domain. Domain admins assign admin users for
their Security Projects. Open Project doesn’t have admin
user assigned to it. Each user in the cloud can self subscribe
or unsubscribe as a member in Open Project.

Create a SIP: Let uSet denote a set of domain admin
users. A group of organizations come together to create a
SIP. Each organization in the group has equal administrative
power over the SIP. The creation of SIP succeeds based
on agreement among the group of organizations. The or-
ganization membership in the SIP is established with the
creation of the SIP. The size of the group range from one
organization to the total number of organizations held in the
community cloud. The group of organizations set up a SIP
by sending the SIP creation request to the cloud admin. The
users who are allowed to issue SIP creation are admin users
in Core Projects, who are domain admins as well. When a
SIP is created, users who issue SIP creation command will
automatically become the admin users of the SIP.

Delete a SIP: After the collaboration is finished, a SIP
needs to be securely deleted. The delete command is issued
by the same set of admin users (uSet) who issue the SIP
creation. All information and resources are securely deleted.
All users assigned to the SIP are removed from it. Removing
information and resources guarantees no information and
resources will leak after the SIP being deleted. Removing
users guarantees no users will have access to information
and resource that belonged to a SIP.

Create/delete an Expert User: New Expert Users are
created in case when additional cyber expertise is needed,



Table I
OSAC-HMT-SID ADMINISTRATIVE MODEL

Operation Authorization Requirement Update
SipCreate(uSet, sip)
/* A subset of Core Project/domain admin
users together create a sip */

∀ u ∈ uSet.(u ∈ U ∧ (u, <CP, admin>) ∈ UA)
∧ sip /∈ SIP

assoc(sip) =
⋃

u∈uSet
UO(u)

SIP′ = SIP ∪ {sip}
UA′ = UA ∪ uSet × {<sip,
admin>}

SipDelete(uSet, sip)
/* The same subset of Core Project/domain
admin users together delete a sip*/

∀ u ∈ uSet.(u ∈ U ∧ (u, <sip, admin>) ∈ UA ∧
(u, <CP, admin>) ∈ UA) ∧ assoc(sip) =⋃

u∈uSet
UO(u) ∧ sip ∈ SIP

assoc(sip) = NULL
SIP′ = SIP - {sip}
UA′ = UA - uSet × {<sip,
admin>}

ExpertUserCreate(coreadmin, eu)
/* Core Project admin users can create an
expert user */

coreadmin ∈ U ∧ (coreadmin, <CP, admin>) ∈
UA ∧ eu /∈ EU

EU′ = EU ∪ {eu}

ExpertUserDelete(coreadmin, eu)
/* Core Project admin users can delete an
expert user */

coreadmin ∈ U ∧ (coreadmin, <CP, admin>) ∈
UA ∧ eu ∈ EU

EU′ = EU - {eu}

ExpertUserList(adminuser)
/* Admin users of Core Project and SIPs
can list expert users */

adminuser ∈ U ∧ (∃ proj) {proj ∈ ({CP} ∪ SIP)
∧ (adminuser, <proj, admin>) ∈ UA}

ExpertUserAdd(adminuser, r, eu, proj)
/* Core Project/sip admin can add an
expert user to Core Project/sip*/

adminuser ∈ U ∧ proj ∈ ({CP} ∪ SIP) ∧
(adminuser, <proj, admin>) ∈ UA ∧ eu ∈ EU ∧
r ∈ R

UA′ = UA ∪ (eu, (proj, r))

ExpertUserRemove(adminuser, r, eu, proj)
/* Core Project/sip admin can remove an
expert user from Core Project/sip */

adminuser ∈ U ∧ proj ∈ ({CP} ∪ SIP) ∧
(adminuser, <proj, admin>) ∈ UA ∧ eu ∈ EU ∧
r ∈ R ∧ (eu, (proj, r)) ∈ UA

UA′ = UA - (eu, (proj, r))

UserAdd(adminuser, r, u, sp, p)
/* CP/Sip admin can add a user from his
home domain Security Project to CP/sip*/

adminuser ∈ U ∧ (adminuser, <p, admin>) ∈
UA ∧ p ∈ ({CP} ∪ SIP) ∧ r ∈ R ∧ u ∈ U ∧ (u,
<sp, r>) ∈ UA ∧ SPO(sp) = UO(adminuser)

UA′ = UA ∪ (u, (p, r))

UserRemove(adminuser, r, u, sp, p)
/* CP/Sip admin can remove a user from
the Core Project/sip */

adminuser ∈ U ∧ (adminuser, <p, admin>) ∈
UA ∧ p ∈ ({CP} ∪ SIP) ∧ r ∈ R ∧ u ∈ U ∧ (u,
<sp, r>) ∈ UA ∧ SPO(sp) = UO(adminuser) ∧
(u, (p, r)) ∈ UA

UA′ = UA - (u, (p, r))

OpenUserSubscribe(u, member, OP)
/* Users subscribe to Open Project */

u ∈ U ∧ (u, <OP, member>) /∈ USS USS′ = USS ∪ (u, <OP,
member>)

OpenUserUnsubscribe(u, member, OP)
/* Users unsubcsribe from Open Project */

u ∈ U ∧ (u, <OP, member>) ∈ USS USS′ = USS - (u, <OP,
member>)

CopyObject(u, so1, sp, so2, p)
/* Copy object from Security Project to
Core Project/SIP */

so1 ∈ SO ∧ sp ∈ SP ∧ so2 /∈ SO ∧
SOO(so1)=sp ∧ UO(u)=SPO(sp) ∧ u ∈ U ∧ (∃ r
∈ R) {(u, <sp, r>) ∈ UA ∧ (u, <p, r>) ∈ UA
)} ∧ p ∈ ({CP} ∪ SIP)

SO′ = SO ∪ {so2}
SOO(so2) = p

ExportObject(adminuser, so1, p, so2, sp)
/* Export object from Core Project/SIP to
Security Project */

adminuser ∈ U ∧ (adminuser, <p, admin>) ∈
UA ∧ p ∈ ({CP} ∪ SIP) ∧ so1 ∈ SO ∧
SOO(so1)=p ∧ so2 /∈ SO ∧ sp ∈ SP ∧
(adminuser, <sp, admin>) ∈ UA

SO′ = SO ∪ {so2}
SOO(so2) = sp

such as consultant company is introduced to the community,
or a new cyber security agent is involved with one of the
collaboration groups. Core Project admin users request the
creation command of Expert Users to cloud admin. Cloud
admin returns the new Expert User and add the user to
Expert User list. Core Project admin users can request to
delete a Expert User. After the Expert User is deleted, the
user will lose all access to any information and resource in
the community cloud.

List Expert Users: Core Project and SIP admin users can
list expert users in SID. Expert Users are important human
resources for cyber collaboration activities. By listing Expert
Users in the SID, collaborative groups with SIPs can easily

add experts to their SIPs.
Add/remove an Expert User: Expert Users are visible

to all projects in SID except Open Project. Project admins
in SID can add Expert Users to their projects due to
collaboration. After the cyber collaboration is done, project
admins can remove Expert Users from their projects.

Add/remove a user to/from Core Project/SIP: Admin
users of Core Project/SIP add/remove users of their home
security projects to/from Core Project or the corresponding
SIP due to the need of collaboration. The removed user will
lose access to information and resources which he/she had
during collaborations in Core Project/SIP.

Subscribe/unsubscribe a user to Open Project: Ev-



Cloud admin

Domain admin

Security Project adminProject admin Core Project admin

SID admin
(Cloud admin)

SIP admin

Figure 6. Administration Relation

ery user in the Open Project is a normal member user.
They can share cyber data, but have no control over other
users. Users subscribe/unsubscribe themselves to/from Open
Project. They will not be able to access and share any data
once they leave the Open Project.

Copy data between Secure Project and Core
Project/SIP: Users can copy data from security projects
of their home domains to CoreProject and SIP. Users may
be scoped to multiple projects in their home domains, but
only data from security projects are allowed to be copied to
CP/SIP. Admin users can export data from Core Project and
SIPs to security projects of their home domains.

C. Additional administration details

Here we give additional explanation of OSAC-HMT-SID
model from administration perspective, as shown in Figure
6. Cloud admin is the super administrative user of the cloud
who can create domains, users and assign users as admins for
domains and projects. Some administrative operations in SID
are done by cloud admin, such as creating/deleting/updating
expert users and creating/deleting/updating SIPs, though the
request is initiated by a subset of Core Project admin users.

Domain admin is the super administrative user for an or-
ganization. Domain admin can create/delete/update a project
and user/group in the domain. Projects can also have ad-
min users assigned to them, the difference is that project
admin user cannot create/delete/update users and groups,
but they can assign users/groups to the project, and cre-
ate/delete/update child projects.

Domain admin users assigns users to be admin of their
Security Projects. Security Project admin users can further
add other users as member in Security Project.

Core Project is designed for core group [7], which is a
cyber security committee for the whole community. Domain
admin decides which of the organization’s users will be in
the cyber security committee. Domain admins are automati-
cally assigned as admin users in Core Project when a domain
is created. As Core Project admin users, they can further add
users from their home domains to Core Project, create SIPs
and add users to SIPs.

The administration over a SIP is similar to that in [10]. A
subset of Core Project admin users create/delete/manage a

Community Cloud

Domains

Secure ProjectsProjects Core Project

SID

child Projects child Secure Projects SIPs

child SIPs

Open Project

Figure 7. Resources Ownership

SIP. Each user in this subset has equal admin power over the
SIP. They can create/delete/update child projects inside the
SIP. They can assign users from their organizations to the
SIP. They can bring in cyber information from their Security
Projects.

D. Resource ownership

From the perspective of resource ownership, we give a
view of the model, as shown in Figure 7. Organizations
own their resources manifested as domains in the community
cloud. An organization has multiple normal projects and
one Secure Project. Inside a domain, resources are divided
by projects which represent different departments inside an
organization. Departments can further divides the resources
ownership by creating child-projects. Security Project is for
each organization to contain standard cyber security data,
which is used on behalf of each organization’s security as
well as cross-organization cyber security collaboration. A
Security Project is the only place in a domain from and to
where cyber information can be exchanged with the SID.

SID securely isolates cloud resources from organization
domains for cyber security purpose. SID is owned by the
community cloud. The Core Project belongs to SID and
provides a stable and controlled place for organizations to
exchange and share cyber security information. It holds all
SIPs which are designed for specific cyber security purposes.
SIPs can be further divided into child SIPs in the process of
cyber collaborations.

V. ENFORCEMENT

We discuss the enforcement of OSAC-HMT-SID
model on OpenStack Kilo release. In OpenStack, there
are three levels of administrative roles: cloud admin,
domain admin, and project admin, which have
administrative power respectively over the whole cloud, a
domain and a project.

Setting up SID: SID is a functionality adding to Open-
Stack cloud platform. SID, Core Project, and Open Project
are created when the cloud platform is set up. In implementa-
tion, we can use cloud admin to set up SID with Core Project
and Open Project. Security Project is created with creation



SID: Cloud Admin

Core Project: Admin

Core Project: member

Assign domain admins as

Assign users from home domain as
Assign expert users as

SIP: Admin

Create SIP/child SIP/…,
assign domain admins as

SIP: member

Assign users from home domain as
Assign expert users as

child SIP: Admin

child SIP: member

Assign users from home domain as
Assign expert users as

child SIP’s … 
child SIP: Admin

child SIP’s … child SIP: member

Assign users from home domain as
Assign expert users as

Figure 8. SIP creation and user assignment

of a domain. For simplicity, we use cloud admin to create
Security Project for a domain. Cloud admin assigns domain
admin as admin user for Core Project. Cloud admin assign
every user in the cloud to Open Project as a member. All
such cloud admin functions can be automated by providing
scripts that do these activities on the cloud admin’s behalf
after verifying appropriate authorization,

SIP creation and user assignment: A subset of Core
Project admin users create SIPs and child SIPs. These
users need permission to create a project in SID. However,
OpenStack doesn’t allow a user to create a project if the user
is not scoped to the domain. All users in SID are scoped to
specific project, such as Core Project, Open Project and SIP.
They don’t have the scope on domain level in SID. Thus,
none of these users can create a project in SID. Therefore
we need cloud admin to be involved. The solution is the
subset of Core Project admin users request cloud admin to
create a SIP/child SIP, and cloud admin returns a project
with the requesters assigned as admin user to it. As project
admin, these admin users can assign users from their home
domain to the project. They can also assign Expert Users to
the project. Figure 8 illustrates this process.

User Verification: Only Core Project/domain admin users
are allowed to send request to create/delete/update SIPs/child
SIPs/Expert Users. Cloud admin need to verify that the
request comes from a subset of Core Project admin users.
Users in SIP/child SIP are constrained to be from a subset
of domains in the cloud. The restriction is set up with the
creation of a SIP. Admin users are allowed to add users only
from their home domains and Expert Users from SID. This
needs to be verified every time a user assignment happens.

In implementation, all operations that have to be done by
cloud admin can be automated by adding code to Open-
Stack identity server. Other constraints can be enforced by
configuring appropriate policy files.

VI. CONCLUSION AND FUTURE WORK

OpenStack is a popular open-source cloud platform which
provides a great convenience for enterprises and organiza-
tions to facilitate their business. Information and resources
sharing in cyber security field has been an important topic
for years with the growth of cyber attacks. Models for
enforcing information and resources sharing in scenario of
cyber security in OpenStack platform is an important topic.
The model we give in this paper is one way to achieve it.
We also explored some other options in general. However,
based on the features of OpenStack, we made our model as
close as possible to OpenStack architecture. For the future
work, we would like to explore more on other model options.
We also want to explore more on local roles in the model,
which is lacking in current OpenStack. Finally, it would be
valuable to research similar goals in other cloud platforms
including the dominant proprietary ones.

VII. ACKNOWLEDGMENT

The authors thank Raildo Mascena for helping us better
understand OpenStack HMT. The authors also thank the
broader OpenStack community in this regard. This work is
partially supported by NSF CNS-1111925.

REFERENCES

[1] http://openstack.org.

[2] https://www.fsisac.com/.

[3] E. Cohen, R. K. Thomas, W. Winsborough, and D. Shands.
Models for coalition-based access control (CBAC). In Proc.
7th ACM SACMAT, 2002.

[4] R. Krishnan, R. Sandhu, J. Niu, and W. Winsborough. To-
wards a framework for group-centric secure collaboration. In
5th IEEE CollaborateCom, pages 1–10, 2009.

[5] P. Mell and T. Grance. The NIST definition of cloud
computing. NIST Sp. Pub. 800-145, Sept. 2011.

[6] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A community authorization service for group col-
laboration. In 3rd IEEE International Workshop on Policies
for Distributed Systems and Networks, 2002.

[7] R. Sandhu, K. Z. Bijon, X. Jin, and R. Krishnan. RT-
based administrative models for community cyber security
information sharing. In 7th IEEE CollaborateCom, 2011.

[8] D. Shands, R. Yee, J. Jacobs, and E. J. Sebes. Secure virtual
enclaves: Supporting coalition use of distributed application
technologies. In IEEE DARPA Information Survivability
Conference and Exposition, volume 1, pages 335–350, 2000.

[9] B. Tang and R. Sandhu. Extending OpenStack access control
with domain trust. In 8th International Conference on
Network and System Security (NSS), October 15-17 2014.

[10] Y. Zhang, R. Krishnan, and R. Sandhu. Secure information
and resource sharing in cloud infrastructure as a service. In
2014 ACM WISCS, pages 81–90, 2014.


