
Proceedings of IFIP WG11.3 Workshop on Database Security, Lake Tahoe, California, August 11-13, 1997

Role-Based Administration of User-Role Assignment :

The URA97 Model and its Oracle Implementation

Ravi Sandhu and Venkata Bhamidipati

Laboratory for Information Security Technology

ISSE Department, Mail Stop 4A4

George Mason University, Fairfax, VA 22033, USA

sandhu@isse.gmu.edu, http://www.isse.gmu.edu/faculty/sandhu

November 16, 1997

Abstract In role-based access control (RBAC) per-
missions are associated with roles, and users are made
members of appropriate roles thereby acquiring the
roles' permissions. The principal motivation behind
RBAC is to simplify administration. An appealing
possibility is to use RBAC itself to manage RBAC,
to further provide administrative convenience. In this
paper we investigate one aspect of RBAC administra-
tion concerning assignment of users to roles. We de-
�ne a role-based administrative model, called URA97
(user-role assignment '97), for this purpose and de-
scribe its implementation in the Oracle database man-
agement system. Although our model is quite di�er-
ent from that built into Oracle, we demonstrate how
to use Oracle stored procedures to implement it.

1 INTRODUCTION

Role-based access control (RBAC) has recently re-
ceived considerable attention as a promising alterna-
tive to traditional discretionary and mandatory ac-
cess controls (see, for example, [FK92, FCK95, Gui95,
GI96, MD94, HDT95, NO95, SCFY96, vSvdM94,
YCS97]). In RBAC permissions are associated with
roles, and users are made members of appropriate roles
thereby acquiring the roles' permissions. This greatly
simpli�es management of permissions. Roles are cre-
ated for the various job functions in an organization
and users are assigned roles based on their responsibil-
ities and quali�cations. Users can be easily reassigned
from one role to another. Roles can be granted new
permissions as new applications and systems are incor-
porated, and permissions can be revoked from roles as
needed. Role-role relationships can be established to

lay out broad policy objectives.

In large enterprise-wide systems the number of roles
can be in the hundreds or thousands, and users can
be in the tens or hundreds of thousands, maybe even
millions. Managing these roles and users, and their
interrelationships is a formidable task that often is
highly centralized and delegated to a small team of
security administrators. Because the main advantage
of RBAC is to facilitate administration of permissions,
it is natural to ask how RBAC itself can be used to
manage RBAC. We believe the use of RBAC for man-
aging RBAC will be an important factor in the long-
term success of RBAC. Decentralizing the details of
RBAC administration without loosing central control
over broad policy is a challenging goal for system de-
signers and architects.

As we will see there are many components to
RBAC. RBAC administration is therefore multi-
faceted. In particular we can separate the issues of
assigning users to roles, assigning permissions to roles,
and assigning roles to roles to de�ne a role hierar-
chy. These activities are all required to bring users
and permissions together. However, in many cases,
they are best done by di�erent administrators (or ad-
ministrative roles). Assigning permissions to roles is
typically the province of application administrators.
Thus a banking application can be implemented so
credit and debit operations are assigned to a teller role,
whereas approval of a loan is assigned to a manage-
rial role. Assignment of actual individuals to the teller
and managerial roles is a personnel management func-
tion. Assigning roles to roles has aspects of user-role
assignment and role-permission assignment. Role-role
relationships establish broad policy. Control of these
relationships would typically be relatively centralized

in the hands of a few security administrators.

In this paper we have focussed our attention exclu-
sively on user-role assignment. We recognize that a
comprehensive administrative model for RBAC must
account for all three issues mentioned above, among
others. However, user-role assignment is a particularly
critical administrative activity. We feel it is the right
one to focus on �rst.

In large systems user-role assignment is likely to be
the �rst administrative function that is decentralized
and delegated to users rather than system administra-
tors. Assigning people to tasks is a normal managerial
function. Assigning users to roles should be a natural
part of assigning users to tasks. Empowering man-
agers to do this routinely is one way of making secu-
rity an enabling user-friendly technology rather than
an intrusive and cumbersome nuisance as it all too of-
ten turns out to be. A manager who can assign a user
to perform certain tasks should not have to ask some-
one else to enroll this user in appropriate roles. This
should happen transparently and conveniently.

A user-role assignment model can also be used for
managing user-group assignment and therefore has
applicability beyond RBAC. The di�erence between
roles and groups was hotly debated at the First ACM
Workshop on RBAC [San97b]. Workshop attendees
arrived at the consensus that a group is a named col-
lection of users (and possibly other groups). Groups
serve as a convenient shorthand notation for collec-
tions of users and that is the main motivation for in-
troducing them. Roles are similar to groups in that
they can serve as a shorthand for collections of users,
but they go beyond groups in also serving as a short-
hand for a collection of permissions. Assigning users
to roles or users to groups are therefore essentially
the same function. Assigning permissions to roles and
permissions to groups, on the other hand, can have
rather di�erent characteristics. We need not get into
this latter issue here since our focus is on user-role, or
equivalently user-group, assignment.

In this paper we propose a model for the assign-
ment of users to roles by means of administrative roles
and permissions. We call our model URA97 (user-role
assignment '97). URA97 imposes strict limits on in-
dividual administrators regarding which users can be
assigned to which roles. We then describe an imple-
mentation of URA97 in the Oracle database manage-
ment system [KL95, Feu95]. Oracle's administrative
model for user-role assignment is very di�erent from
URA97. Nevertheless, we show how to use Oracle's
stored procedures to implement URA97.

The principal contribution of URA97 is to pro-
vide a concrete example of what is meant by role-
based administration of user-role assignment. An-
other central contribution of this paper is to demon-
strate that an existing popular product, namely Ora-
cle, provides the necessary base mechanisms and ex-
tensibility to program the behavior of URA97. URA97
is de�ned in context of the family of RBAC96 fam-
ily of models due to Sandhu et al [SCFY96]. How-
ever, it applies to almost any RBAC model, includ-
ing [FCK95, Gui95, GI96, HDT95, NO95], because
user-role assignment is a basic administrative feature
which will be required in any RBAC model.

The rest of this paper is organized as follows. We
begin by reviewing the RBAC96 family of models in
section 2. In section 3 we de�ne the administrative
model called URA97 for user-role assignment which
itself is role-based. This is followed by a quick review
of relevant RBAC features of Oracle in section 4. Our
implementation of URA97 in Oracle is described in
section 5. Section 6 concludes the paper.

2 THE RBAC96 MODELS

A general family of RBAC models called RBAC96
was de�ned by Sandhu et al [SCFY96]. Figure 1 il-
lustrates the most general model in this family. For
simplicity we use the term RBAC96 to refer to the
family of models as well as its most general member.

The top half of �gure 1 shows (regular) roles and
permissions that regulate access to data and resources.
The bottom half shows administrative roles and per-
missions. Intuitively, a user is a human being or an
autonomous agent, a role is a job function or job title
within the organization with some associated seman-
tics regarding the authority and responsibility con-
ferred on a member of the role, and a permission is
an approval of a particular mode of access to one or
more objects in the system or some privilege to carry
out speci�ed actions. Roles are organized in a partial
order �, so that if x � y then role x inherits the per-
missions of role y. Members of x are also implicitly
members of y. In such cases, we say x is senior to y.
Each session relates one user to possibly many roles.
The idea is that a user establishes a session and acti-
vates some subset of roles that he or she is a member of
(directly or indirectly by means of the role hierarchy).

Motivation and discussion about various design
decisions made in developing this family of models
is given in [SCFY96, San97a]. It is worth empha-

U

USERS

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

AUA

� U , a set of users; R and AR, disjoint sets of (regular) roles and administrative roles; P and AP , disjoint sets
of (regular) permissions and administrative permissions; S, a set of sessions

� UA � U �R, user to role assignment relation
AUA � U �AR, user to administrative role assignment relation

� PA � P �R, permission to role assignment relation
APA � AP �AR, permission to administrative role assignment relation

� RH � R�R, partially ordered role hierarchy
ARH � AR �AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

� user : S ! U , maps each session to a single user (which does not change)

roles : S ! 2R[AR maps each session si to a set roles(si) � fr j (9r0 � r)[(user(si); r
0) 2 UA [AUA]g

(which can change with time)

session si has permissions [r2roles(si)fp j (9r
00 � r)[(p; r00) 2 PA [APA]g

� there is a collection of constraints stipulating which values of the various components enumerated above are
allowed or forbidden

Figure 1: Summary of the RBAC96 Model

sizing that RBAC96 distinguishes roles and permis-
sions from administrative roles and permissions re-
spectively, where the latter are used to manage the
former. How are administrative permissions and roles
managed in turn? One could consider a second level
of administrative roles and permissions to manage the
�rst level ones and so on. We feel such a progression
of administration is unnecessary. Administration of
administrative roles and permissions is under control
of the chief security o�cer or delegated in part to ad-
ministrative roles.

3 THE URA97 MODEL

RBAC has many components as described in the
previous section. Administration of RBAC involves
control over each of these components including cre-
ation and deletion of roles, creation and deletion of
permissions, assignment of permissions to roles and
their removal, creation and deletion of users, assign-
ment of users to roles and their removal, de�nition
and maintainence of the role hierarchy, de�nition and
maintainence of constraints and all of these in turn for
administrative roles and permissions. A comprehen-
sive administrative model would be quite complex and
di�cult to develop in a single step.

Fortunately administration of RBAC can be par-
titioned into several areas for which administrative
models can be separately and independently devel-
oped to be later integrated. In particular we can sep-
arate the issues of assigning users to roles, assigning
permissions to roles and de�ning the role hierarchy.
In many cases, these activities would be best done
by di�erent administrators. Assigning permissions to
roles is typically the province of application admin-
istrators. Thus a banking application can be imple-
mented so credit and debit operations are assigned to
a teller role, whereas approval of a loan is assigned to
a managerial role. Assignment of actual individuals to
the teller and managerial roles is a personnel manage-
ment function. Design of the role hierarchy relates to
design of the organizational structure and is the func-
tion of a chief security o�cer under guidance of a chief
information o�cer.

In this paper our focus is exclusively on user-role
assignment. As discussed in section 1 this is likely to
be the �rst and most widely decentralized adminis-
trative task in RBAC. In the RBAC96 framework of
�gure 1 control of UA is vested in the administrative
roles AR. For simplicity we limit our scope to assign-
ment of users to regular roles. Assignment of users to

administrative roles is centralized under the chief se-
curity o�cer. In general the chief security o�cer has
complete control over all aspects of RBAC96.

In the rest of this section we develop a model called
URA97 in which RBAC is used to manage user-role as-
signment. We de�ne URA97 in two steps dealing with
granting a user membership in a role and revoking a
user's membership. URA97 is deliberately designed
to have a very narrow scope. For example creation
of users and roles is outside its scope. In spite of its
simplicity URA97 is quite powerful and goes much be-
yond existing administrative models for user-role as-
signment, such as the one implemented in Oracle. It
is also applicable beyond RBAC to user-group assign-
ment.

3.1 URA97 Grant Model

In the simplest case user-role assignment can be
completely centralized in a single chief security o�cer
role. This is readily implemented in existing systems
such as Oracle. However, this simple approach does
not scale to large systems. Clearly it is desirable to
decentralize user-role assignment to some degree.

In several systems, including Oracle, it is possible
to designate a role, say, junior security o�cer (JSO)
whose members have administrative control over one
or more regular roles, say, A, B and C. Thus limited
administrative authority is delegated to the JSO role.
Unfortunately these systems typically allow the JSO
role to have complete control over roles A, B and C.
A member of JSO can not only add users to A, B and
C but also delete users from these roles and add and
delete permissions. Moreover, there is no control on
which users can be added to the A, B and C roles by
JSO members. Finally, JSO members are allowed to
assign A, B and C as junior to any role in the existing
hierarchy (so long as this does not introduce a cycle).
All this is consistent with classical discretionary think-
ing whereby member of JSO are e�ectively designated
as \owners" of the A, B and C roles, and therefore are
free to do whatever they want to these roles.

In URA97 our goal is to impose restrictions on
which users can be added to a role by whom, as well
as to clearly separate the ability to add and remove
users from other operations on the role. The notion
of a prerequisite condition is a key part of URA97.

De�nition 1 A prerequisite condition is a
boolean expression using the usual ^ and _ oper-
ators on terms of the form x and x where x is a
regular role (i.e., x 2 R). A prerequisite condition

is evaluated for a user u by interpreting x to be
true if (9x0 � x)(u; x0) 2 UA and x to be true if
(8x0 � x)(u; x0) 62 UA. For a given set of roles R let
CR denotes all possible prerequisite conditions that
can be formed using the roles in R. 2

In the trivial case a prerequisite condition can be a
tautology which is always true. The simplest non-
trivial case of a prerequisite condition is test for mem-
bership in a single role, in which situation that single
role is called a prerequisite role.

User-role assignment is authorized in URA97 by the
following relation.

De�nition 2 The URA97 model controls user-role
assignment by means of the relation can-assign �
AR� CR � 2R. 2

The meaning of can-assign(x; y; fa; b; cg) is that a
member of the administrative role x (or a member of
an administrative role that is senior to x) can assign a
user whose current membership, or non-membership,
in regular roles satis�es the prerequisite condition y to
be a member of regular roles a, b or c.1

To appreciate the motivation behind the can-assign
relation consider the role hierarchy of �gure 2 and
the administrative role hierarchy of �gure 3. Figure 2
shows the regular roles that exist in a engineering de-
partment. There is a junior-most role E to which all
employees in the organization belong. Within the en-
gineering department there is a junior-most role ED
and senior-most role DIR. In between there are roles
for two projects within the department, project 1 on
the left and project 2 on the right. Each project has
a senior-most project lead role (PL1 and PL2) and a
junior-most engineer role (E1 and E2). In between
each project has two incomparable roles, production
engineer (PE1 and PE2) and quality engineer (QE1
and QE2).

Figure 2 su�ces for our purpose but this structure
can, of course, be extended to dozens and even hun-
dreds of projects within the engineering department.
Moreover, each project could have a di�erent struc-
ture for its roles. The example can also be extended
to multiple departments with di�erent structure and
policies applied to each department.

Figure 3 shows the administrative role hierarchy
which co-exists with �gure 2. The senior-most role

1User-role assignment is subject to constraints, such as mu-
tually exclusive roles or maximum cardinality, that may be im-
posed. The assignment will succeed if and only if it is authorized
by can-assign and it satis�es all relevant constraints.

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Figure 2: An Example Role Hierarchy

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

Figure 3: An Example Administrative Role Hierarchy

is the senior security o�cer (SSO). Our main interest
is in the administrative roles junior to SSO. These
consist of two project security o�cer roles (PSO1 and
PSO2) and a department security o�cer (DSO) role
with the relationships illustrated in the �gure.

3.1.1 Prerequisite Roles

For sake of illustration we de�ne the can-assign rela-
tion shown in table 1(a). This example has the sim-
plest prerequisite condition of testing membership in
a single role known as the prerequisite role.

The PSO1 role has partial responsibility over
project 1 roles. Let Alice be a member of the PSO1
role and Bob a member of the ED role. Alice can as-
sign Bob to any of the E1, PE1 and QE1 roles, but not
to the PL1 role. Also if Charlie is not a member of the
ED role, then Alice cannot assign him to any project
1 role. Hence, Alice has authority to enroll users in
the E1, PE1 and QE1 roles provided these users are
already members of ED. Note that if Alice assigns Bob
to PE1 he does not need to be explicitly assigned to

Admin. Role Prereq. Role Role Set

PSO1 ED fE1, PE1, QE1g
PSO2 ED fE2, PE2, QE2g
DSO ED fPL1, PL2g
SSO E fEDg
SSO ED fDIRg

(a) Subset Notation

Admin. Role Prereq. Role Role Range

PSO1 ED [E1, PL1)
PSO2 ED [E2, PL2)
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED (ED, DIR]

(b) Range Notation

Table 1: can-assign with Prerequisite Roles

E1, since E1 permissions will be inherited via the role
hierarchy. The PSO2 role is similar to PSO1 but with
respect to project 2. The DSO role inherits the au-
thority of PSO1 and PSO2 roles but can further add
users who are members of ED to the PL1 and PL2
roles. The SSO role can add users who are in the E
role to the ED role, as well as add users who are in
the ED role to the DIR role. This ensures that even
the SSO must �rst enroll a user in the ED role before
that user is enrolled in a role senior to ED. This is a
reasonable speci�cation for can-assign . There are, of
course, lots of other equally reasonable speci�cations
in this context. This is a matter of policy decision and
our model provides the necessary
exibility.

In general, one would expect that the role being
assigned is senior to the role previously required of
the user. That is, if we have can-assign(a; b; C) then
b is junior to all roles c 2 C. We believe this will
usually be the case, but we do not require it in the
model. This allows URA97 to be applicable to situa-
tions where there is no role hierarchy or where such a
constraint may not be appropriate.

The notation of table 1(a) has bene�ted from the
administrative role hierarchy. Thus for the DSO we
have speci�ed the role set as fPL1, PL2g and the other
values are inherited from PSO1 and PSO2. Similarly
for the SSO. Nevertheless explicit enumeration of the
role set is unwieldy, particularly if we were to scale
up to dozens or hundreds of projects in the depart-

ment. Moreover, explicit enumeration is not resilient
with respect to changes in the role hierarchy. Suppose
a third project is introduced in the department, with
roles E3, PE3, QE3, PL3 and PSO3 analogous to cor-
responding roles for projects 1 and 2. We can add the
following row to table 1(a).

Admin. Role Prereq. Role Role Set

PSO3 ED fE3, PE3, QE3g

This is a reasonable change to require when the new
project and its roles are introduced into the regular
and administrative role hierarchies. However, we also
need to modify the row for DSO in table 1(b) to in-
clude PL3.

3.1.2 Range Notation

Consider instead the range notation illustrated in ta-
ble 1(b). Table 1(b) shows the same role sets as ta-
ble 1(a) but de�nes these sets by identifying a range
within the role hierarchy of �gure 1(a) by means of
the familiar closed and open interval notation.

De�nition 3 Role sets are speci�ed in the URA97
model by the notation below

[x; y] = fr 2 R j x � r ^ r � yg
(x; y] = fr 2 R j x > r ^ r � yg
[x; y) = fr 2 R j x � r ^ r > yg
(x; y) = fr 2 R j x > r ^ r > yg

2

This notation is resilient to modi�cations in the role
hierarchy such as addition of a third project which
requires addition of the following row to table 1(b).

Admin. Role Prereq. Role Role Range

PSO3 ED [E3, PL3)

No other change is required since the [ED, DIR) range
speci�ed for the DSO will automatically pick up PL3.

The range notation is, of course, not resilient to all
changes in the role hierarchy. Deletion of one of the
end points of a range can leave a dangling reference
and an invalid range. Standard techniques for ensur-
ing referential integrity would need to be applied when
modifying the range hierarchy. Changes to role-role
relationships could also cause a range to be drasti-
cally di�erent from its original meaning. Nevertheless
the range notation is much more convenient than ex-
plicit enumeration. There is also no loss of generality

in adopting the range notation since every set of roles
can be expressed as a union of disjoint ranges.

Strictly speaking the two speci�cations of table 1(a)
and 1(b) are not precisely identical. In table 1(a) the
DSO role is explicitly authorized to enroll users in PL1
and PL2, and inherits the ability to enroll users in
other project 1 and 2 roles from PSO1 and PSO2. On
the other hand, in table 1(b) the DSO role is explicitly
authorized to enroll users in all project 1 and 2 roles.
As it stands the net e�ect is the same. However, if
modi�cations are made to the role hierarchy or to the
PSO1 or PSO2 authorizations the e�ect can be dif-
ferent. The DSO authorization in table 1(a) can be
replaced by the following row to make table 1(a) more
nearly identical to table 1(b).

Admin. Role Prereq. Role Role Set

DSO ED fE1, PE1, QE1, PL1,
E2, PE2, QE2, PL2g

Now even if the PSO1 and PSO2 roles of table 1(a) are
modi�ed respectively to the role sets fE1g and fE2g,
the DSO role will still retain administrative author-
ity over all project 1 and project 2 roles. Of course,
explicit and implicit speci�cations will never behave
exactly identically under all circumstances. For in-
stance, introduction of a new project 3 will exhibit
di�erences as discussed above. Conversely, the DSO
authorization in table 1(b) can be replaced by the fol-
lowing rows to make table 1(b) more nearly identical
to table 1(a).

Admin. Role Prereq. Role Role Range

DSO ED [PL1, PL1]
DSO ED [PL2, PL2]

There is an analogous situation with the SSO role
in tables 1(a) and 1(b). Clearly, we must antici-
pate the impact of future changes when we specify
the can-assign relation.

3.1.3 Prerequisite Conditions

An example of can-assign which uses prerequisite con-
ditions rather than prerequisite roles is shown in ta-
ble 2. The authorizations for PSO1 and PSO2 have
been changed relative to table 1.

Let us consider the PSO1 tuples (analysis for PSO2
is exactly similar). The �rst tuple authorizes PSO1 to
assign users with prerequisite role ED into E1. The
second one authorizes PSO1 to assign users with pre-
requisite condition ED ^ QE1 to PE1. Similarly, the

Admin. Role Prereq. Condition Role Range

PSO1 ED [E1, E1]
PSO1 ED ^ QE1 [PE1, PE1]
PSO1 ED ^ PE1 [QE1, QE1]
PSO1 PE1 ^ QE1 [PL1, PL1]
PSO2 ED [E2, E2]

PSO2 ED ^ QE2 [PE2, PE2]
PSO2 ED ^ PE2 [QE2, QE2]
PSO2 PE2 ^ QE2 [PL2, PL2]
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED (ED, DIR]

Table 2: can-assign with Prerequisite Conditions

third tuple authorizes PSO1 to assign users with pre-
requisite condition ED ^ PE1 to QE1. Taken together
the second and third tuples authorize PSO1 to put a
user who is a member of ED into one but not both of
PE1 and QE1. This illustrates how mutually exclusive
roles can be enforced by URA97. PE1 and QE1 are
mutually exclusive with respect to the power of PSO1.
However, for the DSO and SSO these are not mutually
exclusive. Hence, the notion of mutual exclusion is a
relative one in URA97. The fourth tuple authorizes
PSO1 to put a user who is a member of both PE1 and
QE1 into PL1. Of course, a user could have become
a member of both PE1 and QE1 only by actions of a
more powerful administrator than PSO1.

3.2 URA97 Revoke Model

We now turn to consideration of the URA97 re-
voke model. The objective is to de�ne a revoke model
that is consistent with the philosophy of RBAC. This
causes us to depart from classical discretionary ap-
proaches to revocation.

In the typical discretionary approach to revocation
there are at least two issues that introduce complex-
ity and subtlety [GW76, Fag78]. Suppose Alice grants
Bob some permission P. This is done at Alice's dis-
cretion because Alice is either the owner of the object
to which P pertains or has been granted administra-
tive authority on P by the actual owner. Alice can
later revoke P from Bob. Now suppose Bob has re-
ceived permission P from Alice and from Charlie. If
Alice revokes her grant of P to Bob he should still
continue to retain P because of Charlie's grant. A
related issue is that of cascading revokes. Suppose
Charlie's grant was in turn obtained from Alice, per-

haps Bob's permission should end up being revoked
by Alice's action. Or perhaps it should not, because
Alice only revoked her direct grant to Bob but not
the indirect one via Charlie which really occurred
at Charlie's discretion. A considerable literature has
developed examining the subtleties that arise, espe-
cially when hierarchical groups and negative permis-
sions or denials are brought into play (see, for example,
[Lun88, BSJ93, FWF95, GSF91, RBKW91]).

The RBAC approach to authorization is quite dif-
ferent from the traditional discretionary one. In
RBAC users are made members of roles because of
their job function or task assignment in the inter-
est of the organization. Granting of membership in
a role is speci�cally not done at the grantor's whim.
Suppose Alice makes Bob a member of a role X. In
URA97 this happens because Alice is assigned suit-
able administrative authority over X via some admin-
istrative role Y and Bob is eligible for membership
in X due to Bob's existing role memberships (and
non-memberships) satisfying the prerequisite condi-
tion. Moreover, there are some organizational circum-
stances which cause Alice to grant Bob this member-
ship. It is not merely being done at Alice's personal
fancy. Now if at some later time Alice is removed from
the administrative role Y there is clearly no reason to
also remove Bob from X. A change in Alice's job func-
tion should not necessarily undo her previous grants.
Presumably some other administrator, say Dorothy,
will take over Alice's responsibility. Similarly, suppose
Alice and Charlie both grant membership to Bob in
X. At some later time Bob is reassigned to some other
project and no longer needs to be a member of role X.
It is not material whether Alice or Charlie or both or
Dorothy revokes Bob's membership. Bob's member-
ship in X is being revoked due to a change in organi-
zational circumstances.

To summarize, in classical discretionary access con-
trol the source (direct or indirect) of a permission and
the identity of the revoker is typically taken into ac-
count in interpreting the revoke operation.2 These
issues do not arise in the same way for revocation of
user-role assignment in RBAC. However, there are re-
lated subtleties that arise in RBAC concerning the in-
teraction between granting and revocation of user-role
membership and the role hierarchy. We will illustrate
these in a moment.

2This is true more in theory than practice, because many
products and systems opt for a simpler semantics than implied
by a strict owner-based discretionary viewpoint.

3.2.1 The Can-Revoke Relation

We now introduce our notation for authorizing revo-
cation.

De�nition 4 The URA97 model controls user-role
revocation by means of the relation can-revoke �
AR� 2R. 2

The meaning of can-revoke(x; Y) is that a member of
the administrative role x (or a member of an adminis-
trative role that is senior to x) can revoke membership
of a user from any regular role y 2 Y . Y is speci�ed
using the range notation of de�nition 3. We say Y

de�nes the range of revocation.

3.2.2 Weak Revocation

The revocation operation in URA97 is said to beweak
because it applies only to the role that is directly re-
voked. Suppose Bob is a member of PE1 and E1. If
Alice revokes Bob's membership from E1, he continues
to be a member of the senior role PE1 and therefore
can use the permissions of E1.

To make the notion of weak revocation precise we
introduce the following terminology. Recall that UA
is the user assignment relation.

De�nition 5 Let us say a user U is an explicit mem-
ber of role x if (U; x) 2 UA, and that U is an implicit
member of role x if for some x0 > x, (U; x0) 2 UA. 2

Note that a user can simultaneously be an explicit and
implicit member of a role.3

Weak revocation has an impact only on explicit
membership. It has the straightforward meaning
stated below.

De�nition 6 [Weak Revocation Algorithm]

1. Let Alice have a session with administrative roles
A = fa1; a2; : : : ; akg, and let Alice try to weakly
revoke Bob from role x.

2. If Bob is not an explicit member of x this opera-
tion has no e�ect, otherwise there are two cases.

(a) There exists a can-revoke tuple (b; Y) such
that there exists ai 2 A; ai � b and x 2 Y .

3Some authors prohibit this from happening so a user cannot
simultaneously be an explicit member of a senior and junior
role on that basis that this would be redundant. In URA97
the redundancy is acceptable because of the way prerequisite
conditions work. This redundancy also preserves membership
in a junior role when a senior role is revoked.

In this case Bob's explicit membership in x

is revoked.

(b) There does not exist a can-revoke tuple as
identi�ed above.

In this case the weak revoke operation has
no e�ect.

2

3.2.3 Strong Revocation

Strong revocation in URA97 requires revocation of
both explicit and implicit membership. Strong re-
vocation of U's membership in x requires that U be
removed not only from explicit membership in x, but
also from explicit (or implicit) membership in all roles
senior to x. Strong revocation therefore has a cas-
cading e�ect upwards in the role hierarchy. However,
strong revocation in URA97 takes e�ect only if all
implied revocations upward in the role hierarchy are
within the revocation range of the administrative roles
that are active in a session.

In other words strong revocation is equivalent to a
series of weak revocations. Although it is theoretically
redundant, strong revocation is a useful and conve-
nient operation for administrators. It is much better
for the system to �gure out what weak revocations
need to be carried out to achieve strong revocation,
rather than leave it to administrators to determine
this.

Let us consider the example of can-revoke shown in
table 3 and interpret it in context of the hierarchies of
�gures 2 and 3. Let Alice be a member of PSO1, and
let this be the only administrative role she has. Alice
is authorized to strongly revoke membership of users
from roles E1, PE1 and QE1. Table 4(a) illustrates
whether or not Alice can strongly revoke membership
of a user from role E1. The e�ect of Alice's strong re-
vocation of each of these users from E1 is shown in ta-
ble 4(b). Alice is not allowed to strongly revoke Dave
and Eve from E1 because they are members of senior
roles outside the scope of Alice's revoking authority. If
Alice was assigned to the DSO role she could strongly
revoke Dave from E1 but still would not be able to
strongly revoke Eve's membership in E1. In order to
strongly revoke Eve from E1, Alice needs to be in the
SSO role.

The algorithm for strong revocation is stated in
terms of weak revocation as follows.

De�nition 7 [Strong Revocation Algorithm]

Admin. Role Role Range

PSO1 [E1, PL1)
PSO2 [E2, PL2)
DSO (ED, DIR)
SSO [ED, DIR]

Table 3: Example of can-revoke
User E1 PE1 QE1 PL1 DIR Alice can revoke user

from E1

Bob Yes Yes No No No Yes
Cathy Yes Yes Yes No No Yes
Dave Yes Yes Yes Yes No No
Eve Yes Yes Yes Yes Yes No

(a) Membership prior to strong revocation

User E1 PE1 QE1 PL1 DIR Alice revoke user
from E1

Bob No No No No No removed from E1,
PE1

Cathy No No No No No removed from E1,
PE1, QE1

Dave Yes Yes Yes Yes Yes no e�ect
Eve Yes Yes Yes Yes Yes no e�ect

(b) Membership after strong revocation

Table 4: Example of Strong Revocation

1. Let Alice have a session with administrative roles
A = fa1; a2; : : : ; akg, and let Alice try to strongly
revoke Bob from role x.

2. Find all roles y � x and Bob is a member of y.

3. Weak revoke Bob from all such y as if Alice did
this weak revoke.

4. If any of the weak revokes fail then Alice's strong
revoke has no e�ect otherwise all weak revokes
succeed.

An alternate approach would be to do only those weak
revokes that succeed and ignore the rest. We de-
cided to go with a cleaner all-or-nothing semantics in
URA97.4

4In subsequent work we allow both options at the user's dis-
cretion [SBC+97].

So far we have looked at the cascading of revoca-
tion upward in the role hierarchy. There is a downward
cascading e�ect that also occurs. Consider Bob in our
example who is a member of E1 and PE1. Suppose
further that Bob is an explicit member of PE1 and
thereby an implicit member of E1. What happens if
Alice revokes Bob from PE1? If we remove (Bob, PE1)
from the UA relation, Bob's implicit membership in
E1 will also be removed. On the other hand if Bob is
an explicit member of PE1 and also an explicit mem-
ber of E1 then Alice's revocation of Bob from PE1
does not remove him from E1. The revoke operations
we have de�ned in URA97 have the following e�ect.

Property 1. Implicit membership in a role
a is dependent on explicit membership in
some senior role b > a. Therefore when ex-
plicit membership of a user is revoked from
b, implicit membership is also automatically
revoked on junior role a unless there is some
other senior role c > a in which the user con-
tinues to be an explicit member.

Note that our examples of can-assign in table 1(b)
and can-revoke in table 3 are complementary in that
each administrative role has the same range for adding
users and removing users from roles. Although this
would be a common case we do not impose it as a
requirement on our model.

3.3 Summary of URA97

URA97 controls user-role assignment by means of
the relation can-assign � AR � CR � 2R. Role
sets are speci�ed using the range notation of de�ni-
tion 3. Assignment has a simple behavior whereby
can-assign(a; b; C) authorizes a session with an ad-
ministrative role a0 � a to enroll any user who sat-
is�es the prerequisite condition b into any role c 2 C.
The prerequisite condition is a boolean expression us-
ing the usual ^ and _ operators on terms of the form
x and x respectively denoting membership and non-
membership regular role x.

Revocation is controlled in URA97 by the relation
can-revoke � AR� 2R. Weak revocation applies only
to explicit membership in a single role as per the al-
gorithm of de�nition 6. Strong revocation cascades
upwards in the role hierarchy as per the algorithm of
de�nition 7. In both cases revocation cascades down-
wards as noted in property 1.

4 ORACLE RBAC FEATURES

The Oracle database management system [KL95,
Feu95] provides support for RBAC including support
for hierarchical roles. However, Oracle does not di-
rectly support the URA97 model. In particular, Or-
acle has a strong discretionary
avor to its admin-
istrative model for user-role assignment and revoca-
tion. Also the Oracle revocation model is similar to
our weak revoke and does not cascade revocation up-
wards in the role hierarchy like our strong revoke does.
This is reasonable given Oracle's discretionary orien-
tation. Nevertheless, we will see in the next section
how it is possible to use Oracle's stored procedures to
implement URA97. In this section we brie
y review
relevant features of Oracle access control.

4.1 Privileges

Oracle has two kinds of privileges, system privileges
and object privileges. System privileges authorize ac-
tions on a particular type of object for example create
table, create user, etc. There are over 60 distinct sys-
tem privileges. Object privileges authorize actions on
a speci�c object (table, view, procedure, package etc.).
Typical examples of object privileges are select rows
from a table, delete rows, execute procedures etc.

Who can grant or revoke privileges from users or
roles? The answer depends on various issues such
as whether it is a system or an object privilege, and
whether the object is owned by the user, etc. In order
to grant or revoke a system privilege the user should
have the admin option on that privilege or the user
should have GRANT ANY PRIVILEGE system priv-
ilege. In order to grant or revoke an object privilege
a user should own that particular object or the user
should have grant option on the object if it is owned
by someone else.

4.2 Roles in Oracle

Oracle provides roles (from Oracle 7.0 onwards)
for ease of management of privilege assignment. Sys-
tem and object privileges can be granted to a role.
A role can be granted to any other role (circular
granting is not allowed). Any role can be granted
to any user in the database. A role can either
be enabled or disabled during a session. This in-
cludes both explicit and implicit roles that a user
is a member of. Enabling a role will implicitly en-
able all the roles granted to it directly or transi-

tively. The system privileges related to role man-
agement are CREATE ROLE, GRANT ANY ROLE,
DROP ROLE, and DROP ANY ROLE.

Information about privileges assigned to a role can
be obtained from
Oracle's built-in views ROLE SYS PRIVILEGES,
ROLE TAB PRIVILEGES,
and ROLE ROLE PRIVS. When a regular user per-
forms query on these views these views only show
information pertaining to the roles granted to that
user. However, the Oracle internal user SYS will
see information about all the roles through these
views. The view SESSION ROLES provides informa-
tion about roles that are enabled in a session. The
view ROLE ROLE PRIVS shows information about
which roles are directly assigned to another role. Roles
inherited transitively are not shown. For example, if
role C was granted to role B and role B to role A the
ROLE ROLE PRIVS view will show that B has been
granted to A and C to B, but will not show the implied
transitive C to A grant.

4.3 Procedures, Functions and Packages

Oracle provides a programmatic approach to
manipulate database information using procedural
schema objects called PL/SQL (Procedural Lan-
guage/SQL) program units. Procedures, functions
and packages are di�erent types of PL/SQL objects.
PL/SQL extends the capabilities of SQL by providing
programming language features such as conditional
statements, loops etc. Procedures are also referred
to as stored procedures.

A procedure is a collection of instructions which can
be grouped together and are performed on database
objects to add, modify or delete database information.
In order to create a procedure a user should have the
CREATE PROCEDURE system privilege. A proce-
dure can be executed by a user who owns it or by a
user who has execute privileges on it.

A stored procedure runs with the privileges of the
user who owns it and not the user who is executing it.
This feature gives great
exibility in enforcing secu-
rity. For example suppose we want a user to perform
some operations on a database but we do not want to
grant privileges explicitly. Then one can write a proce-
dure embedded with necessary operations, and grant
execute privileges on the procedure to the user.5

5The privileges that are referenced in a procedure should
have been explicitly granted to the user who owns the procedure.
Privileges obtained by the owner via a role cannot be referenced
in a procedure.

Admin Role

Pre Condition

Min_Int

Min Role

Max Role

Max_Int

CAN_ASSIGN

Pre Condition

And set name

Not set name

CAN_ASSIGN2

CAN_ASSIGN4

Not set name

Not roles

CAN_ASSIGN3

And set name

And roles

Figure 4: Entity-Relation Diagram for can-assign

Functions are very similar to procedures. The only
di�erence between a function and a procedure is that
a procedure call is a PL/SQL statement itself, while
functions are called as part of an expression. A func-
tion always returns a value when it is called.

Packages are PL/SQL constructs that store related
objects together. A package is essentially a named
declarative section. It can contain procedures, func-
tions, variables etc. A package consists of two parts,
the speci�cation part and body, stored separately in
the data dictionary. The package speci�cation, also
known as package header, contains the information
about the contents of the package. The package body
contains code for the subprograms declared in the
header.

5 IMPLEMENTING URA97 IN OR-

ACLE

To implement URA97 we de�ne Oracle relations
which encode the can-assign and can-revoke relations
of URA97. The can-assign relation of URA97 is imple-
mented in Oracle as per the entity-relation diagram of
�gure 4. We assume that the prerequisite condition is
converted into disjunctive normal form using standard
techniques. Disjunctive normal form has the following
structure.

(: : : ^ : : : ^ : : : ^ : : :) _ (: : : ^ : : : ^ : : : ^ : : :) _ : : : _
(: : : ^ : : : ^ : : : ^ : : :)

Each . . . is a positive literal x or a negated literal x.
Each group (: : : ^ : : : ^ : : : ^ : : :) is called a disjunct.
For a given prerequisite condition can-assign2 has a
tuple for each disjunct. All positive literals of a single

AR PC Min Min Role Max Role Max

PSO1 C1 [E1 E1]
PSO1 C2 [PE1 PE1]
PSO1 C3 [QE1 QE1]
PSO1 C4 [PL1 PL1]
.

PC and set not set

C1 ASET1 null
C2 ASET2 NSET2
C3 ASET3 NSET3
C4 ASET4 null
.

(a) can-assign (b) can-assign2

and set and roles

ASET1 ED
ASET2 ED
ASET3 ED
ASET4 PE1
ASET4 QE1
.

not set not roles

NSET2 QE1
NSET3 PE1
.

(c) can-assign3 (d) can-assign4

Table 5: Oracle can-assign Relations for PSO1 from Table 2

AR PC Min Min Role Max Role Max

SO1 C1
.

PC and set not set

C1 ASET1 NSET1
C1 ASET2 NSET2
.

(a) can-assign (b) can-assign2

and set and roles

ASET1 A
ASET1 D
ASET2 B
.

not set not roles

NSET1 E
NSET2 F
NSET2 D
.

(c) can-assign3 (d) can-assign4

Table 6: Oracle can-assign Relations for Prerequisite Condition (A^D^E) _ (B^D ^ F)

AR Min Min Role Max Role Max

PSO1 [E1 PL1)
PSO2 [E2 PL2)
DSO (ED DIR)
SSO [ED DIR]

Table 7: Oracle can-revoke Relation

disjunct are in can-assign3, while negated literals are
in can-assign4.

The four PSO1 tuples of table 2 are represented
by this scheme as shown in table 5. The prerequisite
conditions in this case all have a single disjunct. An
example with multiple disjuncts is shown in table 6.

The can-revoke relation of URA97 is represented
by a single Oracle relation. For example table 3 is
represented as shown in table 7.

The can-assign, can-assign, can-assign, can-assign,
and can-revoke relations are owned by the DBA who
also decides what their content should be. In addition
we have three accompanying procedures and a pack-
age to support these. There is one procedure each
for assigning a user to a role, doing a weak revoke of
membership and doing a strong revoke of membership,
respectively as follows.

� ASSIGN

� WEAK REVOKE

� STRONG REVOKE

Execute privilege on these procedures is given to all
administrative roles. We achieve this by introducing
a junior-most administrative role, say GSO (generic
security o�cer), and assigning it the permission to
execute these procedures.

These relations and accompanying procedures and
packages are owned by the DBA. Our implementation
also maintains an audit relation which keeps a log of
all attempted assignment and revoke operations and
their outcome. The audit relation is also owned by the
DBA.

Oracle does not provide convenient primitives for
testing whether or not a user is an implicit member
of a particular role. Testing explicit membership is
straightforward since explicit membership is encoded
as a tuple in Oracle's system relations. To test implicit
membership, however, we need to chase the role hier-
archy. Oracle also does not provide direct support for

enumerating roles in a range set. We built a PL/SQL
package to support these requirements and assist in
writing our stored procedures, as discussed below.

One of the problem we encountered was the inabil-
ity for a stored procedure to determine which roles
have been turned on in a given session. Let us say
Alice is a member of the SSO role in our running ex-
ample. This gives her implicit membership in all ad-
ministrative roles. In RBAC96 Alice should be able
to decide which, if any, of these administrative roles
to turn on in a given session. Oracle allows turn-
ing roles on and o� in this manner. Unfortunately
when Alice invokes a stored procedure there is no
means to determine from within the stored procedure
as to which roles Alice has turned on in that particu-
lar session. This is a major obstacle in implementing
URA97 in Oracle. In fact this problem arises for all
kinds of extensions that could be proposed for Ora-
cle RBAC via stored procedures. The problem arises
because when a stored procedure is created the code
and execution path of queries in the procedure are
compiled and stored within the database. So when
a stored procedure is called it is not possible to de-
termine which roles are turned on in that session be-
cause the Oracle SESSION ROLES view is based on
the current session running and its execution path can
not be prede�ned. The standard Oracle technique for
�nding the roles of a session returns the empty set
if invoked within a stored procedure. We are told
that Oracle is aware of this problem and may have
a �x in future releases. However, in the interim, we
can overcome this problem by using a suitable Ora-
cle GUI front end tool like Oracle Forms or by using
Oracle Call Interface (an API tool). In both cases
we can use IS ROLE ENABLED function to deter-
mine whether a role is enabled and SET ROLE pro-
cedure for enabling a role. These functionalities are
part of an Oracle Package called DBMS SESSION.
Unlike the security behavior of stored procedures, all
the procedures in the DBMS SESSION package are
run with privileges of the invoking user (and not priv-
ileges of the procedure or package owner). We can call
these procedures �rst from a front end tool or Oracle
Call Interface program, enable the proper roles via
IS ROLE ENABLED and SET ROLE, and then call
URA97 procedures for assigning or revoking roles to
a user. Of course, all of this will happen transparent
to the end user.

In our implementation of URA97 a user invokes the
stored procedure to grant or revoke a role from or to
another user. The procedure calls are then as follows.

� ASSIGN(user, trole, arole)

� WEAK REVOKE(user, trole, arole)

� STRONG REVOKE(user, trole, arole)

The parameters user and trole (target role) specify
which user is to be added to trole, or to be weakly
or strongly revoked from trole. The arole parameter
speci�es which administrative role should be applied
(with respect to the user who is invoking the URA97
procedure). We have included the arole parameter
as a partial �x to the obstacle discussed above. The
procedure code will of course check whether or not the
user who calls the procedure is actually a member of
arole.6

All the three procedures follow three basic steps.

1. If the user executing the procedure is an explicit
or implicit member of arole then proceed to step
2, else stop execution and return an error message
indicating this is not an authorized operation.

2. The tuple(s) from can-assign (for assign proce-
dure) or can-revoke (for revocation procedures)
are obtained where AR role value equals or is ju-
nior to the arole parameter speci�ed in the pro-
cedure call.

3. If trole is in the speci�ed range for any one of the
tuples selected in step 2, then assign or revoke the
trole else return an appropriate error message.

In case of ASSIGN also check whether the user
being assigned to trole satis�es the prerequisite
condition speci�ed in the authorizing can-assign
tuple or not.

In case of STRONG REVOKE the operation may
still fail due to all-or-nothing semantics.

The implementation of steps 1 and 3 involves complex
queries built on Oracle internal tables. These queries
are performed dynamically at runtime. In order to
check whether the user is a member of arole (in step
1) and whether the role is in the speci�ed range for
one of the relevant can-assign or can-revoke tuples (in
step 3), we use Oracle CONNECT BY clause in our
queries. By using CONNECT BY clause, one can tra-
verse a tree structure corresponding to the role hier-
archy in one direction. One can start from any point
within the role hierarchy and traverse it towards ju-
nior or senior roles. But there is no control on the end

6It would be relatively straightforward to specify a set of
administrative roles instead of a single arole.

point of the traversal. Speci�c branches or an individ-
ual node of the tree can be excluded by hard coding
their values. Such hard coding is not appropriate for a
general purpose stored procedure. In our implementa-
tion we overcome this problem by performing multiple
queries and intersecting them to get the exact range.
We speci�cally do not hard code any parameters in
our queries.

In order to modularize our implementation we de-
veloped a package which performs the necessary checks
involved in steps 1 and 3. All the procedures call this
package to do the veri�cation. The package contains
several functions. Each one is designed to perform
certain tasks, for example we have a function called
user has admin role. This function takes the param-
eters from the procedure which has called it and re-
turns the results to the calling procedure. There are
other functions which determine the range for a given
arole.

Our implementation is convenient for the DBA
since the stored procedures and packages we provide
are generic and can be reused by other databases. The
DBA only needs to de�ne the roles and administrative
roles, and con�gure the can-assign and can-revoke re-
lations. Our implementation is available in the public
domain for other researchers and practitioners to ex-
periment with.

6 CONCLUSION

In this paper we have developed the URA97 model
for assigning users to roles and revoking users from
roles. URA97 is de�ned in context of the RBAC96
model [SCFY96]. However, it should apply to almost
any RBAC model, including [FCK95, Gui95, GI96,
HDT95, NO95], because user-role assignment is a ba-
sic administrative feature which will be required in
any RBAC model.

Authorization to assign and revoke users to and
from roles is controlled by administrative roles. The
model requires users must previously satisfy a desig-
nated prerequisite condition (stated in terms of mem-
bership and non-membership in roles) before they can
be enrolled via URA97 into additional roles. URA97
applies only to regular roles. Control of membership
in administrative roles remains entirely in hands of
the chief security o�cer. We have identi�ed strong
and weak revocation operations in URA97 and have
de�ned their precise meaning.

The paper has also described an implementation of

URA97 using Oracle stored procedures. Oracle's built
in primitives are cumbersome to use for determining
indirect membership in roles. We have implemented
suitable functions and packages to enable this conve-
niently. These should be of use to other researchers
and practitioners and are available in the public do-
main.

A signi�cant hurdle we encountered is that Oracle
does not allow a stored procedure to determine the
roles that are turned on in a given session. This is
a general problem of Oracle that will arise whenever
we try to extend Oracle RBAC via stored procedures.
In our implementation we require the user to spec-
ify these roles explicitly when the stored procedure is
called. As discussed this could be made largely trans-
parent with a suitable front end. Since most users will
interact with Oracle via such a front end this may not
be a signi�cant problem in practice.

We have extended URA97 to develop more com-
prehensive role-based administrative models encom-
passing administration of role-permission assignment
and role-role relationships [SBC+97]. We will also in-
vestigate how URA97 can be adapted for user-group
assignment on platforms such as Unix and Windows
NT (including simulation of group hierarchies which
neither product provides). More generally we feel our
work will inspire other researchers and developers to
investigate administrative models in a systematic, sci-
enti�c and experimental approach. We feel the secu-
rity community has much to gain by pursuing such
work.

Acknowledgment

This work is partially supported by the National
Science Foundation and the National Security Agency.

References

[BSJ93] Elisa Bertino, Pierangela Samarati, and
Sushil Jajodia. Authorizations in rela-
tional database management systems. In
Proceedings of 1st ACM Conference on
Computer and Communications Security,
pages 130{139, Fairfax, VA, November 3-
5 1993.

[Fag78] R. Fagin. On an authorization mecha-
nism. ACM Transactions on Database
Systems, 3(3):310{319, 1978.

[FCK95] David Ferraiolo, Janet Cugini, and
Richard Kuhn. Role-based access control
(RBAC): Features and motivations. In
Proceedings of 11th Annual Computer Se-
curity Application Conference, pages 241{
48, New Orleans, LA, December 11-15
1995.

[Feu95] Steven Feuerstein. Oracle PL/SQL Pro-
gramming. O'Reilly & Associates, Inc.,
1995.

[FK92] David Ferraiolo and Richard Kuhn. Role-
based access controls. In Proceedings of
15th NIST-NCSC National Computer Se-
curity Conference, pages 554{563, Balti-
more, MD, October 13-16 1992.

[FWF95] Eduardo B. Fernandez, Jie Wu, and Min-
jie H. Fernandez. User group struc-
tures in object-oriented database autho-
rization. In J. Biskup, M. Morgernstern,
and C. Landwehr, editors, Database Se-
curity VIII: Status and Prospects. North-
Holland, 1995.

[GI96] Luigi Guiri and Pietro Iglio. A formal
model for role-based access control with
constraints. In Proceedings of IEEE Com-
puter Security Foundations Workshop 9,
pages 136{145, Kenmare, Ireland, June
1996.

[GSF91] Ehud Gudes, Haiyan Song, and Ed-
uardo B. Fernandez. Evaluation of neg-
ative, predicate, and instance-based au-
thorization in object-oriented databases.
In S. Jajodia and C.E. Landwehr, ed-
itors, Database Security IV: Status and
Prospects, pages 85{98. North-Holland,
1991.

[Gui95] Luigi Guiri. A new model for role-based
access control. In Proceedings of 11th An-
nual Computer Security Application Con-
ference, pages 249{255, New Orleans, LA,
December 11-15 1995.

[GW76] P.P. Gri�ths and B.W. Wade. An au-
thorization mechanism for a relational
database system. ACM Transactions on
Database Systems, 1(3):242{255, 1976.

[HDT95] M.-Y. Hu, S.A. Demurjian, and T.C.
Ting. User-role based security in

the ADAM object-oriented design and
analyses environment. In J. Biskup,
M. Morgernstern, and C. Landwehr, ed-
itors, Database Security VIII: Status and
Prospects. North-Holland, 1995.

[KL95] George Koch and Kevin Loney. Oracle
The Complete Reference. Oracle Press,
1995.

[Lun88] Teresa Lunt. Access control policies:
Some unanswered questions. In Proceed-
ings of IEEE Computer Security Founda-
tions Workshop II, pages 227{245, Fran-
conia, NH, June 1988.

[MD94] Imtiaz Mohammed and David M. Dilts.
Design for dynamic user-role-based secu-
rity. Computers & Security, 13(8):661{
671, 1994.

[NO95] Matunda Nyanchama and Sylvia Os-
born. Access rights administration in role-
based security systems. In J. Biskup,
M. Morgernstern, and C. Landwehr, ed-
itors, Database Security VIII: Status and
Prospects. North-Holland, 1995.

[RBKW91] F. Rabitti, E. Bertino, W. Kim, and
D. Woelk. A model of authorization for
next-generation database systems. ACM
Transactions on Database Systems, 16(1),
1991.

[San97a] Ravi Sandhu. Rationale for the RBAC96
family of access control models. In Pro-
ceedings of the 1st ACM Workshop on
Role-Based Access Control. ACM, 1997.

[San97b] Ravi Sandhu. Roles versus groups. In
Proceedings of the 1st ACM Workshop on
Role-Based Access Control. ACM, 1997.

[SBC+97] Ravi Sandhu, Venkata Bhamidipati, Ed-
ward Coyne, Srinivas Ganta, and Charles
Youman. The ARBAC97 model for role-
based administration of roles: Prelimi-
nary description and outline. In Proceed-
ings of the 2nd ACM Workshop on Role-
Based Access Control. ACM, 1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-
puter, 29(2):38{47, February 1996.

[vSvdM94] S. H. von Solms and Isak van der Merwe.
The management of computer security
pro�les using a role-oriented approach.
Computers & Security, 13(8):673{680,
1994.

[YCS97] Charles Youman, Ed Coyne, and Ravi
Sandhu, editors. Proceedings of the 1st
ACM Workshop on Role-Based Access
Control, Nov 31-Dec. 1, 1995. ACM,
1997.

