
Proceedings of the IFIP WG11.3 Workshop on Database Security,
Lake Tahoe, California, August 11-13, 1997

Title of book. Name of Eds.
© 1997 IFIP. Published by Chapman & Hall

Task-based Authorization Controls
(TBAC): A Family of Models for
Active and Enterprise-oriented
Authorization Management

R. K. Thomas1 and R. S. Sandhu2

1Odyssey Research Associates
Cornell Business and Technology Park,
33 Thornwood Drive, Suite 500
Ithaca, NY 14850-1250, USA. rthomas@oracorp.com

2Laboratory for Information Security
ISSE Department -- MS 4A4
George Mason University
Fairfax, VA 22030, USA. sandhu@isse.gmu.edu

Abstract
In this paper, we develop a new paradigm for access control and authorization
management, called task-based authorization controls (TBAC). TBAC models
access controls from a task-oriented perspective than the traditional subject-object
one. Access mediation now involves authorizations at various points during the
completion of tasks in accordance with some application logic. By taking a task-
oriented view of access control and authorizations, TBAC lays the foundation for
research into a new breed of “active” security models that are required for agent-
based distributed computing and workflow management.

Keywords
Active security models, authorizations-step, composite authorizations, secure
workflows

1 INTRODUCTION

In this paper, we describe a new paradigm for access control and security models,
called task-based authorization controls (TBAC). TBAC is well suited for
distributed computing and information processing activities with multiple points of
access, control, and decision making such as that found in workflow and distributed
process and transaction management systems.
 TBAC differs from traditional access controls and security models in many
respects. Instead of having a system-centric view of security, TBAC approaches
security modeling and enforcement at the application and enterprise level. Secondly
TBAC lays the foundation for a new breed of what we call “active” security
models. By active security models, we mean models that approach security
modeling and enforcement from the perspective of activities or tasks, and as such,
provide the abstractions and mechanisms for the active runtime management of
security as tasks progress to completion. In an active approach to security
management, permissions are constantly monitored and activated and deactivated
in accordance with emerging context associated with progressing tasks (such as in
workflows). Such a task-based approach to security represents a radical departure
from classical passive security models such as those based on one or more
variations of the subject-object view of security and access control. In a subject-
object view of security, a subject is given access to objects in a system based on
some permissions (rights) the subject possesses. However, such a subject-object
view typically divorces access mediation from the larger context (such as the
current state of tasks) in which a subject performs an operation on an object.
 Our focus in this paper is on active security models for authorization management
and access control in computerized information systems. An authorization is an
approval act and manifests itself in the paper world as the act of signing a form.
Typically, in the paper world, an authorization results in the enabling of one or
more activities and related permissions. The person granting the authorization
usually takes responsibility for the actions that are authorized by the authorization.
Also, an authorization, as represented by a signature, has a lifetime associated with
it during which it is considered valid. Once an authorization becomes invalid,
organizations require that the associated permissions no longer be available. As
paper-based systems become computerized, the related authorization procedures
will have to become automated. Thus the TBAC approach described in this paper
was motivated by this anticipated need to automate authorization and related access
controls. In particular, the implementation of TBAC ideas will lead to systems that
provide tighter just-in-time need-to-do permissions especially in application
environments consisting of transactions and workflows (see (Georgakopoulos, 95)
and (Rusinkiewicz, 94)). Also, the TBAC approach leads to access control models
that are self-administering to a great extent, thereby reducing the overhead typically
associated with fine-grained subject-object security administration.

 As mentioned earlier, the most obvious application of TBAC is in secure
workflow management. TBAC enables the granting, usage tracking, and revoking
of permissions to be automated and co-ordinated with the progression of the various
tasks. Without active authorization management, permissions will in most cases be
“turned on” too early or too late and will probably remain “on” long after the
workflow tasks have terminated. This opens up vulnerabilities in systems. Any
attempt to minimize such vulnerabilities will require a security administrator to
keep track of the progress of the tasks for all enacted workflow instances; an error-
prone and impossible task! Thus what is needed is an approach where access
control permissions are granted and revoked according to the validity of
authorizations and one where this can be done without manual security
administration. The authorizations themselves are of course processed strictly
according to some application logic and policy. In the remaining sections of this
paper we will describe how TBAC ideas can be used to accomplish this.
 There are basically two broad objectives guiding our research efforts in TBAC.
The first is to model from an enterprise perspective, various authorization policies
that are relevant to organizational tasks and workflows. We envision a set of user-
friendly tools to help a security officer model and specify policies. Our second
objective is to seek ways in which these modelled policies can be automatically
enforced at runtime when the corresponding tasks are invoked. We limit the
discussion in this paper to the core concepts in TBAC that form our conceptual
framework. Various aspects of our research such as languages to model
authorization policies, as well as, the runtime mapping of these policies to
enforcement mechanisms are topics of ongoing investigation and will be reported in
subsequent publications. We also do not address the TCB-style issues related to
assurance, as our focus at this point is not on implementation.
 Preliminary ideas for TBAC that recognized the need for active security were
presented in (Thomas, 1993) and (Thomas, 1994). More recently, a workflow
authorization model (WAM) was presented in (Atluri, 1996). WAM has the same
general motivation as TBAC in that it tries to provide some notions of active
security and just-in-time permissions. However, from a conceptual standpoint,
TBAC is significantly different and more comprehensive than WAM. In WAM an
authorization is a more primitive concept and represents the fact that a subject has a
privilege on an object for a certain time interval. In TBAC an authorization (step)
has much richer semantics as it models the equivalent of an authorization in the
paper world. An authorization act in the paper world may result in the granting of
several related permissions. Thus in TBAC an authorization-step is a convenient
abstraction to model and manage a set of related permissions. TBAC also provides
features such as usage tracking of permissions, lifecycle management, and the
ability to put permissions temporarily on hold without invalidating them, as well as
modeling sets of authorizations through composite authorizations.

2 BACKGROUND: FROM PASSIVE TO ACTIVE SECURITY

In this section we discuss how TBAC differs from the traditional (passive) subject-
object view of access control.

2.1 The subject-object view of access control

In the subject-object view of access control, the basic entities are subjects, objects,
and the rights subjects possess to gain access to the various objects. This can
conceptually be represented in an access control matrix (Harrison, 1976). The
horizontal and vertical projections of this matrix can be implemented in systems as
capabilities or access control lists, respectively. From the standpoint of security
models, the subject-object view of access control can be traced to the earlier
security models such as the HRU model (Harrison, 1976) and its influence can be
seen even in later work such as the typed access matrix model (TAM) (Sandhu,
1992).
A closer examination of the subject-object view of access control will reveal the
following characteristics.

• The implicit assumption that there is a central pool of resources to which we
need to provide access control.

• Access control information represents isolated units of security information.
• Access mediation is divorced from larger operation context.
• There is no memory of any evolving context associated with past accesses.
• There is no record of the usage of permissions.
• Existing permissions can be revoked but cannot be put on hold.
• Requires fine-grained security administration.

 In summary, the subject-object paradigm of access control takes a very system-
centric view of protecting a central pool of resources. It enforces a very simple
access control discipline which can succinctly be stated as: if a subject has
requested an access operation to an object, and the subject possesses the
permission for the operation, then grant the access. Thus all the access decision
function has to check is if the subject has the required permission. However this
simplicity is precisely the limitation of subject-object access controls. No other
contextual information about ongoing activities or tasks can be taken into account
when evaluating an access request (some attempts at access control frameworks to
overcome this limitation have been discussed in (Abrams, 1990) and (Abrams,
1991). Further, there is no record of the usage of individual permissions. So long as
the permission exists (typically in a structure such as an access control list), the
subject can issue an operation any number of times. We thus consider this to be a
“passive” model of security. Next we discuss how TBAC forms an active approach
to access control.

2.2 TBAC as an active security model for authorizations

We have coined the concept of active security models to characterize models that
recognize the overall context in which security requests arise and take an active
part in the management of security as it relates to the progress and emerging
context within tasks (activities).

Executor

Executor
permissions

Enabled
permissionsTrustee-set

Protection state

Authorization-step

Figure 1. An authorization-step as an abstraction grouping trustees and permissions

Before we elaborate further on TBAC as an active model let us discuss some of the
basic ideas in the TBAC approach.
 One of the most fundamental abstractions in TBAC is that of an authorization-
step. It represents a primitive authorization processing step and is the analog of a
single act of granting a signature in the forms (paper) world. From the standpoint of
modeling, it is an abstraction that groups trustees and various sets of permissions,
as illustrated in Figure 1. In the paper world, a group of individuals may be
potentially allowed to grant a certain type of signature. For example, all sales clerks
may be allowed to sign sales orders. However, a single instance of a signature may
be granted only by a single individual. For example, sales order 1208 is signed by
sales clerk Tom. Similarly, in TBAC we associate an authorization-step with a
group of trustees called the trustee-set. One member of the trustee-set will
eventually grant the authorization-step when the authorization-step is instantiated.
We call this trustee the executor-trustee of the step. The permissions required by
the executor-trustee to invoke and grant the authorization-step make up a set of
permissions called executor-permissions. Also, in the paper world, a signature also
implies that certain permissions are granted (enabled). In a similar fashion, we
model the set of permissions that are enabled by every authorization-step. These
permissions comprise the enabled-permissions set. Collectively, we refer to the
union of the executor-permissions and enabled-permissions as the protection-state

of the authorization-step. Finally, the authority granted by a signature is good only
for a limited period of time. Similarly, we associate a period of validity and a
lifecycle with every authorization-step.

Classical subject-object
access control P ⊆ S Χ O Χ A

TBAC view of access
control P ⊆ S Χ O Χ A Χ U Χ AS

 TBAC extensions

Figure 2. Subject-object Versus TBAC views of access control

 From the standpoint of access control models, Figure 2 illustrates how the TBAC
view of access control differs from classical subject-object access controls. In the
latter, a unit of access control or permission information can be seen as an element
of the cross product of three domains (sets), namely the set of subjects, S, the set of
objects, O, and the set of actions, A. In TBAC, access control involves information
about two additional domains, namely, usage and validity counts, U, and
authorization-steps, AS. These additional domains embed task-based contextual
information.

Figure 3. TBAC as an active security model

workflows,
authorizations
dependencies,
task instances

types

Type-based access control

types,
domains,
roles

access_
decsision

yes/no

activate

deactivate

Instance and usage based access control

P R O T E C T I O N
 S T A T E S
subjects,objects,
permissions

A1

A2

A1

A2

A3

A4

Figure 3 shows the concepts, features, and components that make TBAC an active
security model. These include the following:
• the modeling of authorizations in tasks and workflows as well as the

monitoring and management of authorization processing and life-cycles as
tasks progress;

• the use of both type-based as well as instance and usage-based access control;
• the maintenance of separate protection states for each authorization-step;
• the dynamic runtime check-in and check-out of permissions from protection

states as authorization-steps are processed.

 Every authorization-step maintains its own protection state. The initial value of a
protection state is the set of permissions that are turned on (active) as a result of the
authorization-step becoming valid. However, the contents of this set will keep
changing as an authorization-step is processed and the relevant permissions are
consumed. With each permission we associate a certain usage count. When a usage
count has reached its limit, the associated permission is deactivated and the
corresponding action is no longer allowed. Conceptually, we can think of an active
permission as a check-in of the permission to the protection-state and a deactivation
of a permission as a check out from the protection state. This constant and
automated check-in and checkout of permissions as authorizations are being
processed is one of the central features that make TBAC an active model. Further,
the protection states of individual authorization-steps are unique and disjoint. What
this means is that every permission in a protection state is uniquely mapped to an
authorization-step instance and to the task or sub-task instance that is invoking the
authorization. This ability to associate contextual information with permissions is
absent in typical subject-object style access control models.
 The distinction between type-based and instance and usage-based access control
is also a significant feature of the TBAC model. Type-based access control is used
to encapsulate access control restrictions as reflected by broad policy and applied to
types. Instance and usage-based access control on the other hand, is used to model
and manage the details of access control and protection states (permissions) of
individual authorization instances including keeping track of the usage of
permissions.
 In summary, TBAC differs from traditional passive subject-object models in
many respects by associating the dimension of tasks with access control. First, there
is a notion of protection states, which represent active permissions that are
maintained for each authorization step. The protection state of each authorization
step is unique and disjoint from the protection states of other steps. Each
authorization-step corresponds to some activity or task within the broader context
of a workflow. Traditional subject-object models have no notion of access control
for processes or tasks. Second, TBAC recognizes the notion of a life-cycle and
associated processing steps for authorizations. Third, TBAC dynamically manages
permissions as authorizations progress to completion. This again differs from

subject-object models where the primitive units of access control information
contain no context or application logic. Also, TBAC understands the notion of
“usage” associated with permissions. Thus an active permission resulting from an
authorization does not imply a license for an unlimited number of accesses with
that permission. Rather, authorizations have strict usage, validity, and expiration
characteristics that may be tracked at runtime. In a typical subject-object access
control model, a permission associated with a subject-object pair implies nothing
more than the fact that the subject has the permission for the object. There is no
recognition or monitoring of the usage of that permission. Finally, TBAC can form
the basis of self-administering security models as security administration can be
coupled and automated with task activation and termination events.

3 A FAMILY OF TBAC MODELS

Rather than formulating one simple monolithic model of TBAC we have chosen to
formulate a family of models. Before discussing the models, we first lay out a
framework to guide us in designing the family of models.

3.1 Framework

Our framework consists of formulating a simple model of TBAC called TBAC0 and
using this as a basis to build other models.

TBAC 0

TBAC 1 TBAC 2

TBAC 3

tasks,
authorization-steps,
dependencies

composite-
authorizations

constraints

consolidated
model

Figure 4. A framework for a hierarchy of TBAC models

 Figure 4 shows our framework. TBAC0 is a base model and is thus at the bottom
of the lattice. It provides some basic facilities to model tasks, authorization-steps,
and dependencies relating various authorization-steps. TBAC0 is a very general and
flexible model and is thus the minimum requirement for any system incorporating

task-based authorizations. The advanced models TBAC1 and TBAC2 include
(inherit) TBAC0 but add more features. TBAC1 incorporates the notion of
composite authorizations (discussed shortly) whereas TBAC2 adds constraints.
Finally, TBAC3 is the consolidated model that includes TBAC1 and TBAC2 and by
transitivity TBAC0.

 Formulating such a family of models has many benefits. Researchers and
developers can compare their system implementation of TBAC concepts with this
family of models. Also, a family of models gives developers various choices in
choosing conformance points for their implementations and can thus serve as a
guide and evolution path for additional features.

3.2 The model TBAC0

We will now describe the model TBAC0 in more detail. We describe the various
attributes or components that make up every authorization-step, followed by its
life-cycle, and lastly the dependencies that are used to model authorization policies.

3.2.1 Components of an authorization-step

Every authorization-step has to specify a variety of attributes. We now describe
briefly each of these attributes (components) in turn.

• Step-name: this is the name of the authorization-step.
• Processing-state: The current processing state indicates how far the

authorization-step has progressed in its life-cycle (discussed shortly).
• Protection-state: The protection-state defines all potential active permissions

that can be checked-in by the authorization-step. The current value of the
protection-state, at any given time, gives a snapshot of the active permissions
at the time. Associated with every permission is a validity-and-usage
specification. The validity-and-usage-specification specifies the validity and
usage aspects of the permissions associated with an authorization-step. It will
thus specify how the usage of the permissions will relate to the authorization
remaining valid (or becoming invalid).

• Trustee-set: This contains relevant information about the set of trustees that
can potentially grant/invoke the authorization-step such as their user-identities
and roles.

• Executor-trustee: This records the member of the trustee-set that eventually
grants the authorization-step.

• Task-handle: This stores relevant information such as the task and the event
identifiers of the task from which the authorization-step is invoked.

3.2.2 Processing states and life-cycle of authorizations

As mentioned earlier, an authorization is not static; rather it has a lifetime and a
life-cycle associated with it. In order to better understand the execution aspects of
authorizations, it is useful to consider the various processing states that every
instance of an authorization-step goes through during its life-cycle.
 A simple view of this life-cycle is to consider every authorization-step instance as
going through five states, namely dormant, invoked, valid, invalid, and hold, as
shown in Figure 5. An authorization is dormant when it has not been invoked
(requested) by any task. Once invoked, an authorization-step comes into existence,
and will be processed. If this processing is successful, the authorization-step enters
the valid state. Otherwise, it becomes invalid. In the valid state, all associated
permissions with the authorization are turned on (activated) and thus available for
consumption. From the valid state, an authorization-step will undergo further
processing and eventually reach the end of its lifetime and enter the invalid state.
Also, a valid authorization-step may be put on hold temporarily. When this
happens, all permissions associated with the authorization-step are inactive and
cannot be used to gain any access until this hold is released and the validity
reinstated. Eventually, when an authorization becomes invalid, it ceases to exist,
and is deleted from the system.

term-s

abort-f,
term-f

valid invalid
revoke,
last-use

invoked

renew,
use

suspend reinstate

revoke
hold

dormant

invoke

Figure 5. Basic processing states for an authorization-step

 However, to get a more detailed description of what happens to an authorization
during its lifetime, one can derive a more elaborate state diagram such as that
shown in
Figure 6. This more elaborate state diagram recognizes the dimension of usage of
permissions. A permission that is in the protection state of an authorization-step is
consumed if any action that is enabled by the authorization-step requires the
permission. Every action or request thus decrements the usage count of the

permission. Once the usage limit is reached an action will no longer succeed as
TBAC ensures that the required permission is no longer available.

Figure 6. Detailed processing states of an authorization-step

Figure 6 is a direct refinement of Figure 5. The aborted and started states of
Figure 6 are a refinement of the invoked state of Figure 5. Similarly, the valid, hold
and invalid states of Figure 5 are each refined into a pair of corresponding used and
unused states in
Figure 6.
We describe each of the processing states below.

• Dormant: An authorization-step is in this state if it has not been invoked
by any task. Equivalently, the dormant state can be viewed as one where
the authorization-step does not as yet exist. In particular, the protection
state of the authorization-step is empty.

• Started: Once an authorization-step has been successfully invoked, it
enters this state where processing begins.

• Aborted: The aborted state is in many ways similar to dormant except that
a failed attempt to start the authorization-step was made in this case.

• Valid-unused: Once an authorization-step has been started subsequent
successful processing will transition it into the valid-unused state.

• Valid-used: If an authorization was in a valid-unused state, and it is
subsequently used or consumed, then it enters the valid-used state.
Depending on policy, an authorization may be used multiple times before
it enters the invalid state.

dormant

aborted

started

invalid
unused

start-s

start
ter

m-f

re
vo

ke

term-s valid
unused

valid
used

renew

hold
unused

invalid
used

use,
renew

revoke,
last-use

hold
used

suspend-
unused

reinstate-
unused

suspend-
used

reinstate-
used

use

start-f

abort-f

revoke

revoke

start-f

last-u
se

• Invalid-unused: This state is entered if certain conditions for an
authorization to be valid are not met upon termination or if the
authorization had entered the valid-unused state and was subsequently
revoked.

• Invalid-used: This state is entered either as a result of a last-use transition
from the valid-unused state or as a result of a revoke or last-use event
(transition) from the valid-used state.

• Hold-unused: In this state the unused authorization is temporarily
suspended. All associated permissions will thus be inactive.

• Hold-used: The authorization is temporarily suspended. All associated
permissions will thus be inactive.

We now informally state some properties about authorization-steps.
Property 1. Executor Assignment. For every authorization-step, as, the executor-
trustee (ET) component is null until as transitions into the “started” state.
Property 2. Non-replaceable Executor. Once an executor trustee is assigned to an
authorization-step, it is fixed for the entire lifetime of the step.
Property 3. Disjoint Protection States. The protection states associated with
various authorization-steps are disjoint. Thus every authorization-step instance has
a unique protection state. Thus given a set of authorization-steps a1, a2, …ak, and
their respective protection states, p1, p2, …pk, the intersection of two or more of
these states will be empty.

3.2.3 Basic dependencies to construct authorization policies

In the previous sections, we discussed authorization-steps. However, in any
application or workflow logic, authorization steps do not stand in isolation. Rather,
they are often related and dependent on each other due to policy implications. We
now discuss various dependencies and constructs that relate authorization-steps to
each other and constrain their execution and behavior. These dependencies can thus
be used to formulate enterprise-oriented authorization policies.
 We specify dependencies in terms of existential, temporal, and concurrency
relationships that hold between events (or states resulting from the occurrence of
events).

We list the dependency types and their meanings (interpretations) below.

1. A1
state1

 → A2
state2

 : if A1 transitions into state1, then A2 must also
 transition into state2.

2. A1
state1

 < A2
state2

 : if both A1 and A2 transition into states
state1 and state2 respectively, then A1’s
transition must occur before A2’s

3. A1
state1

 # A2
state2

 : A1 cannot be in state 1 concurrently when
A2 is in state2.

4. A1
state1

 ||| A2
state2

 : A1 must concurrently be in state1 when A2 is
 in state2.

 The first two dependency types → and < express existential and temporal
predicates and as such are best interpreted as predicates between transition events
that lead to changes in the processing states of authorization-steps. They were
originally proposed by Klein in (Klein, 1991) to capture the semantics of database
transaction protocols. The other dependencies express concurrency properties.

Having discussed TBAC0, we now highlight the ideas in the models TBAC1 and
TBAC2. Due to space constraints, our discussion here is brief.

3.3 The model TBAC1 to support composite authorizations

The model TBAC1 supports the notion of composite authorizations. A composite
authorization is an abstraction that encapsulates two or more authorization-steps.
This is convenient when an authorization-step is too fine-grained a unit to express
authorization requirements at a high (abstract) level.
 For example, consider the authorization to transfer funds from one bank account
to another. Such an action typically requires two authorizations. The first
authorization is for withdrawal of funds from the source account and the second to
deposit funds into the target account. However, it is useful for modeling purposes to
think of a more composite abstraction called “authorize-transfer” that consists of
the individual authorization-steps.
 Thus a composite-authorization consists of a set of component authorization-
steps. These component authorization-steps can be related to other steps within the
same composite-authorization through various dependencies. In other words, the
authorization-steps of a composite-authorization are not visible externally to other
authorization-steps outside the composite-authorization. The motivation for this
restriction comes from a desire to follow sound software-engineering principles,
especially those related to encapsulation and information hiding. Thus to the
external world, a composite-authorization is a single abstraction.
 Collectively, the above properties and restrictions impose different semantics
during the lifetime of a composite-authorization. In particular, we have to
reexamine the notions of when we consider a composite-authorization to be started,
valid, and invalid. We approach these issues by associating a critical-set of
component authorization-steps with every composite-authorization. The critical-set
is a subset of the total number of component authorization-steps. We consider a
composite-authorization to have started when any member of the critical-set has

reached the started state. To be considered valid, all steps in the critical-set have to
reach their respective valid states. On the other hand, a composite-authorization is
considered invalid as soon as any step in the critical-set becomes invalid.
 In addition to the validity associated with the critical-set, a composite-
authorization may declare other non-critical-sets of authorization-steps to capture
additional states of validity. However, these other sets can become valid only when
the critical-set itself is valid and can remain valid only as long as the critical-set
remains valid. Collectively, the critical-set along with the various non-critical sets,
define progressive states (checkpoints) of validity. The specification of a critical-set
within a composite-authorization should thus be done with careful thought given to
some minimal notion of validity that ensures consistency with authorization
policies for the enterprise.

3.4 The model TBAC2 and constraints

As mentioned earlier, TBAC2 supports more advanced notions of constraints. Thus
TBAC2 would be more suitable for an organization that finds TBAC0 to be too
open-ended or not having tight enough controls.
 We classify constraints as static or dynamic constraints. Static constraints are
those that can be defined and enforced when authorization-steps are specified.
Dynamic constraints on the other hand, are those that can be evaluated only at
runtime as authorization-steps are being processed.
 In TBAC2 the basic structure of an authorization-step has two components in
addition to TBACo. We describe these below.

• Start-condition (SC). This component can be used to specify a rich set of
constraints that govern whether an authorization-step can transition into the
started state.

• Scope (SP). This component controls the visibility of an authorization-step
with respect to other authorization-steps when formulating and enforcing
authorization policies. Thus scope can be used to control if an authorization-
step is visible to an entire workflow, a task, or other finer units such as sub-
tasks.

 We are currently investigating other static constraints for authorization-steps such
as those on the processing states, protection states, trustee-sets, and executor
permissions.
 The most obvious examples of dynamic constraints are those involving dynamic
separation of duties/roles and coincidence of roles. By keeping track of the executor
trustees of invoked authorizations and combining the notions of dependencies and
scope, the TBAC2 model can be used to provide a much more powerful and general
approach to specifying separation of duties requirements than transaction control
expressions (proposed in (Sandhu, 1988)). Further, by utilizing the notion of scope,

TBAC can specify that a dynamic separation of duties requirements hold across the
scope of a sub-task, task, or other coarser units such as an entire workflow.

4 CONCLUSIONS AND SUMMARY

We have described an active approach and a family of models for authorization
management, collectively called task-based authorization controls (TBAC). Our
approach differs from passive subject-object models in many respects. Permissions
are controlled and managed in such a way that they are turned-on only in a just-in-
time fashion and synchronized with the processing of authorizations in progressing
tasks. An authorization-step is a fundamental abstraction in TBAC and is used to
group and manage a set of related permissions. To enable this, TBAC supports the
notion of a lifecycle for an authorization-step. Further, TBAC keeps track of the
usage and consumption of permissions, thereby preventing the abuse of permissions
through unnecessarily and malicious operations. TBAC provides for the modeling
of enterprise-oriented authorization policies using dependencies that relate
authorizations according to some enterprise policy. To demonstrate our ideas we
are currently building a prototype which will be reported in future publications.
 We are currently investigating several issues. The consolidated model TBAC3

needs further examination. In particular, the interaction of composite-authorizations
from TBAC1 and constraints from TBAC2 requires further study. We are also
looking at formulating higher level modeling constructs for authorizations that can
be composed from the four types of dependencies mentioned in the paper. For
example, it might be useful to have a construct to express atomicity semantics on
the validity of a set of authorizations. Also of interest is a framework to cohesively
model and understand various constraints. From the standpoint of building end user
tools, we are collaborating with the Universities of Pittsburgh and Salerno and
exploring various aspects of visual languages (Chang, 1991) including various
visual metaphors and related policy grammars to express authorization policies.
The mapping of policy sentences to dependencies and various security rules that
will be automatically incorporated into workflow task definitions is also under
investigation. Also under investigation are issues related to the delegation and
revocation of authorizations and their related permissions.

Acknowledgment
This research was partly funded under DARPA contract F30602-95-C-0285. We
are grateful to Teresa Lunt and Gary Koob for their support and encouragement.

5 REFERENCES

Abrams, M., Eggers, K., LaPadula, L., and Olson, I. A Generalized Framework for
Access Control: An Informal Description, Proceedings of the 13th NIST-
NCSC National Computer Security framework, 1990, pages 135–143.

Abrams, M., Heaney, J., King, O., LaPadula, L., Lazear, M., and Olson, I.
Generalized Framework for Access Control: Toward prototyping the Orgcon
Policy, Proceedings of the 14th NIST-NCSC National Computer Security
framework, 1991, pages 257–266.

Atluri V., and Huang, W. An Authorization Model for Workflows, Proceedings of
the Fourth European Symposium on Research in Computer Security, Rome,
Italy, September pages 25–27, 1996.

Bell, D.E. and LaPadula, L.J. Secure Computer Systems: Unified exposition and
multics interpretation. EDS-TR-75–306, Mitre Corporation, Bedford, MA,
March 1976.

Chang. S.K. et. al. Visual-Language System for User Interfaces, IEEE Software,
March, 1995.

Georgakopoulos, D., Hornick, M. and Sheth, A. An Overview of Workflow
Management: From Process Modeling to Workflow Automation
Infrastructure, Distributed and Parallel databases, Vol. 3, pages 119–153,
1995.

Harrison, M.H., Ruzzo, W.L. and Ullman, J.D. Protection in Operating Systems.
Communications of the ACM, 19(8), pages 461–471, 1976.

Klein, J. Advanced Rule Driven Transaction Management. Proceedings of the
IEEE Compcon Conference, 1991.

LaPadula, L.J. and Williams, J.G. Towards a Universal Integrity Model.
Proceedings of the IEEE Computer Security Foundations Workshop, New
Hampshire, IEEE Press, 1991.

Rusinkiewicz, M. and Sheth, A. Specification and Execution of Transactional
Workflows, In Modern Database Systems: The Object Model,
Interoperability, and beyond, W. Kim, Ed., Addison-Wesley / ACM Press,
1994.

Sandhu, R.S. Transaction Control Expressions for Separation of Duties,
Proceedings of the Fourth Computer Security Applications Conference, pages
282–286, 1988.

Sandhu, R.S. The Typed Access Control Model, Proceedings of the IEEE
Symposium on Research in Security and Privacy, Oakland, CA, May 1992,
pages 122–136.

Thomas, R.K. and Sandhu, R.S. Towards a Task-based Paradigm for Flexible and
Adaptable Access Control in Distributed Applications. Proceedings of the
Second New Security Paradigms Workshop, Little Compton, Rhode Island,
IEEE Press, 1993.

Thomas, R.K. and Sandhu, R.S. Conceptual Foundations for A Model of Task-
based Authorizations. Proceedings of the IEEE Computer Security
Foundations Workshop, New Hampshire, IEEE Press, 1994.

