
Proceedings of the 7th IEEE Computer Security Foundations Workshop,
Franconia, NH, June 1994, pages 66-79

Conceptual Foundations for a Model of Task-based
Authorizations�

Roshan K. Thomas and Ravi S. Sandhuy

[6pt]Center for Secure Information Systems
&

Department of Information and
Software Systems Engineering
George Mason University
Fairfax, VA 22030-4444

ABSTRACT

In this paper we describe conceptual foundations to address integrity is-
sues in computerized information systems from the enterprise perspective.
Our motivation for this e�ort stems from the recognition that existing
models are formulated at too low a level of abstraction, to be useful for
modeling organizational requirements, policy aspects, and internal con-
trols, pertaining to maintenance of integrity in information systems. In
particular, these models are primarily concerned with the integrity of
internal data components within computer systems, and thus lack the
constructs necessary to model enterprise level integrity principles. The
starting point in our investigation is the notion of authorization functions
and tasks associated with business activities carried out in the enterprise.
These functions identify the authorization requirements while the autho-
rization tasks embody the concepts required to carry out such authoriza-
tions. We believe a model of task-based authorizations will bridge the
existing gap between low-level models and very high level ones looking at
integrity from a purely organizational and sociological perspective devoid
of any direct links to computerized systems. The work described here is
preliminary and conceptual in nature, but is a necessary prerequisite for
the eventual development of a formal model.

�To appear in the proceedings of the IEEE Computer Security Foundations Workshop VII, June

14-16, 1994, Franconia, New Hampshire. All correspondence should be addressed to Ravi Sandhu,

ISSE Department, George Mason University, Fairfax, VA 22030.
yThe work of both authors is partially supported by the National Security Agency through

contract MDA904-92-C-5140. We are grateful to Nathaniel Macon, Howard Stainer, and Mike Ware

for their support and encouragement in making this work possible.

1

1 Introduction

Over the last two decades, we have continued to witness the computerization of or-
ganizational functions and information-related services in modern organizations. As
such, information has become the lifeline of many organizations and can be used
directly for competitive advantage. These trends have all contributed to informa-
tion and computer security being a signi�cant concern among information system
managers.

While considerable advances have been made over the last few years in the devel-
opment of computer security models, a retrospective analysis of these developments
would reveal that they have not kept up with the emerging needs and paradigms
of computing today. In particular, these models reect a bias towards a centralized
notion of computing, and as such, security objectives are couched in terms of the pro-
tection of a centralized pool of resources within a computer. In essence, the overriding
concern has been the �ne-grained protection of individual objects and subjects in the
system. The problem with this approach, of course, is that while it may form a rea-
sonable basis for a computer security model, it lacks the concepts and expressiveness
of an information-oriented model that captures the organizational and distributed
aspects of information usage.

In this paper our focus is mostly on the provision and maintenance of integrity
in information systems. We are particularly interested in the integrity issue from an
enterprise perspective. We recognize that integrity issues and the design of integrity
mechanisms, have lately received a great deal of attention among researchers. In this
workshop last year, Sandhu summarized the various de�nitions of integrity that have
been reported in the literature [17]. Interest in integrity area seems to have been
sparked o� by the well-known paper of Clark and Wilson [6]. Many researchers today
are in agreement with the central point of the paper which can be stated briey as
follows: In commercial data processing environments, the primary concern is the as-
surance of integrity rather than improper disclosure. Integrity in this context involves
the prevention of fraud and errors particularly in the management and accounting of
corporate records and assets.

The justi�cation for further investigating integrity issues can be attributed to
many observable needs and trends in computing today. In particular, the increased
automation of organizational functions and workows, and the subsequent need to
computerize information systems that often have distributed processing needs. In-
creased automation always carries it with the risk of weakened controls, especially
when human judgement and paper-based checks and balances are taken out of the
loop. The emergence of multisystem applications and information-related services
that cross departmental and organizational boundaries, call for modeling constructs
and integrity mechanisms beyond those existing for centralized systems.

Even a cursory look at modern organizations would reveal them as complex webs of

2

activities (tasks) that often span departmental and organizational boundaries. Tasks
are authorized and initiated by users in accordance with their roles, responsibilities,
and duties (obligations) in the organization. One can view an organization as a
system that is required to maintain a certain state (or standard) of integrity. Orga-
nizational procedures and internal controls then have to ensure that the tasks carried
out in the organization preserve such a state of integrity. Now when we computerize
organizational functions, we are faced with the problem of maintaining the required
integrity in our computer-based information systems.

In light of the above, we advance in this paper, the notion of task-based autho-
rizations (TBA) �rst introduced by the authors in [19]. Task-based authorizations
are concerned with the modeling and management of the authorizations of tasks
(activities) in information systems. Our obvious objective is the preservation of in-
tegrity. This is because unauthorized activities lead to the unauthorized modi�cation
of information which in turn a�ects the integrity of the system. In a paper-based
system, authorizations manifest as signatures on documents propagating through the
organization. The analog to this in a computerized information system would be
digital signatures on electronic documents. As such, we believe that task-based au-
thorizations are central to the successful evolution of the concept of the \paperless
o�ce".

The e�ort described in this paper is by no means meant to be complete or com-
prehensive. The primary objective is to present our preliminary ideas so as to stir
up discussion on richer integrity models. We consciously resist the temptation to
prematurely formalize the concepts or build a formal model. We anticipate that this
line of work will eventually lead to a formal model. However, we must �rst develop
the conceptual foundations for such a model.

The rest of this paper is organized as follows. The next section covers some back-
ground material on security requirements modeling and paper-based internal controls.
Section 3 motivates the notion of authorization functions and task-based authoriza-
tions by way of an example and presents some of the issues involved in developing
a model. Section 4 introduces various modeling constructs for specifying task-based
authorizations and illustrates their use by modeling an application. Finally, section
5 concludes the paper.

2 Background

In this section we give the necessary background required to understand the scope, as
well as the issues, addressed in the paper. We begin by discussing the di�erent levels
of abstraction that are available in approaching security requirements and models.
This is followed by a discussion of paper-based controls.

3

2.1 Security Requirements and Models

One can view the security requirements of a system at di�erent levels of abstraction.
In a paper presented at the Computer Security Foundations Workshop in 1991 [12],
LaPadula and Williams gave a useful layered taxonomy of stages, where the security
requirements at higher stages are successively re�ned and elaborated at lower stages.
Starting with the highest stage, these include:

1. Trust Objectives: The basic objectives to be achieved by a system.

2. External-Interface Requirement: This speci�es the system's x interface to the
environment, in terms of the security requirements.

3. Internal Requirements: Speci�es requirements that must hold within the com-
ponents internal to a system.

4. Rules of Operation: These rules explain how internal requirements are enforced.

5. Functional Design: This is a functional description of the behavior of system
components.

The security requirements of a system at stages 1 and 2 above, are at a much higher
level of abstraction than those at stages 3, 4, and 5. The higher stages specify what
needs to be done, and these get re�ned into detailed executable speci�cations that
deal with how things are to be done. The higher stages thus involve people-oriented
policies and requirements while the lower ones are more computer-oriented.

Given the above stages of elaboration, it is possible to formulate security models
for each of these stages, as well as classify existing models as to where they belong.
In fact, it is possible to derive a related taxonomy of security models for the above
stages (see �gure 1). At the highest level we have models to capture organizational
policy and requirements that pertain to security. These requirements are then applied
to the interface between the organization and the computer system and captured by
computer policy models. Computer policy models in turn are implemented by access
control models, which in turn map to implementation models, and so on.

As observed in [7, 8] most research and development in security models have been
primarily aimed at specifying and implementing internal requirements and related
rules of operation. Consequently, there is a mature body of literature on access
control and implementation models. The Bell-LaPadula model for multilevel security
[4], the HRU model [11], and the typed access matrix model (also called TAM) [18]
all fall into this category.

However, models at higher stages are fewer and much of the research is still at its
infancy. In the category of models that capture external-interface requirements, the
non-interference model proposed by Goguen and Meseger in [10] was the �rst fully
de�ned model. The original formulation of non-interference was in the context of

4

Organizational Requirements

Computer policy models

Access control models

Implementation models

1

2

4

3

5 ???

(Computer-oriented)

STAGES OF

ELABORATION

(People-oriented)

What needs to be done?

How to do it?

Figure 1: A taxonomy of models

deterministic systems. Subsequently, a number of researchers have developed similar
abstract models for information ow in non-deterministic systems [9, 13, 14].

Security models for the �rst stage of elaboration in the taxonomy of �gure 1 are by
far the least developed and perhaps the most crucial. Some promising initial e�orts
have been reported in [7, 8]. The starting point for this approach is the analysis of
the various responsibilities and obligations in the organization. This would lead to
a better understanding and account of the authorization functions and structures in
the organization.

Given such a taxonomy of security models, where would a model of task-based
authorizations �t in? We argue that task-based authorizations are an attempt to
formulate integrity models to bridge the gap between the internal requirements and
higher stages of elaboration. We would like to think of our approach as one that lies
above the internal-requirements stage, and perhaps approaching the second-stage of
elaboration; i.e., that of external-interface requirements. Hence a model of task-based
authorizations falls under the category of computer policy models shown in �gure 1.

In concluding this section we briey discuss the limitations of existing integrity
models. The model of Biba [5] is essentially a lattice-based model of information ow.
Such a model is clearly inadequate to express complex integrity requirements. The
model of Clark and Wilson [6] utilizes the notions of transformation procedures (TP's)

5

TRANSACTIONS

and Integrity

PERSISTENT

 OBJECTS

Limited

Separation of

Duties

of Duties

Strict Separation

Data Abstraction

 OBJECTS

TRANSIENT
USERS

Figure 2: Illustrating an activity model of paper-based controls

or transactions, and constrained data items (CDI's). However these are too low level
abstractions. Thus we cannot, for example, capture integrity policies which call for
sequences of TP's. The model also su�ers from the drawback of mixing several levels
of abstraction. Thus we have TP's and CDI's which are computer-based abstractions
alongside notions of veri�cation which require organizational and user involvement.

The model de�ned by Badger in [3] is an attempt to improve on the limitations
of the Clark-Wilson model, and recognizes that integrity policies occur at multiple
granularities. In particular it is able to express more semantics and structure (such as
that of nested transactions) among transformation procedures. Finally the model of
Sandhu [15, 16] based on transaction control expressions is able to capture linear se-
quences of transformation procedures. However, it also has additional abstractions to
model paper-based internal controls. All the models above su�er from a bias towards
mechanism-oriented abstractions. The work reported in this paper is an attempt
to generalize, as well as transcend, all these models by seeking more speci�cation-
oriented (as opposed to mechanism-oriented) constructs.

2.2 Paper-based Controls

6

In any organization, the task of counteracting risks involved in doing business falls
under the purview of internal controls. Examples of such risks include fraud, sabotage,
embezzlement, to name a few. In addressing the integrity issue in our context, we are
particularly interested in controls that safeguard corporate assets and preserve the
integrity of accounting data. These include controls on the authorization, creation,
and execution of transactions, requirements for separation of duties, procedures for
recording and processing transactions, procedures for verifying the accuracy of data
collected, to name a few. The accounting profession recognizes many other accounting
and auditing principles. Details of these can be found in publications such as [20].

In exploring integrity models, it is helpful to look at paper-based controls in
manual systems. In such systems transactions are initially captured on source doc-
uments. Examples of such documents include deposit slips and sales order forms.
These documents can be used to implement many controls. Consider for example the
authorization of transactions. This is achieved in general on a case-by-case basis by
requiring each source document to be authorized. The authorization itself manifests
in the form of entries such as signatures and authorization codes. Source documents
also provide useful information for the veri�cation of data, for constructing audit
trails, and for recovery in the event that processed data is lost.

Unlike their manual counterparts, transaction processing in computerized infor-
mation systems often do not involve source documents in the loop. For example, with
electronic data capture, many systems bypass source documents. This can lead to
the weakening of many controls. Thus in order to get a grip on the many integrity
issues, we believe it is a good idea to apply the principles of internal paper-based
controls in computerized systems. The work reported in [15, 16] is an attempt in this
direction and presents a model and notation for this purpose. The intuition behind
this approach is illustrated in �gure 2 and centers around the notions of transient and
persistent objects. Transient objects include documents such as vouchers, purchase
orders, sales slips, to name a few. These objects are transient in nature in the sense
that they issue a �nite set of operations and then leave the system (in a paper world
this happens when a form is archived). These operations eventually a�ect persistent
objects such as inventory databases, and bank accounts. The fundamental idea is to
enforce controls primarily on the transient objects, and for transactions to be exe-
cuted on persistent objects only as a side e�ect of executing transactions on transient
objects.

To incorporate internal controls such as separation of duties, the model intro-
duces the notation of transaction control expressions. Consider a check processing
application where a clerk has to prepare a check and assign an account, followed by
three (separate) supervisors who have to approve the check and account, and �nally
the check is to be issued by a di�erent clerk (in the paper world, this would be ac-
complished trough a voucher). This can be represented by the following transaction
control expressions:

7

prepare � clerk;
3: approve � supervisor;
issue � clerk;

The colon is a voting constraint specifying 3 votes from 3 di�erent supervisors. Each
expression consists of a transaction and a role. Separation of duties is achieved by
requiring the users who execute di�erent transactions in the transaction control ex-
pression be all distinct.

In summary transaction control expressions are a good starting point in attempt-
ing to mimic paper-based controls. They provide support for linear sequences of
authorizations, and for controls based on separation of duties and multiple approvals.

3 Task-based Authorizations

In the last section we motivated the need for more abstract models to capture
integrity requirements at the enterprise level and discussed the usefulness of paper-
based control principles in computerized information systems. With that background,
we now turn our attention to the central theme of this paper, the modeling and
management of task-based authorizations.

3.1 Authorization Functions and Tasks

As mentioned earlier, task-based authorizations are concerned with the management
of authorizations of activities. The need for authorizations arises from the existence of
authorization functions alongside business activities carried out in the enterprise. In
fact, to be more precise, task-based authorizations are concerned with the execution
and management of authorization functions. To illustrate the role of these functions,
let us consider the classical example of sales-order processing. The document ow for
such an application is shown in �gure 3.

Processing is initiated with the receipt of a requisition order at the requisition
o�ce of the university. The authorization function here involves veri�cation and au-
thorization of the details (terms) of the requisition such as the quantity ordered, price
per unit, vendor, and availability of funds. After this step, the requisition order is sent
to the sales department of the associated vendor(s). In this process the requisition
activity now crosses organizational boundaries. On receipt of the requisition order,
the sales department now has to generate a sales-order. The authorization function
now has to do with the terms of the sales. This may include among other things
negotiation and approval of discounts and delivery dates. The sales-order document
then propagates through several departments in the vendor organization. Each de-

8

SALES

ORDER

SALES

ORDER

SALES

ORDER

SALES

ORDER

SALES

ORDER

SHIPPING

SLIP

INVOICE

INVOICE

SHIPPING

SLIP

SALES

REQUISITION

ORDER

CREDIT

FINISHED

GOODS

SHIPPING

(goods-removal)

ACCOUNTS

RECEIVABLE /

BILLING

(billing and collection)

(credit-terms)

(sale-terms)

Organizational

Boundary

ACCOUNTS
PAYABLE

(payment)

UNIVERSITY

REQUISITION

(shipping-terms)

(goods-receiving)(requisition-terms)

RECEIVING

Figure 3: Authorization functions in a sales-processing application

9

partment involves a di�erent authorization function. Thus the credit department
undertakes a credit check and approves (or disapproves) of the credit rating of the
customer, followed by the �nished goods department's approval of the removal of
goods from the warehouse, which in turn is followed by the authorization at the ship-
ping department to ship the goods transferred from the warehouse. Finally the billing
department is authorized to collect payment and the receiving department authorized
to receive/collect the shipped goods for delivery to the customer who originated the
requisition.

An understanding of the interaction between transaction cycles and authorization
functions is crucial to building a model of task-based authorizations. In particular,
the outcome of authorization functions have direct consequences on the completion
of transactions as dictated by policy. Thus a vendor may decide not to continue with
a sales order transaction if the authorization function returns a poor credit rating
for the customer, since doing so would involve taking risks that may a�ect future
cash ows. In addition, authorization functions may be of varying complexity. In
a paper world, the simplest case would be an authorization that requires a single
signature. More complex forms may require multiple approvals (signatures), such as
when approval from multiple warehouse managers are required to transfer all goods
to the shipping department.

It is worthwhile to see how the above ideas map to the modeling of responsibilities
and obligations in the framework of [7, 8]. In examining the sales-processing appli-
cation, we observe that the outcome of the authorization functions creates a network
of responsibilities and obligations as mentioned in [7, 8]. Thus the authorization of
the sales-order makes the sales department \responsible" for ful�lling the sales-order.
This indeed is the main function of such a department. However, to ful�ll this re-
sponsibility the sales-department or sales-agent may transfer associated obligations to
other agents. These obligations create new responsibilities. Thus the �nished-goods
department takes responsibility for the goods removed from the warehouse, while the
shipping department accepts responsibility for the condition and safety of the shipped
goods.

In summary, each authorization function is a point in a network where responsibil-
ities are accepted, and one from which associated obligations are discharged and new
responsibilities created. Thus authorization functions could be the proper abstraction
or boundary object that glues an organizational model based on responsibilities to a
more computer-oriented model (at the second stage of elaboration) such as task-based
authorizations.

3.2 Issues

In this section we consider the numerous issues that arise in the development of a
model of task-based authorizations.

10

� Abstraction and Composition
One of the �rst issues that arises is that of abstraction and modeling. What is
the proper abstraction to specify and manage authorization functions and tasks.
We propose the abstraction of an authorization-task-unit to model the autho-
rizations associated with every authorization function. Such an authorization
unit may be composed of other smaller units called called approval-steps (this is
analogous to the composition of functions). These smaller units map to the in-
dividual approval steps required to complete the processing of an authorization
function.

� Dependencies
Any model of authorizations must have the expressive power to model the de-
pendencies between authorization-units as well as those internal to an autho-
rization unit. These dependencies arise due to the structural and semantic
properties of the responsibilities and activities in the enterprise. There exists
various kinds of dependencies. Some of these are identi�ed below.

{ Temporal
Here we are concerned with dependencies that constrain the temporal order
of the execution of authorizations. Consider an application that requires
three approvals (signatures) S1; S2; S3. Organizational policy may require
the following dependencies to be enforced:
(a) S2 cannot be granted until S1 has been granted;
(b) S3 cannot be granted until both S2 and S3 have been granted.

In our sales processing application, the sales-order is allowed to progress
only after the credit manager in the credit department signs o� on the
order.

It is clear that we have to address issues related to both the speci�cation
and enforcement of dependencies.

{ Semantic
Here we are interested in dependencies that arise from the semantics of
the application. For example, seeking authorization to transfer funds be-
tween two accounts may semantically imply the need for authorizations to
withdraw from the source account as well as deposit in the target account.
How can such a semantic unit be expressed and managed?

{ Atomic
We may require the granting of a certain group of authorizations to be
atomic. In other words, if one of the authorizations in a group is not
granted, we may wish that others in the group to be not granted as well
since we want the system to be una�ected by the entire group. The atomic-
ity requirement may directly follow from the semantics of the application,

11

and its implementation may require interactions with revocation mecha-
nisms. Is there an analog to the atomic transaction in the realm of autho-
rizations? One could think of the abstraction of an atomic-authorization-
task-unit that guarantees atomicity of authorizations internal to it.

� Incorporation of controls
What are the proper constructs and mechanisms needed to specify and enforce
internal controls such as separation of duties, multiple approvals, and rotation
of assignments? A general model must support such controls both within, as
well as across, authorization-task-units.

� Delegation and revocation
In our sales-processing example, the vendor organization might upgrade the
credit rating required of its customers, and as a result, the credit authorization
on a sales order may be revoked if a customer fails to meet this new cuto�. In
other words, the credit manager is now no longer willing to take responsibility for
such a customer. Examples of this call for appropriate delegation and revocation
mechanisms.

� Authorization expirations
In the paper world, a signature on a form has validity only for a certain period.
In other words, the authorization has an expiration date. If an authorization
expires, the related activities may have to be cancelled, and other authoriza-
tions whose validity is conditional on the expired authorization, may have to be
revoked. We are thus faced with issues related to the modeling and implemen-
tation of expirations.

� Authorization deadlines
There exists scenarios in organizations where an authorization may have to
be obtained within a deadline. For example, a manager responsible for giving
approvals may be available only for certain hours during the week, or may be
going on vacation for the next two weeks. In this case, we may want to associate
deadlines for the obtaining of authorizations so as to meet customer needs in
time. Such deadlines will in turn directly impact the scheduling priorities of
authorization-tasks.

� Failure and Exception handling
If a certain authorization is not forthcoming, how do we specify alternate autho-
rizations? Also how do we specify exceptions to general policy? For example, a
new customer may not have any established credit and the organizational policy
may call for the approval of the customer's sales order so long as it does not ex-
ceed a certain amount. Another example is when a manager is unavailable, and
we wish to specify that someone else be allowed to authorize on the manager's
behalf.

12

� Deadlocked authorizations
Is it possible for authorization-tasks to become deadlocked? If this happens,
does it imply that there is something wrong with the authorization and respon-
sibility structures of the organization?

The above list is not meant to be a complete one, but rather to be indicative of
the complexity involved in formulating and implementing a model. It should also be
clear that some of the issues listed are related to speci�cation and modeling, while
others (such as deadlocks) are related to implementation.

In comparing the above list to transaction control expressions (TCE's) [15, 16] and
Badger's model [3], we see that they provide support to express limited dependencies.
Thus TCE's can express only linear dependencies while Badger's model can express
nested (hierarchical) structures. TCE's also provide separation of duties only within
individual transient objects. It is not clear how Badger's model can be linked to
enterprise level requirements and policies. Neither of these models provide constructs
to express authorization deadlines and expirations.

4 Groundwork for Building a Model

In this section we develop the basic building blocks required to construct a model of
task-based authorizations. Our purpose is not to introduce a formal model (or the
machinery for this) as doing so would be premature at this point. It is also important
to bear in mind that we are not describing mechanisms (the how), rather the concepts
(the what) for which mechanisms would have to built later.

4.1 Basic Modeling Constructs

The basic modeling constructs in our model are listed below. An application is built
using authorization-task-units which in turn are composed of individual approval-
steps. The various task-units and approval-steps in an application are related to each
other through dependency speci�cations.

� Authorization-task-unit(task-name):
Each authorization task contains the following �elds:

{ Originating-function:function-name

{ Attributes: Atomic, Expiration, Deadline

{ Dependency Speci�cations:f g

{ Approval-steps:f g

13

...

...

Temporal-dependency Authorization/approval T2 cannot be granted until

T1 has been successfully granted

Failure-dependency T1 T2

Separation-with-role-

substitution

 Behavioral :

Structural :

Atomic-auth-task-unit

Auth-task-unit

Approval-step

Separation-dependency

Constructs
Representation

Graphical
Explanation

Revoke/delegate-on-failure

function and consists of one or more individual

approval steps.

An authorization-task-unit maps to an authorization

This is an authorization-task-unit with the

requirement that the granting of all approval-steps

defined within it be atomic.

This is the most primitive construct in the model and

represents an individual signature/approval step

r,d{ }

h

T2

T1 T2

T2

T2

T1

T1

T1

T2 can be granted only ofter the failure of T1

r- T2 and all dependent authorizations are revoked

d- T1 upon failure delegates its authorizations to T2

Separation of duties across T1 and T2

Separation with hierarchical role substitution

Figure 4: Graphical illustration of the various modeling constructs

14

� Approval-step
Each approval step is a tuple of the form:

{ (step-name, role, expiration, deadline)
where role is of type R, and R 2 Role-lattice

� Dependency-speci�cation
Each dependency speci�cation is a tuple of one the following forms:

{ (task-name, dependency-type)

{ (step-name, dependency-type)

Authorization-task-units and approval-steps represent the structural constructs in
our model. An approval-step represents the most primitive authorization unit. In a
manual paper-based system, an approval-step would map to a single signature on a
form. Of course, the required authorization for an activity (task) may require several
approval-steps just as in the paper world where multiple signatures may be required
to authorize a certain task. From the structural viewpoint, the ability to compose
individual approval-steps into bigger units such as authorization-task-units is crucial
to modeling many realistic authorization functions. One may also argue for the need
for structural units bigger authorization-task-units. This may be required to model
groups of authorization functions or top-level tasks.

The behavioral constructs in the model are centered around dependencies. De-
pendencies specify and constrain the execution and behavioral characteristics of the
various authorization-tasks. There exist several di�erent types of dependency con-
structs. These model among other things the temporal order in which authorizations
are to be processed, failure and exception handling semantics, revocation, delegation,
and separation of duties requirements.

Figure 4 illustrates graphically the various constructs mentioned above. In the
next subsection we illustrate how these constructs can be put together to model
authorization aspects of the tasks in an application.

4.2 Modeling the Sales-processing Application

We now revisit the sales-order example in �gure 3. We illustrate in 5 how the various
constructs can be put together to build an application model of task-based autho-
rizations. We examine each authorization function in �gure 3 and discuss below how
the various modeling constructs are used.

Sale-terms

This authorization-task-unit is charged with the authorization of the terms of the
sale and involves two approval-steps, namely, pricing and delivery-date. There is

15

pricing

delivery-date

SALE-TERMS

credit-rating

warehouse-1

warehouse-2

insurance-approval

carrier-approval

billing-approval

backorder-approval

receiving-condition

return-approval

CREDIT-TERMS

GOODS-REMOVAL

SHIPPING-TERMS

BILLING

GOODS-BACKORDER

GOODS-RECEIVING

PAYMENT

r

h

approve-supervisor

prepare-check

issue-check

Figure 5: Modeling the sales application with task-based authorizations

16

a temporal dependency from pricing to delivery-date implying that the latter ap-
proval can be granted only after the former (this makes sense as price is the �rst
point of negotiation in many sales). However, both approval-steps are declared in an
atomic-authorization-task. Thus failure to receive an approval on either the pricing
or delivery-date steps would result in the entire sales-order not getting authorized.
Finally we note the temporal dependency from this task-unit to the credit-terms
task-unit. In other words, once the sales-order has been accepted, the next activity
involves the authorization of the terms to extend credit to the customer.

Credit-terms

This task-unit essentially involves the approval of the credit-rating of the customer. If
credit-check succeeds the next authorization-task, namely goods-removal, as indicated
by the temporal dependency emanating from credit-terms, is activated. But what if
the customer's credit-check fails? In this case a failure-dependency speci�es the next
course of action. In particular, the authorization granted to the sales-order in the
previous task-unit is revoked. This models the fact that the customer's order has the
potential to introduce unnecessary risk to the enterprise, since unpaid bills can a�ect
future cash-ows. Finally, the separation of duties requirement is speci�ed across the
sale-terms and credit-terms task-units with a separation-dependency. This ensures
that a sales-clerk will not ignore high credit risk customer orders in order to close
sales deals.

Goods-removal

If the customer's credit check succeeds, processing continues and goods are authorized
to be removed from the existing two warehouses (in our example). It is important to
note the absence of any dependency between the approval-steps for each warehouse.
Why? This is because, from the integrity perspective we do not care about the
order of the individual approval steps for the warehouses. However, if any of these
approvals fail because of insu�cient quantity of goods in the warehouse to satisfy the
sales-order, a failure dependency now seeks approval to backorder goods.

Goods-backorder

As mentioned above, this task-unit is activated when the quantity ordered cannot
be met from existing inventory levels in the warehouses. Authorization to backorder
goods is an example of an exception-authorization sought after the failure to get a
previous authorization. After the authorization for backordered items is received, we
later check back with the warehouse(s) once again for authorization to remove the
required items.

17

Shipping-terms

This task-unit seeks the necessary approvals to ship goods transferred from the ware-
houses. We need to obtain approvals on the insurance terms for the shipment, as
well as the selection of the carrier, the latter being dependent on the former. We also
specify a separation-dependency between shipping and goods-removal. This control
ensures that goods removed from the warehouses are actually shipped, and not stolen
by an employee.

Billing

This task simply authorizes the billing of the customer account once goods are
shipped.

Goods-receiving

This authorization-task is concerned with authorizations necessary as goods are re-
ceived on behalf of the customer. The receiving department has to sign-o� (approve)
of the condition of the goods. If the goods are damaged, then receiving-condition
approval-step fails, and an approval-step to return the damaged goods is pursued.

Payment

The payment authorization-task-unit exhibits several characteristics. First of all,
authorization activities in this task are begun only after the authorizations in billing
and goods-receiving are granted. This can be seen in �gure 5 as there are two incoming
arrows to the payment task-unit. Within the payment task-unit, there exists three
approval steps. There is a need for separation of duties requirements within this task-
unit (unlike the others in this application which where across task-units) between the
�rst and the last approval-steps. Thus the prepare-check and issue-check would have
to be undertaken by two di�erent clerks. There is also a variation of separation of
duties with hierarchical role substitution between the �rst step (prepare-check) and
the second step (approve-supervisor) [16]. In this variation, if no clerks are available
to approve the prepare-check step, a supervisor may substitute for a clerk. However,
we still need to enforce separation of duties, and the same supervisor will now not be
allowed to approve the second step.

It is no means clear, that the constructs given in �gure 4 are su�cient to model
all combinations of integrity requirements. For example there may be variant of the
delegation and revocation constructs outlined here. There also might be conditional
dependencies. We hope to investigate these in the future.

18

Responsibilities, obligations,
authorization structures

analysis

analysis

Analysis &Analysis &
elaboration elaboration

Approval-steps, dependencies

Authorization functions,
 authorization-task-units

Access control models,

other implementation models

Dependency automata,

executable specifications

Figure 6: Outline for a design methodology

19

4.3 Towards a Design Methodology

In this subsection, we briey outline a design methodology. The basic steps are shown
in �gure 6. The starting point will be some high-level organizational analysis of the
responsibilities, obligations, and authorization structures in the enterprise. Models
such as those described in [7, 8] may be useful here. We then derive from this analysis
the basic authorization functions and authorization tasks. These are then further
analyzed to obtain the internal structure of approval-steps and behavioral structure
of dependencies. At this point we have abstract speci�cations of what needs to
be done, in terms of our modeling constructs. We are now faced with elaborating
such an abstract speci�cation into an executable one since we want to focus on the
enforcement of what has been modeled. This may for example, involve a mapping to
access control and other implementation models. The feasibility of this approach was
attempted earlier in [1]. Here the authors demonstrated how to implement transaction
control expressions using the typed access control matrix model. The enforcement of
various dependencies may involve the use of formalisms such as dependency automata
[2]. The basic emphasis in this methodology is to start with abstract speci�cations
and to iteratively re�ne them into executable computer-oriented speci�cations. We
hope to investigate this approach in more detail in the future.

5 Conclusions

In this paper we have laid the groundwork to build a richer model of integrity with
the objective of maintaining an enterprise level perspective. By focusing �rst on the
authorization functions associated with business activities, we are able to abstract
away unnecessary mechanistic and implementation-oriented details and focus on the
authorization structures at the enterprise level. These are then re�ned and elaborated
with necessary constructs to build a computer-oriented integrity model. Integrity in
information systems will continue to be a signi�cant issue in computerized information
systems. Models such as the one presented here attempt to bridge the gap between
very high-level abstract models and extremely low-level computer-based ones. We
believe, that the building of such bridges are crucial to advancing the state-of-the-
art.

References

[1] P.E. Ammann and R.S. Sandhu. Implementing transaction control expressions by
checking for absence of access rights. Proceedings of the Eight Annual Computer
Security Applications Conference, IEEE Press, December, 1992.

20

[2] P. Attie et. al. Specifying and enforcing intertask dependencies. MCC Technical
Report Carnot-245-92, Microelectronics and Computer Technology Corporation,
Austin, TX 78759.

[3] L. Badger. A model for specifying multi-granularity integrity policies. Proc. of
the IEEE Symposium on Security and Privacy, 1989.

[4] D.E. Bell and L.J. LaPadula. Secure computer systems: Uni�ed exposition and
multics interpretation. EDS-TR-75-306, The MITRE Corp., Bedford, MA., March
1976.

[5] K. Biba. Integrity considerations for secure computer systems. U.S Air Force
Electronic Systems Division, 1977.

[6] D.D. Clark and D.R. Wilson. A comparison of commercial and military security
policies. Proc. of the IEEE Symposium on Security and Privacy, 1987.

[7] J. Dobson. New Security Paradigms: What other concepts do we need as well.
Proc. of the First New Security Paradigms Workshop, Little Compton, Rhode
Island, IEEE Press, 1993.

[8] R.Strens and J. Dobson. How responsibility modelling leads to security require-
ments, Proc. of the Second New Security Paradigms Workshop, Little Compton,
Rhode Island, IEEE Press, 1993.

[9] J. Gray. Probabilistic interference. In Proceedings of the 1990 IEEE Symposium
on Research in Security and Privacy, IEEE Press, 1990.

[10] J. A. Goguen and J.Meseguer. Security policy and security models. Proc. IEEE
Symp. on Research in Security and Privacy, Oakland, Calif., May 1982, pages
11-20.

[11] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8), pages 461{471, 1976.

[12] L.J. LaPadula and J.G. Williams. Toward a Universal Integrity Model. Proc. of
the IEEE Computer Security Foundations Workshop, Franconia, New Hampshire,
IEEE Press, 1991.

[13] D. McCullough. Speci�cations for multi-level security and a hook-up property.
In Proceedings of the 1987 IEEE Symposium on Research in Security and Privacy,
IEEE Press, 1987.

[14] J. McLean. Security models and information ow. In Proceedings of the 1990
IEEE Symposium on Research in Security and Privacy, IEEE Press, 1990.

21

[15] R.S. Sandhu. Transaction control expressions for separation of duties. Proc. of
the Fourth Computer Security Applications Conference, pp. 282{286, 1988.

[16] R.S. Sandhu. Separation of duties in computerized information systems. Database
Security IV, Status and Prospects, S. Jajodia and C.E Landwehr (Editors), Else-
vier Science Publishers B.V. (North-Holland)

[17] R.S. Sandhu. On the four de�nitions of data integrity. Proc. of the seventh annual
IFIP Working Conference on Database Security, September 12-15, Huntsville,
Alabama.

[18] R.S. Sandhu. \The Typed Access Matrix Model." Proc. IEEE Symposium on
Research in Security and Privacy, Oakland, California, May 1992, pages 122-136.

[19] R.K. Thomas and R.S Sandhu. Towards a task-based paradigm for exible and
adaptable access control in distributed applications, Proc. of the Second New
Security Paradigms Workshop, Little Compton, Rhode Island, IEEE Press, 1993.

[20] The Auditor's Study and Evaluation of Internal Control in EDP Systems, Amer-
ican Institute of Certi�ed Public Accountants, 1977.

22

