
Proceedings of IEEE Computer Security FoundationsWorkshop VI, Franconia, NH, June 15-17, 1993, pages 109-118.

On Testing for Absence of Rights in Access Control Models

Ravi S. Sandhu and Srinivas Ganta�

Center for Secure Information Systems, and

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030

Abstract

The well-known access control model formalized by
Harrison, Ruzzo, and Ullman (HRU) does not allow
testing for absence of access rights in its commands.
Sandhu's Typed Access Matrix (TAM) model, which
introduces strong typing into the HRU model, contin-
ues this tradition. Ammann and Sandhu have recently
proposed an extension of TAM called augmented TAM
(ATAM), which allows testing for absence of rights.
The motivation for ATAM is to express policies for dy-
namic separation of duties based on transaction con-
trol expressions.

In this paper we study the question of whether or
not testing for absence of access rights adds funda-
mental expressive power. We show that TAM and
ATAM are formally equivalent in their expressive
power. However, our construction indicates that while
testing for absence of rights is theoretically unneces-
sary, such testing appears to be practically bene�cial.

1 Introduction

The need for access controls arises in any computer
system that provides for controlled sharing of informa-
tion and other resources among multiple users. Access
control models (also called protection models or secu-
rity models) provide a formalism and framework for
specifying, analyzing and implementing security poli-
cies in multi-user systems. These models are typically
de�ned in terms of the well-known abstractions of sub-
jects, objects and access rights; with which we assume
the reader is familiar.

Access controls are useful to the extent they meet
the user community's needs. They need to be 
exi-

�The work of both authors is partially supportedby National

Science Foundationgrant CCR-9202270. The authors are grate-

ful to Nathaniel Macon for his support and encouragement in

making this work possible.

ble so that individual users can specify access of other
users to the objects they control. At the same time
the discretionary power of individual users must be
constrained to meet the overall objectives and policies
of an organization. One method for achieving the de-
sired 
exibility is to allow security administrators to
specify policies for propagation of rights, which allow
discretionary freedom to users but at the same time
impose non-discretionary rules. Several such policies,
and access control models for their speci�cation, have
been published in the literature (see, for example, any
of the references cited in this paper).

The access control model formalized by Harrison,
Ruzzo, and Ullman (HRU) [3] was the �rst model to
propose a language for allowing security administra-
tors to specify their security policy in terms of prop-
agation of access rights. A signi�cant characteristic
of the HRU model is that it does not allow testing
for absence of rights. The take-grant model [4], and
its variations [9], similarly do not allow such testing.
Sandhu's Typed Access Matrix (TAM) model [7, 8],
which introduces strong typing into HRU, continues
this tradition.

In contrast to HRU and TAM, Ammann and
Sandhu [2] have recently proposed an extension of
TAM, called augmented TAM (ATAM), which allows
testing for absence of rights. The motivation for de-
veloping ATAM is to express policies for dynamic sep-
aration of duties based on transaction control expres-
sions [6]. Such policies have a natural, and relatively
straightforward, expression based on testing for ab-
sence of access rights.

In this paper we investigate the question of whether
or not testing for absence of rights adds fundamental
expressive power to access control models. Our prin-
cipal contribution is to demonstrate that TAM and
ATAM are formally equivalent in expressive power.
However, the nature of our construction indicates that
even though testing for absence of rights is theoreti-



cally unnecessary, such testing appears to be practi-
cally bene�cial.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief review of TAM and ATAM. Sec-
tion 3 proves formal equivalence of the expressive
power of TAM and ATAM, by showing how any given
ATAM system can be simulated by a TAM system.
Section 4 gives our conclusions, including an informal
discussion of why our construction indicates that test-
ing for absence of rights could be practically bene�cial.

2 Background

In this section we review the de�nition of TAM,
which was introduced by Sandhu in [7]. Our review is
necessarily brief. The motivation for developing TAM,
and its relation to other access control models are dis-
cussed at length in [7]. Following the review of TAM
we brie
y review the de�nition of ATAM [2].

2.1 The Typed Access Matrix (TAM)
Model

The principal innovation of TAM is to introduce
strong typing of subjects and objects, into the access
matrix model of Harrison, Ruzzo and Ullman [3]. This
innovation is adapted from Sandhu's Schematic Pro-
tection Model [5], and its extension by Ammann and
Sandhu [1].

As one would expect from its name, TAM repre-
sents the distribution of rights in the system by an
access matrix. The matrix has a row and a column
for each subject, and a column for each object. Sub-
jects are also considered to be objects. The [X;Y ] cell
contains rights which subject X possesses for object
Y .

Each subject or object is created to be of a speci�c
type, which thereafter cannot be changed. It is im-
portant to understand that the types and rights are
speci�ed as part of the system de�nition, and are not
prede�ned in the model. The security administrator

speci�es the following sets for this purpose:

� a �nite set of access rights denoted by R, and

� a �nite set of object types (or simply types), de-
noted by T .

For example, T = fuser; so; fileg speci�es there are
three types, viz., user, security-o�cer and �le. A
typical example of rights would be R = fr; w; e; og

respectively denoting read, write, execute and own.
Once these sets are speci�ed they remain �xed, un-
til the security administrator changes their de�nition.
It should be kept in mind that TAM treats the secu-
rity administrator as an external entity, rather than
as another subject in the system.

The protection state (or simply state) of a TAM
system is given by the four-tuple (OBJ; SUB; t; AM )
interpreted as follows:

� OBJ is the set of objects.

� SUB is the set of subjects, SUB � OBJ .

� t : OBJ ! T , is the type function which gives the
type of every object.

� AM is the access matrix, with a row for every sub-
ject and a column for every object. The contents
of the [S;O] cell of AM are denoted by AM [S;O].
We have AM [S;O] � R.

For convenience we usually drop the pre�x AM ,
and understand [S;O] to denote AM [S;O].

The rights in the access matrix cells serve two pur-
poses. First, presence of a right, such as r 2 [X;Y ]
may authorize X to perform, say, the read operation
on Y . Second, presence of a right, say o 2 [X;Y ] may
authorize X to perform some operation which changes
the access matrix, e.g., by entering r in [Z; Y ]. In other
words, X as the owner of Y can change the matrix so
that Z can read Y .

The protection state of the system is changed by
means of TAM commands. The security administra-
tor de�nes a �nite set of TAM commands when the
system is speci�ed. Each TAM command has one of
the following formats.

command �(X1 : t1, X2 : t2, : : : , Xk : tk)
if r1 2 [Xs1 ; Xo1 ] ^ r2 2 [Xs2; Xo2 ] ^ : : :

^ rm 2 [Xsm ; Xom ]
then op1; op2; : : : ; opn

end

or

command �(X1 : t1, X2 : t2, : : : , Xk : tk)
op1; op2; : : : ; opn

end

Here � is the name of the command; X1, X2, : : : ,
Xk are formal parameterswhose types are respectively
t1, t2, : : : , tk; r1, r2, : : : , rm are rights; and s1, s2,



: : : , sm and o1, o2, : : : , om are integers between 1
and k. Each opi is one of the primitive operations

discussed below. The predicate following the if part
of the command is called the condition of �, and the
sequence of operations op1; op2; : : : ; opn is called the
body of �. If the condition is omitted the command is
said to be an unconditional command, otherwise it is
said to be a conditional command.

A TAM command is invoked by substituting actual
parameters of the appropriate types for the formal pa-
rameters. The condition part of the command is eval-
uated with respect to its actual parameters. The body
is executed only if the condition evaluates to true.

There are six primitive operations in TAM, grouped
into two classes, as follows.

� Monotonic Primitive Operations

enter r into [Xs; Xo]
create subject Xs of type ts
create object Xo of type to

� Non-Monotonic Primitive Operations

delete r from [Xs; Xo]
destroy subject Xs

destroy object Xo

It is required that s and o are integers between 1 and
k, where k is the number of parameters in the TAM
command in whose body the primitive operation oc-
curs.

The enter operation enters a right r 2 R into an
existing cell of the access matrix. The contents of the
cell are treated as a set for this purpose, i.e., if the
right is already present the cell is not changed. The
enter operation is monotonic, because it only adds
and does not remove from the access matrix. The
delete operation has the opposite e�ect of enter. It
(possibly) removes a right from a cell of the access
matrix. Since each cell is treated as a set, delete has
no e�ect if the deleted right does not already exist
in the cell. Because delete (potentially) removes a
right from the access matrix, it is a non-monotonic

operation.

The create subject and destroy subject op-
erations make up a similar monotonic versus non-
monotonic pair. The create subject operation re-
quires that the subject being created has a unique
identity di�erent not only from existing subjects, but
also di�erent from all subjects that have ever existed
thus far. The destroy subject operation requires
that the subject being destroyed currently exists. Note
that if the pre-condition for any create or destroy

operation in the body is false, the entire TAM com-
mand has no e�ect. The create subject operation
introduces an empty row and column for the newly
created subject into the access matrix. The destroy
subject operation removes the row and column for
the destroyed subject from the access matrix. The
create object and destroy object operations are
much like their subject counterparts, except that they
work on a column-only basis.

Two examples of TAM commands are given below.

command create-�le(U : user; F : file)
create object F of type file;
enter own in [U;F ]

end

command transfer-ownership(U : user;
V : user; F : file)

if own 2 [U;F ] then
delete own from [U;F ];
enter own in [V; F ];

end

The �rst command authorizes users to create �les,
with the creator becoming the owner of the �le. The
second command allows ownership of a �le to be trans-
ferred from one user to another.

2.2 Summary of TAM

To summarize, a system in speci�ed in TAM by
de�ning the following �nite components.

1. A set of rights R.

2. A set of types T .

3. A set of state-changing commands, as de�ned
above.

4. The initial state.

We say that the rights, types and commands de�ne the
system scheme. Note that once the system scheme is
speci�ed by the security administrator it remains �xed
thereafter for the life of the system. The system state,
however, changes with time.

2.3 The Augmented TAM (ATAM)
Model

ATAM was de�ned in [2] to be TAM extended with
ability to test for the absence of a right in a cell of



the access matrix. In other words, a test of the form
ri =2 [Xsi; Xoi ] may be present in the condition part of
ATAM commands. Ammann and Sandhu argue (in-
formally) that dynamic separation of duties requires
this ability to test for absence of access rights. They
show how transaction control expressions [6] can be
speci�ed in ATAM.

A surprising result of this paper is that TAM and
ATAM are formally equivalent in expressive power.
However, as we will see, from a practical viewpoint
our construction suggests that it is bene�cial to allow
testing for absence of access rights.

3 Equivalence of TAM and ATAM

In this section we give a construction to show the
equivalence of TAM and ATAM. We �rst show in sec-
tion 3.1 that ATAM schemes without create or de-
stroy operations can be reduced to TAM schemes.
We then show, in section 3.2, how ATAM schemes
with just create and destroy commands can be sim-
ulated in TAM. Finally in section 3.3 we give a proce-
dure which converts any given ATAM scheme into an
equivalent TAM scheme.

3.1 Equivalence Without Create or De-
stroy Operations

We now prove the equivalence of TAM and ATAM
in the absence of create and destroy operations. Re-
call that ATAM extends TAM by allowing commands
to test for absence of access rights in the condition
part. Thus, TAM is a restricted version of ATAM. To
establish equivalence we therefore need to show that
every ATAM system can be simulated by a TAM sys-
tem. This is done by giving a procedure to construct a
TAM system that can simulate a given ATAM system.

The basic idea in the construction is to represent
the absence of rights in the ATAM system by the
presence of complementary rights in the TAM system.
Suppose that the given ATAM system has set of rights
R. In the TAM simulation we include the rights R,
as well as the complementary rights �R = f�x j x 2 Rg.
The construction will ensure that

x 2 [Si; Oj], �x =2 [Si; Oj]

The initial state of the TAM access matrix has all the
rights of the initial matrix of ATAM, as well as all the
complementary rights implied by the above predicate.

If the ATAM system has no creation operations,

the following procedure constructs an equivalent TAM
system.

1. Whenever a right x is entered in a cell of the
ATAM system, it is also entered in the identi-
cal cell in the TAM system; but, moreover, the
complementary right �x is deleted from that cell
in the TAM system.

2. Similarly whenever a right x is deleted from a
cell of the ATAM system, it is deleted from the
identical cell in the TAM simulation. At the same
time, the complementary right �x is entered in that
cell in the TAM simulation.

3. Also if an ATAM command tests for the absence
of some rights, than the corresponding TAM com-
mand produced by our construction tests for the
absence of rights by means of testing for presence
of complementary rights. For example, the test
x =2 [S;O] in an ATAM command will be simu-
lated by the test �x 2 [S;O] in the TAM system.

We have the following result.

Theorem 1 For every ATAM system S1 the con-
struction outlined above produces an equivalent TAM
system S2.

Proof Sketch: It can be easily seen that any reach-
able state in S1 can be reached in S2 (and vice-versa),
if each ATAM command is simulated by the TAM
command constructed as above (and vice versa). In
particular the TAM system will maintain the invariant
x 2 [Si; Oj] , �x =2 [Si; Oj] for all cells in the access
matrix. 2

3.2 Equivalence With Create and Destroy
Operations

The occurrence of create operations in the given
ATAM system considerably complicates the construc-
tion. We will focus only on creation of subjects, since
every ATAM subject or object will be simulated in
the TAM system as a subject (i.e., every column has
a corresponding row in the access matrix). In other
words the access matrix of the TAM system is square.
This entails no loss of generality, since ATAM subjects
are not necessarily active entities.

A primitive \create subject Sj" operation intro-
duces a new empty row and column in the access ma-
trix. To follow through with the complementary rights



construction, we need to introduce the �R rights in ev-

ery cell involving Sj . The number of primitive oper-
ations required to do this is directly proportional to
the number of subjects existing, at that moment, in
the system. Since this is a variable number, a single
TAM command cannot achieve this result. Instead we
must use a sequence of TAM commands. The num-
ber of TAM commands required is unbounded, being
directly proportional to the size of the access matrix.

3.2.1 Linked List Structure

To facilitate the TAM simulation, our construction or-
ganizes the subjects in a linked list structure, which
can be traversed by following its pointers. The point-
ers, and the head and tail locations of the list, are easy
to implement by rights in the access matrix. New sub-
jects are inserted at the tail of the list when they are
created. In order to �ll up the row and column for the
new subject with the complementary rights �R, the list
is traversed from head to tail entering �R in the cells
for the new subject along the way.

Three new rights head, tail, and next are intro-
duced in the initial state of the matrix. The right
head in a cell [Si; Si] of the matrix implies that Si is
the �rst subject in the linked list. Similarly, the right
tail in a cell [Si; Si] of the matrix implies that Si is the
last subject in the linked list. The right next in a cell
[Si; Sj ] of the matrix implies that Sj is the successor
to Si in the linked list (or equivalently that Si is the
predecessor to Sj in the list). In addition, two rights
C and tr are used for book-keeping purposes in the
simulation, as will be explained in section 3.2.2. It is
assumed, without loss of generality, that rights next,
head, tail, token, C, and tr are distinct from the rights
in the given ATAM system.

A create operation in an ATAM system is simu-
lated by multiple commands in the TAM system. The
key to doing this successfully is to prevent other TAM
commands from interfering with the simulation of the
given ATAM command. The simplest way to do this
is to ensure that ATAM commands can be executed in
the TAM simulation only one at a time. To do this we
need to synchronize the execution of successive ATAM
commands in the TAM simulation. Thus the problem
of simulating ATAM in TAM requires solution of a
synchronization problem. Synchronization is achieved
by introducing an extra subject called SNC, and an
extra right token as shown in �gure 1. The role of
SNC is to sequentialize the execution of simulation of
ATAM commands in the TAM system. The type of
SNC is snc, which is assumed, without loss of gener-

ality, to be distinct from any type in the given ATAM
system.

To summarize, the initial state of the TAM system
consists of the initial state of the given ATAM system
augmented in three respects.

1. First, an empty row is introduced for every ATAM
object, which does not have a row in the given
ATAM access matrix. The head, tail and next

rights are introduced to order the subjects in a
linked list.

2. Secondly, complementary rights are introduced as
per the following predicate:

x 2 [Si; Sj], �x =2 [Si; Sj ]

3. Thirdly, the SNC subject is introduced in the
access matrix with [SNC; SNC]= token, and all
other cells involving SNC being empty.

3.2.2 Simulation of ATAM create commands

We now consider how the ATAM command CCreate
given below can be simulated by several TAM com-
mands.

command CCreate(S1 : s1; S2 : s2; : : : ;
Sm : sm; Sc : sc)

if �(S1; S2; : : : ; Sm) then
create subject Sc of type sc

end

The name CCreate is a mnemonic for conditional
creation. This command tests for the condition
�(S1; S2; : : : ; Sm). If the condition is true, the com-
mand creates a new subject Sc.

The TAM simulation of CCreate proceeds in three
phases, respectively as illustrated in �gures 2, 3 and
4. In these �gures we show only the relevant portion
of the access matrix, and only those rights introduced
speci�cally for the TAM simulation. Complementary
rights are shown only in the cells involving the newly
created subject Sc. It is understood that the original
ATAM rights are distributed exactly as in the ATAM
system, along with complementary rights required to
maintain the predicate x 2 [Si; Sj ], �x =2 [Si; Sj]. In
the �gures, n represents the total number of subjects
in the system prior to the create operation.

The �rst phase consists of a single TAM command
CCreate-I which tests whether (i) the condition of the
ATAM command �(S1; S2; : : : ; Sm) is true, and (ii)



SNC S1 S2 : : : Sn
SNC token
S1 head next
S2
: : :
Sn tail

Figure 1: Initial Access Matrix of the TAM Simulation

SNC S1 S2 : : : Sn Sc
SNC
S1 head next
S2
: : :
Sn tail
Sc tr

Figure 2: TAM Simulation of the ATAM Command CCreate: Phase I

whether token 2 [SNC; SNC]. The former test is ob-
viously required. The predicate � may involve tests
for absence of access rights. Hence, in the TAM sim-
ulation we replace � by �0, which is obtained by sub-
stituting tests for presence of complimentary rights in
place of tests for absence of rights in �. The latter
test for token 2 [SNC; SNC] ensures that the TAM
simulation of CCreate can commence only if no other
ATAM command is currently being simulated. It also
ensures that once phase I of the simulation of CCreate
has started, the simulation will proceed to completion
before simulation of another ATAM command can be-
gin. The phase I TAM command is given below.

command CCreate-I(S1 : s1; S2 : s2; : : : ;
Sm : sm; Sc : sc; SNC : snc)

if �0(S1; S2; : : : ; Sm)^ token 2 [SNC; SNC]
then

delete token from [SNC; SNC];
create Sc of type sc;
enter tr in [Sc; Sc]

end

The body of this command deletes token from
[SNC; SNC] and creates subject Sc. It also enters tr
in [Sc; Sc] indicating that all cells corresponding to Sc
have to be traversed. The states of the access matrix,
before and after execution of CCreate-I, are outlined
in �gures 1 and 2 respectively.

In phase II of the simulation the right C is passed,
in turn, from [Sc; S1] to [Sc; S2] and so on to [Sc; Sn].
A right C in a cell of a matrix indicates that all com-
plementary rights have to be introduced in that cell.
Hence complementary rights �R are introduced in the
cell from which the right C is removed. The phase II
commands are given below. The type of subjects Si
and Sr indicated in the commands by T � snc implies
that these subjects can be of any type in T � snc (i.e.,
any type other than snc). Strictly speaking, we should
have a separate command for each type in T�snc, but
we allow this slight extension of our notation to sim-
plify the presentation.

command CCreate-1-II(Sc : sc; Si : T � snc)
if tr 2 [Sc; Sc] ^ head 2 [Si; Si] then

delete tr from [Sc; Sc];
enter C in [Sc; Si]

end

command CCreate-2-II(Sc : sc; Si : T � snc;
Sr : T � snc)

if next 2 [Si; Sr ] ^C 2 [Sc; Si] then
enter �R in [Sc; Si];
enter �R in [Si; Sc];
delete C from [Sc; Si];
enter C in [Sc; Sr ]

end

The command CCreate-1-II tests if phase I is com-
pleted by looking for right tr, which it then removes



SNC S1 S2 : : : Sn Sc

SNC

S1 head next

S2

: : :

Sn tail

Sc C

(a) After execution of CCreate-1-II

SNC S1 S2 : : : Sn Sc

SNC

S1 head next �R

S2

: : :

Sn tail

Sc �R C

(b) After one execution of CCreate-2-II

SNC S1 S2 : : : Sn Sc

SNC

S1 head next �R

S2 �R

: : : �R

Sn tail

Sc �R �R �R C

(c) End of phase II

Figure 3: TAM Simulation of the ATAM Command CCreate: Phase II

SNC S1 S2 : : : Sn Sc

SNC token

S1 head next �R

S2 �R

: : : �R

Sn next, �R

Sc �R �R �R �R tail, �R

Figure 4: TAM Simulation of the ATAM Command CCreate: Phase III



and enters right C in the head column of the list of
subjects. Command CCreate-2-II introduces comple-
mentary rights in all cells involving Sc except the tail
subject by passing right C along the linked list of sub-
jects. The insertion of complimentary rights in the
tail column of the linked list is deferred until Phase
III. The execution of Phase II commands is illustrated
in �gure 3.

In phase III of the simulation, the new subject Sc is
inserted at the end of the linked list. At the same time,
complementary rights are introduced in the previous
and the new tail cells. Also token is introduced in
the cell [SNC; SNC] indicating that the simulation
of CCreate is complete. The Phase III command is
given below.

Command CCreate-III(Sc : sc; Sn : T � snc;
SNC : snc)

if C 2 [Sc; Sn] ^ tail 2 [Sn; Sn] then

delete C from [Sc; Sn];
enter �R in [Sc; Sn];
enter �R in [Sn; Sc];
enter �R in [Sc; Sc];
enter next in [Sn; Sc];
delete tail from [Sn; Sn];
enter tail in [Sc; Sc];
enter token in [SNC; SNC]

end

Prior to execution of the CCreate-III command we
have the situation shown in �gure 3(c). After exe-
cution of CCreate-III we have the situation of �gure
4. The TAM simulation is now ready to proceed with
execution of another ATAM command.

3.2.3 Simulation of ATAM destroy commands

In order to simulate creation,we have seen that the
subjects need to be related in a linked list structure.
Hence, whenever a subject is destroyed the linked lists
should still be maintained. For instance, when subject
S3 is destroyed in context of �gure 5(a), we should
maintain the linked list as shown in �gure 5(b).

To be concrete, consider the following ATAM com-
mand whose name CDestroy is a mnemonic for con-
ditional destroy.1

command CDestroy (S1 : s1; S2 : s2; ::Sm : sm;
Sd : sd)

1We have shown Sd as occuring in the conditional predicate

�. This should be interpreted as saying that Sd may optionally

occur in the condition, but is not required to.

if �(Sd; S1; S2; : : : ; Sm) then
destroy subject Sd

end

This commandcan be simulated by a single TAM com-
mand, since maintenance of the linked list requires
adjustment to a �xed number of cells of the access
matrix. However, we do need several variations of the
TAM command, depending upon whether the subject
being destroyed is in the middle, or at the head or tail
of the linked list. We also need a variation to simulate
the extreme case where the subject being destroyed is
the only subject in the linked list.

The TAM command to simulate CDestroy, when
Sd is in the middle of the list, is as follows.

command CDestroy-middle (Sd : sd; Sl : T�snc;
Sr : T � snc; S1 : s1; S2 : s2; : : : ;

Sm : sm; SNC : snc)
if �0(Sd; S1; S2; : : : ; Sm) ^

token 2 [SNC; SNC] ^
next 2 [Sl; Sd] ^ next 2 [Sd; Sr ]

then

destroy subject Sd;
enter next in [Sl; Sr]

end

As done in section 3.2.2, the predicate �0 is obtained
by substituting tests for presence of complimentary
rights in place of tests for absence of rights in �. The
test for the token right ensures that ATAM commands
are simulated one at a time. The tests for next ensure
that Sl and Sr are respectively the predecessor and
successor of Sd in the linked list. The body of the
command maintains the linked list.

If Sd is at the head or at the tail of the linked list,
we respectively have the following two commands.

command CDestroy-head (Sd : sd,Sr : T � snc,
S1 : s1; S2 : s2; : : : ; Sm : sm, SNC : snc)

if �0(Sd; S1; S2; : : : ; Sm) ^
token 2 [SNC; SNC] ^
head 2 [Sd; Sd] ^ next 2 [Sd; Sr]

then

destroy subject Sd;
enter head in [Sr; Sr]

end

command CDestroy-tail (Sd : sd; Sl : T � snc,
S1 : s1; S2 : s2; : : : ; Sm : sm; SNC : snc)

if �0(Sd; S1; S2; : : : ; Sm) ^
token 2 [SNC; SNC] ^
next 2 [Sl; Sd] ^ tail 2 [Sd; Sd]



SNC S1 S2 S3 S4 S5
SNC token
S1 head next
S2 next
S3 next
S4 next
S5 tail

(a) Before destruction of S3

SNC S1 S2 S4 S5
SNC token
S1 head next
S2 next
S4 next
S5 tail

(b) After destruction of S3

Figure 5: Destruction of S3

then

destroy subject Sd;
enter tail in [Sl; Sl]

end

Finally, for the extreme case where Sd is the only sub-
ject in the linked list we have the following TAM com-
mand.

command CDestroy-last (Sd : sd, SNC : snc)
if �0(Sd)^ token 2 [SNC; SNC]^

head 2 [Sd; Sd]^ tail 2 [Sd; Sd]
then

destroy subject Sd
end

3.3 Simulation of ATAM schemes

So far we have seen how ATAM commands which
do not have create and destroy operations, and ATAM
commands which just have either create or destroy op-
erations are converted into TAM commands. A gen-
eral procedure for simulating an arbitrary ATAM com-
mand in TAM can be obtained by combining these
ideas. Consider a ATAM command with multiple op-
erations (i.e., a sequence of enter, delete, create,
and destroy operations). Based on the previous dis-
cussion, we know how to simulate each primitive oper-
ation in turn. With some additional book-keeping we

can keep track of a \program counter" which moves
down the sequence of primitive operations in the body
of the ATAM command, as each one gets simulated.
The details are lengthy and tedious, and are omitted
here.

We conclude this section by stating the central re-
sult of this paper.

Theorem 2 TAM and ATAM are formally equivalent
in expressive power.

Proof Sketch: Follows from the above discussion. 2

4 Conclusion

In this paper we have shown that the expressive
power of the typed access matrix (TAM) model [7],
and the augmented TAM (ATAM) model [2] are for-
mally equivalent. Thus, testing for absence of access
rights does not provide additional expressive power.

The TAM simulation of ATAM, given in this paper,
clearly requires traversal of all subjects in the system
whenever a create operation occurs in the given ATAM
system. Morevoer, no other command can be initiated
while this traversal is in progress. In real systems this
will not be practically feasible.

The indication therefore is that ATAM can theoret-
ically be reduced to TAM, but practically testing for
absence of access rights appears to be useful. It is an



open question whether this claim can be formalized,
and proven on the basis of some formal complexity
measure.

References

[1] Ammann, P.E. and Sandhu, R.S. \The Extended
Schematic Protection Model." Journal of Com-

puter Security, in press.

[2] Ammann, P.E. and Sandhu, R.S. \Implementing
Transaction Control Expressions by Checking for
Absence of Access Rights." Proc. Eighth Annual

Computer Security Applications Conference, San
Antonio, Texas, December 1992.

[3] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D.
\Protection in Operating Systems." Communica-

tions of ACM 19(8), 1976, pages 461-471.

[4] Lipton, R.J. and Snyder, L. \A Linear Time Al-
gorithm for Deciding Subject Security." Journal of
ACM 24(3):455-464 (1977).

[5] Sandhu, R.S. \The Schematic Protection Model:
Its De�nition and Analysis for Acyclic Attenuating
Schemes." Journal of ACM 35(2), 1988, pages 404-
432.

[6] Sandhu, R.S. \Transaction Control Expressions
for Separation of Duties." Proc. Fourth Aerospace

Computer Security Applications Conference, Or-
lando, Florida, December 1988, pages 282-286.

[7] Sandhu, R.S. \The Typed Access Matrix Model."
IEEE Symposium on Research in Security and Pri-

vacy, Oakland, CA. 1992, pages 122-136.

[8] Sandhu, R.S. and Suri, G.S. \Implementation
Considerations for the Typed Access Matrix Model
in a Distributed Environment." Proc. 15th NIST-

NCSC National Computer Security Conference,
Baltimore, MD, October 1992, pages 221-235.

[9] Snyder, L. \Formal Models of Capability-Based
Protection Systems." IEEE Transactions on Com-

puters C-30(3):172-181 (1981).


