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Abstract

We present a secure kernelized architecture for mul-
tilevel object-oriented database management systems.
Our architecture is based on the notion of a message
�lter proposed by Jajodia and Kogan. It builds upon
the typical architecture of current object-oriented
database management systems. Since the operations
mediated by the message �lter are arbitrarily complex
operations (as opposed to primitive reads and writes),
a secure message �lter requires careful attention to po-
tential timing covert channels. Although the overall
computation is logically a sequential one, to be secure
we must actually execute pieces of the computation
concurrently. This raises a synchronization problem
for which we give a secure multiversion protocol. The
fundamental problem solved in this paper is how to
securely and correctly \write up" in terms of abstract
operations.

1 Introduction

In recent years, several research and develop-
ment e�orts in the design and implementation of
object-oriented databases have been undertaken (e.g.,
ORION [4], IRIS [5], GEMSTONE [10]). The impetus
for these developments can be attributed to the real-
ization of the limits of record-based data models and
conventional database technologies. Object-oriented
models not only allow the representation of complex
object structures, but further allow modeling of the
behavior of real world entities through methods en-
capsulated in objects.

From the security perspective, the object-oriented
model has strong intuitive appeal. This is because an
object in the \object-oriented" sense is an abstraction
modeling a real-world entity. This enables us to spec-
ify and implement access control and security policies
in terms of objects. However, mechanisms for sharing
in object-oriented systems such as inheritance as well
as the dynamics of method invocation add complexity
to any object-oriented security model.

�Or, how to \write up" securely and correctly.

Several models and prototypes that address manda-
tory security issues for object-oriented database sys-
tems have recently been proposed [6, 7, 8, 9, 11, 14]. In
most of these the security policy to be enforced is ex-
pressed by a set of properties that must be satis�ed.
In this respect, the model proposed by Jajodia and
Kogan (referred to as the message �lter model) [6] is
unique as it expresses the security policy with a mes-
sage �ltering algorithm. The message �lter model can
be characterized as an information ow model. The
central element of the model is a message �lter secu-
rity component that �lters and controls all exchange
of information between objects. Another distinguish-
ing feature of the model is that it is not based on
the notion of subjects. A database system is seen
as a collection of objects that communicate and ex-
change information through messages. The main ad-
vantage of the message-�lter model is the simplicity
with which mandatory security policies can be stated
and enforced.

Our focus in this paper is on implementing the mes-
sage �lter model with a kernelized architecture and
within the framework of the Orange Book [2]. Our
architecture is a layered one and utilizes the trusted
computing base (TCB) subsetting approach. At the
lowest layer in the TCB we rely on trusted operating
system functions. The next two higher layers provide
the functions for managing the persistent store and
implementing the message �lter. In developing our
architecture, we demonstrate how in spite of the com-
plexity of an object-oriented implementation we can
still provide a high degree of assurance of the system's
security with minimal trusted code. Our architecture
is consistent with and builds upon the typical architec-
ture of current object-oriented database management
systems and existing trusted operating systems.

A key issue we have had to address in implement-
ing the model is that of timing channels. These tim-
ing channels arise because operations in our model
are based on abstract messages with arbitrary seman-
tics. Models such as Bell-LaPadula [3] are able to
ignore this issue since the operations in these models
are primitive reads and writes. Consider a message
sent from a low object to a high object in a multilevel



object-oriented system. Clearly the sender should not
receive the actual reply from the high object. It is con-
ceptually a simple matter to arrange for the message
�lter to substitute some innocuous reply (such as NIL)
in place of the actual reply. However, it also should
not be possible for the high object to modulate the
delay in this response to the low sender (even if the
response is known a priori to be NIL). In this paper,
we show how to close this timing channel by concur-
rently executing pieces of what is logically a sequential
computation. To do so correctly we develop a secure
multiversion protocol for synchronizing these concur-
rent computations so their net e�ect is equivalent to
the intended sequential computation.

The fundamental problem solved in this paper is how
to securely and correctly \write up" in terms of ab-
stract operations. The solution is cast in context of the
object-oriented data model because it is the most exi-
ble data abstraction model known to the authors. The
essential insight is that a logically synchronous com-
putation which \writes up" in terms of abstract en-
capsulated operations (rather than primitive read and
write operations) must be executed asynchronously
to be secure with respect to timing channels in the
computation model. To achieve this and be correct
(i.e., equivalent to the logically sequential computa-
tion) the actual asynchronous execution must keep
available multiple versions of the data. It is necessary
to be su�ciently concrete in the data model and sys-
tem architecture in order to completely describe the
solution. Our algorithms, being asynchronous, are in-
herently distributed and their precise interactions can
only be described with the degree of detail given in this
paper. We conjecture there is some abstract descrip-
tion of this problem and solution but such abstraction
is beyond our current understanding of the problem.

Traditional security models such as Bell-LaPadula [3]
view \write up" in a very di�erent way and there-
fore this requirement of asynchronous execution does
not arise in these models. If \write up" is permitted
only in terms of machine language instructions, such
as STORE, it is reasonable to assume that STORE op-
erations will take a �xed amount of time independent
of the data and address. In reality this assumption
is an approximation of what happens in modern com-
puters. For example, in the presence of paging we can-
not predict how long a STORE operation will actually
take. Timing channels similar to those identi�ed in
this paper therefore exist in paged systems. Similarly
in multi-processor systems with blocking interconnec-
tion networks the execution time of a STORE instruc-
tion is no longer constant. It can be modulated to
create timing channels of very high bandwidth. These
timing channels have created considerable consterna-
tion in the security community [1].

Another problem with the Bell-LaPadula view of
\write up" is that it only permits blind writes (i.e.,
modi�cation of existing higher-level data is not per-
mitted while its overwriting is permitted). Therefore
an unclassi�ed transaction cannot debit or credit a
secret account. It can write the balance of this se-
cret account independent of the previous balance, but

Figure 1: Objects in a payroll database

this is not a very useful operation. The message-�lter
model on the other hand allows arbitrary abstract op-
erations, such as credit and debit, for \write up." It is
consequently a fundamentally richer model than Bell-
LaPadula. It is by no means obvious that the message
�lter model can be implemented with a kernelized ar-
chitecture and within the framework of the Orange
Book. Our objective in this paper is to show that this
can be done.

The rest of this paper is organized as follows. Sec-
tion 2 gives an example to illustrate the problems ad-
dressed in this paper. Section 3 gives an overview of
the message �lter model and the message �ltering al-
gorithm. Section 4 presents a kernelized architecture
built on the typical architecture of existing object-
oriented database management systems. Section 5 ad-
dresses the implementation of the message �lter model
based on this architecture. Section 6 concludes the pa-
per.

2 An Illustrative Example

We illustrate the key problems addressed in this paper
by giving an example of a simple payroll database ap-
plication. A typical transaction in this application is
the processing of weekly payroll for an employee. The
weekly pay is given by the product of the weekly ac-
cumulated hours and the employee's hourly pay rate.

Our simple object-oriented database consists of three
classes of objects: (1) EMPLOYEE (Unclassi�ed), (2)
PAY-INFO (Secret), and (3) WORK-INFO (Unclassi-
�ed) with the corresponding attributes as shown in
�gure 1. Objects EMPLOYEE and WORK-INFO
are unclassi�ed as their attributes (such as name, ad-
dress, hours-worked) represent information about an
employee that can be made readily available. The ob-
ject PAY-INFO is secret because its attributes contain
sensitive information such as hourly-rate and weekly
pay.

The processing of an employee's weekly payroll re-



quires the exchange of three messages and three replies
between these objects. Processing is initiated by the
EMPLOYEE object sending a PAY message to the
PAY-INFO object. On receiving the PAY message,
object PAY-INFO sends the message GET-HOURS to
the object WORK-INFO in order to retrieve the accu-
mulated hours for the week. These hours are returned
to the PAY-INFO object in the message HOURS-
WORKED. Meanwhile, object EMPLOYEE receives
a NIL reply (as the actual reply cannot be returned
to the low level object) for the initial PAY message
and sends a RESET-WEEKLY-HOURS message to
WORK-INFO. This will reset the accumulated hours
to zero and enable the hours to be accumulated again
for the next pay period. Finally, a reply is sent for the
reset request in the message DONE.

We now elaborate on the issue of timing channels. In
the object-oriented model of computation, whenever
a message is received by an object a corresponding
method (piece of code) is selected and executed to
process the message. If we execute methods sequen-
tially, only one method can be executed (active) at
any given time. Thus in our example, after sending
the PAY message, the sender method in object EM-
PLOYEE is e�ectively blocked (suspended) and the
receiver method in PAY-INFO is executed. In such
a situation the NIL reply for the message PAY can-
not be sent until the method in PAY-INFO has ter-
minated. Further, under these conditions the method
in the high level object PAY-INFO can modulate the
timing of this NIL reply and thus introduce a timing
channel.

Our solution to close such timing channels is to make
the timing of the NIL reply independent of the ter-
mination of the receiver method. To achieve this, we
have to execute methods concurrently whenever mes-
sages are sent from a low-level object to a high level
one.y In our example, immediately after the PAY mes-
sage is sent, a NIL reply is returned to the blocked
method in EMPLOYEE. This NIL reply resumes exe-
cution of the blocked method in EMPLOYEE. At the
same time, on receipt of the PAY message, the re-
ceiver method in PAY-INFO is also executed (leading
to concurrent execution).

While the above scheme closes the timing channel, it
introduces a synchronization problem arising due to
concurrently executing methods. To illustrate with
our example, consider the scenario that could evolve
when both the sender and receiver methods (in ob-
jects EMPLOYEE and PAY-INFO) are executing con-
currently. Suppose an employee has accumulated 40

yIt is important to note that the solution presented here
only addresses timing channels that arise in our computational
model. Timing channels may still arise in a particular imple-
mentation of the computational model. For example, in the
payroll database the system overhead associated with concur-
rent processing of the GET-HOURS message may result in a
perceptibledelay in the reply to the RESET-WEEKLY-HOURS
message. These implementation dependent timing channels can
ultimately be eliminated only to the extent that the underlying
Operating System TCB is free of timing channels.

hours. With a pay rate of $4/hour the employee is en-
titled to a gross pay of $160. However, as both meth-
ods are executing concurrently, it is quite possible that
the RESET-WEEKLY-HOURS message is received at
object WORK-INFO before the GET-HOURS mes-
sage. The message GET-HOURS will thus retrieve
the reset hours (zero) instead of the actual hours ac-
cumulated for the week. This will result in the er-
roneous calculation of the weekly pay as zero which
is clearly not acceptable. Note that this problem does
not occur if the methods execute sequentially, because
we are guaranteed that the GET-HOURS message is
processed completely before the RESET-WEEKLY-
HOURS message.

In this paper, we show how to avoid such inconsis-
tencies arising due to the lack of synchronization by
the use of multiple versions of objects. Conceptually,
every update of an object results in a new version be-
ing created (in reality only a subset of these versions is
actually created in the system). The crux of our multi-
versioning scheme is to ensure that every message and
method remembers to retrieve the correct version of
the object requested. By correct we mean the version
representing the same state that would have existed
had the methods executed sequentially. In our exam-
ple the RESET-WEEKLY-HOURS message creates a
new version of the object WORK-INFO rather than
overwriting the accumulated hours for the week. The
earlier version is also retained in memory. This is the
version that existed before the message PAY was sent
and is thus the correct version required to process the
GET-HOURS message.

3 Message Filter Model

The main elements of the message �lter model are ob-
jects and messages. Every object is assigned a single-
level classi�cation.z Objects can communicate and ex-
change information only by sending messages among
themselves. The ow of messages and replies is medi-
ated by the message �lter. The message �lter decides,
upon examining a given message and the classi�ca-
tions of the sender and receiver, what action is ap-
propriate. It may let the message pass unaltered; or
it may interpose a NIL reply in place of the actual
reply (e.g., when a low object sends a message to a
high object requesting the value of one of the latter's
attributes); or it may take some other action (to be
discussed later). The message �lter is the analog of
the reference monitor in traditional access-mediation
models.

The message �lter must ensure that all information
ows are legal. Let L(O) represent the classi�cation
of an object O. We say that information can legally
ow from an object Oj to an object Ok if and only if
L(Oj) � L(Ok). All other ows are illegal.

zThere is no loss of modeling power due to the restriction
that objects be single-level as multilevel entities can still be
represented [6]. A user view of multilevel objects (called a con-
ceptual schema) is decomposed into one of single-level objects
that make up the corresponding implementation schema.



The message �lter has to ensure that all direct and
indirect ows are prevented. It utilizes two basic
schemes for achieving this. The �rst is to make the
backward owx ine�ective whenever a message is sent
from a sender to a receiver object with the latter hav-
ing a higher classi�cation. In this case, the actual
reply is intercepted by the message �lter and some in-
nocuous reply is substituted. We wish to emphasize
that a reply must always be returned for otherwise
the sender will remain blocked inde�nitely (waiting
for the reply). Thus whenever the backward ow is to
be made ine�ective, a NIL is substituted for the actual
reply. It is the implementation of this step which can
potentially introduce timing covert channels.

The second scheme prevents illegal forward and indi-
rect ows.{ This is achieved by setting the status of
method invocations. Every method invocation t, has
a status s(t), which is either unrestricted (U) or re-
stricted (R). A restricted method cannot update the
state (attributes) of an object whereas an unrestricted
method is allowed to do so. In order to prevent in-
direct ows, the method invocations by a restricted
method may be restricted as well.

The central idea in the security model is that informa-
tion ow is controlled by mediating the ow of mes-
sages. It is thus required that all basic object activity
such as access to internal attributes, object creation,
and invocation of local methods, be implemented by
having an object send messages to itself. The model
de�nes built-in primitive messages for this purpose.
These messages are READ, WRITE, and CREATE.k

The READ and WRITE messages request direct ac-
cess to local attributes. CREATE requests allocation
of space for the creation of a new object. The re-
sponse to a built-in message is carried out directly
by the system, according to pre-de�ned semantics,
rather than by invocation of a user-de�ned method.
All other messages are considered to be non-primitive
and their semantics are de�ned by invocation of ap-
propriate methods. The notion of an object sending a
message to itself is conceptual. The actual implemen-
tation of primitive messages is by system calls.

3.1 The Message Filtering Algorithm

The message �ltering algorithm is presented in �gure
2. We assume that O1 and O2 are sender and receiver
objects respectively. Also, let t1 be the method in-
vocation in O1 that sent the message m, and t2 the
method invocation in O2 on receipt of m. The two
major cases of the algorithm correspond to whether
or not m is a primitive message.

Cases (1) through (4) in �gure 2 deal with non-
primitive messages sent between two objects, say O1

xA backward ow occurs through the return value in the
reply received for a previous message [6].

{A forward ow occurs through the parameters in a mes-
sage [6]. An indirect ow from a sender to a receiver object
occurs through the parameters in messages sent by intermedi-
ate objects [6].

kIn practise, therewill be additionalprimitivemessages. The
three identi�ed here su�ce to illustrate the main ideas.

and O2. In case (1), the sender and the receiver are
at the same level. The message and the reply are al-
lowed to pass. The status of t2 will be the same as
that of t1. For the moment ignore the rlevel vari-
able. In case (2), the levels are incompatible and thus
the message is blocked and a NIL reply returned to
method t1. In case (3), the receiver is at a higher
level than the sender. The message is passed through,
but a NIL reply is returned to t1 while the actual re-
ply from t2 is discarded (thus e�ectively cutting o�
the backward ow). For case (4), the receiver is at
a lower level than the sender. The message and the
reply are allowed to pass. However, the status of t2
(in the receiver object) is restricted to prevent illegal
ows. In other words although a message is allowed to
pass from a high-level sender to a low-level receiver,
it cannot cause a write-down violation as the method
invocation in the receiver is restricted from updating
the state of any object.

We now illustrate cases (1), (3) and (4) as they apply
to the payroll database mentioned in �gure 1. Case
(1) occurs when the sender and receiver are at the
same level and applies to the message exchange be-
tween objects EMPLOYEE and WORK-INFO. The
message RESET-WEEKLY-HOURS and reply DONE
are both allowed to pass by the message �lter. Case
(3) applies to the message exchange between objects
EMPLOYEE and PAY-INFO. As the latter is clas-
si�ed higher, a NIL reply is returned in response to
the PAY message. Case (4) involves the objects PAY-
INFO and WORK-INFO. As the object WORK-INFO
is classi�ed lower than PAY-INFO the message GET-
HOURS and reply HOURS-WORKED are allowed to
pass. However, the method invocation in WORK-
INFO is given the restricted status. This prevents
the method from updating the state of object WORK-
INFO (which if allowed, would cause a write-down vi-
olation).

In processing such messages, we can visualize the gen-
eration of a tree of method invocations as shown in
�gure 3. The restricted methods are shown within
shaded regions. Suppose tk is a method for object Ok
and tn a method for object On which resulted due to
a message sent from tk to On. The method tn has a
restricted status because L(On) < L(Ok). The chil-
dren and descendants of tn will continue to have a
restricted status till such points as ts. The method ts
is no longer restricted because L(Os) � L(Ok) and a
write by ts to the state of Os no longer constitutes a
write-down. This is accounted for in the conditional
assignment to s(t2) in case (3) of �gure 2.��

The variable rlevel plays a critical role in determining
whether or not the child of a restricted method should
itself be restricted. It keeps track of the highest secu-
rity level encountered as a chain of method invocations
progresses. For example, consider a message sent from
a Secret object to a Con�dential one. The rlevel de-

��The message �ltering algorithm presented here improves
upon the version presented in [6]. The earlier version was unnec-
essarily restrictive as it required all descendants of a restricted
method such as tn to be restricted as well.



if O1 6= O2 _ m 62 fREAD, WRITE, CREATEg then case % i.e., m is a non-primitive message

(1) L(O1) = L(O2) : % let m pass, let reply pass

invoke t2 with

�
s(t2)  s(t1);
rlevel(t2) rlevel(t1);

return reply from t2 to t1;

(2) L(O1) � L(O2) : % block m, inject NIL reply
return NIL to t1;

(3) L(O1) < L(O2) : % let m pass, inject NIL reply, ignore actual reply
return NIL to t1;

invoke t2 with

�
s(t2)  if L(O2)<rlevel(O1) then s(t1) else U;
rlevel(t2) max[L(O2); rlevel(t1)];

discard reply from t2;

(4) L(O1) > L(O2) : % let m pass, let reply pass

invoke t2 with

�
s(t2)  R;
rlevel(t2) max[L(O1); rlevel(t1)];

return reply from t2 to t1;

end case;

if O1 = O2 ^ m 2 fREAD, WRITE, CREATEg then case % i.e., m is a primitive message

(5) m is a READ : % allow unconditionally
READ value; return value to t1;

(6) m is a WRITE : % allow if status of t1 is unrestricted
if s(t1) = U then [WRITE; return SUCCESS to t1;]

else return FAILURE to t1;

(7) m is a CREATE : % allow if status of t1 is unrestricted
if s(t1) = U then [CREATE O with L(O)  L(O1); return O to t1;]

else return FAILURE to t1;

end case;

Figure 2: Message �ltering algorithm

Figure 3: Method-invocation tree with restricted paths and subtrees



rived for the method invocation at the receiver object
will be Secret. The value of rlevel is initially equal to
the classi�cation of the �rst sender object in a chain
and subsequently derived for every method invocation.
If the rlevel of a method is higher than the level of
the object which the method accesses, the method is
given restricted status. On the other hand, if the value
of rlevel is the same as the level of a receiver object,
the method in the receiver object will be given the un-
restricted status. In other words, the restricted status
along the chain may be removed because write-down
violations and illegal ows can no longer occur. In case
(3), the status of method invocation t2 is the same as
that of t1 as long as the level of the receiver is lower
than the rlevel of the sender. The rlevel derived for
a method can have a higher value than those of ear-
lier methods. This happens if a sender object has a
higher classi�cation than the objects encountered so
far in the chain (as shown in case (4)). If the sender
and receiver objects have the same classi�cation (as
in case (1)), the rlevel of the receiver is the same as
that of the sender. Finally, if the sender and receiver
are incompatible (as in case (2)), the variable rlevel
plays no role.

We now discuss the handling of primitive messages.
READ operations (case (5)) never fail because read-
up operations cannot occur. This is because read
operations are con�ned to an object's methods and
their results can only be exported by messages or
replies which are �ltered by the message �lter. The
WRITE and CREATE operations invoked on receiv-
ing the WRITE and CREATEmessages (cases (6) and
(7)) will succeed only if the status of the method in-
voking the operations is unrestricted. If a WRITE or
CREATE operation fails, a failure message is sent to
the sender. This failure message does not violate se-
curity since information is owing upwards in level.
In the case of a CREATE message, the new object is
created at the same level as the object requesting the
CREATE.

4 A Secure Kernelized Architecture

In this section we illustrate how our secure architec-
ture is motivated by and built upon the architecture
of existing object-oriented database systems such as
ORION [4], IRIS [5], and GEMSTONE [10]. Figure 4
depicts the typical architecture of these systems. We
wish to emphasize that although there are substantial
di�erences in the features supported by the underlying
object-oriented models, architecturally these systems
are not that di�erent. This is analogous to procedu-
ral programming languages which di�er considerably
in their syntax and semantics but are typically imple-
mented using the same compiler architecture.

As can be seen in �gure 4, this architecture is a lay-
ered one consisting of storage and object layers. We
refer to the modules implementing these layers as the
storage manager and object server subsystems respec-
tively. The storage layer interfaces to the operating
system and �le system primitives. The functionality
supported by this module enables the read, write, and

Figure 4: A layered architecture for object-oriented
databases

creation of raw bytes representing untyped objects.
A unique pointer (identi�er) is associated with every
chunk of bytes representing an object. The associa-
tion between the pointers and the physical location of
objects is maintained in an object table. A request
to create a new object will result in the allocation of
a new pointer. This module typically provides other
functions such as concurrency control. In existing sys-
tems concurrency control is typically based on a check-
in/check-out paradigm [5, 10].

In contrast to the storage layer which manipulates raw
bytes, the object layer provides the abstraction of ob-
jects as encapsulated units of information (instances
of abstract data types). By supporting the notions
of messages, objects, classes, class-hierarchy, and in-
heritance, the object layer implements the underly-
ing object-oriented data model. The object layer thus
supports the functionality to enable objects to send
messages and replies to each other, to access and up-
date object states, as well as to create new objects.
The operations to access, update, and create objects
utilize the services of the lower storage layer.

We now discuss the primitive operations supported
by the storage and object layers. At the storage layer
these are READ, WRITE, and CREATE. These prim-
itives are invoked to read, write, and create bytes rep-
resenting objects. At the security perimeter of the ob-
ject layer the primitive operations are SEND, QUIT,
READ, WRITE, and CREATE. The READ, WRITE
and CREATE are the primitive messages discussed
in section 3. SEND and QUIT are system primitives
used by methods to send messages and replies. The
SEND primitive is invoked by a method to send a mes-
sage to a speci�ed object. If the SEND is permitted
to pass through the message �lter, it results in the
invocation of the appropriate method in the receiv-



Figure 5: A secure kernelized architecture

ing object. When a method execution terminates, the
QUIT primitive signals termination of the method and
returns the reply to the sender.

Before an object's state is accessed or updated, the
object has to be selected from the persistent store and
transferred to memory. This is typically accomplished
by an explicit or implicit OPEN operation. Finally,
the updates to object states are made permanent by
an explicit or implicit CLOSE/COMMIT operation. If
the user wishes to abandon the updates made during
a user session he/she can issue an ABORT request.
For simplicity of exposition, we have chosen implicit
OPEN and CLOSE/COMMIT operations.

In designing a secure architecture one of the critical
tasks involves determining the security perimeter. In
other words, we need to determine what functions and
modules need to be trusted and thus implemented
within the TCB. In this paper we assume that the
entire storage layer is trusted. This is a reasonable
assumption considering that this layer provides very
speci�c functions and is not terribly large. However,
as indicated in �gure 4 only a small portion of the
object layer needs to be trusted. In fact, the trusted
functions are precisely those required to implement
the message �lter.

Figure 5 depicts our secure kernelized architecture
that is derived from the architecture in �gure 4. As
can be seen in the �gure, the storage layer is entirely
within the TCB and essentially remains unchanged.

We refer to the storage manager here as the trusted
storage manager. The object layer however di�ers sig-
ni�cantly from the earlier architecture. The trusted
portion of the object layer now consists of a session
manager and one or more message manager modules.
A key aspect of our architecture is that the session
manager runs as a multilevel subject while the mes-
sage managers are single-level subjects with respect
to the Operating System TCB. The message manager
and session manager modules collectively implement
the message �ltering algorithm. The algorithms and
implementation details of these modules are the main
issues discussed in section 5.

5 Implementation Algorithms

In the previous section, we presented the object and
storage layers that make up the typical architecture of
current object-oriented database systems. In this sec-
tion, we focus on the trusted functions needed to make
such architectures secure as indicated in �gure 5. Our
objective is to stay within the general spirit of current
object-oriented DBMS architectures and suggest the
minimal modi�cations necessary for this purpose. Of
course, we also seek to keep the totality of the TCB
as small as possible.

5.1 The Trusted Storage Layer

First consider the storage layer. The storage layer
layer is implemented by a trusted module called the
trusted storage manager. This layer is responsible
for maintaining the association between object identi-
�ers, corresponding classi�cations of objects, and their
physical addresses on persistent storage in an object-
disk table. We assume the underlying trusted Oper-
ating System supports a segmented memory. Objects
are transferred to and from this segmented memory
as needed to enable the access and updates of object
states. Every object resides in its own segment in
memory which is labeled by the object's classi�cation.
The association between an object-identi�er and its
segment is stored in an object-segment table.

As mentioned earlier, schemes for transaction manage-
ment and concurrency control are often supported at
the storage layer. Existing object-oriented database
systems [5, 10] typically utilize the check in/check out
paradigm for this purpose. The basic idea here is that
a user checks out an object from a public database into
a private workspace. When the user has �nished with
the object (after reads and modi�cations) it is checked
back into the public database. Such a model of trans-
actions �ts neatly into the architecture we present in
this paper and can be handled by the storage manager
module. In particular, our implementation guarantees
that there cannot exist write-write conicts involving
users at multiple levels. In the security context, this
eliminates covert storage channels that could arise by a
low user's transaction being aborted or delayed due to
conicts with high-level transactions. Within a single-
level, conicts can be handled as in existing systems
(such as rolling back or aborting transactions).



5.2 Trusted Object Layer Subset

In contrast to the storage layer the object layer must
be mostly untrusted for a couple of reasons. Firstly it
is fairly large and complex. Secondly it is this layer
which is likely to be di�erent from one version of a sys-
tem to another. Object-oriented concepts such as in-
heritance and delegation are implemented within this
layer. We need room for exibility, options and con-
�gurability here. It is also inevitable that as users be-
come familiar with object-oriented systems they will
demand greater functionality in this layer. It is there-
fore vital that the trusted functions within the object
layer be clearly identi�ed and separated from the rest
of the object layer. The conceptual identi�cation of
this component has already been accomplished in the
message-�lter model, i.e., the trusted function is the
message �lter.

Let us consider the message �ltering algorithm of �g-
ure 2. This algorithm has been written in a procedural
notation and indeed much of it can be interpreted in
the usual sequential interpretation style of program-
ming languages. There is however one place, viz., case
(3) of the algorithm, where the usual sequential inter-
pretation breaks down. In this case, a message is sent
from an object to a receiver object at a higher level.
The message �lter now has to prevent any backward
ow of information that may occur through the reply
to this message. The message �lter achieves this by
returning a NIL value to the sender and discarding
the actual reply. However, in order to avoid a timing
channel, it should not be possible for the high method
to modulate the timing of the delivery of this NIL.
Thus, delivering the NIL value on the termination of
the method in the receiver (and e�ectively suspend-
ing/blocking execution of the sender method during
this period) is clearly not acceptable.

To address the above, our only alternative is to per-
mit concurrent computations as mentioned earlier in
section 2. In other words we should allow the sender
method that sent a message and the receiver method
to be invoked on receipt of this message, to execute
concurrently. However, the sender should not block af-
ter the send waiting for a reply. Hence the NIL reply is
returned immediately to the sender independent of the
receiver's termination point. The receiver's method is
executed by a newly created and concurrently running
message manager process.

While the concurrent solution above does eliminate
timing channels in our computational model, it intro-
duces the following synchronization problem: we must
ensure that the concurrent computations spawned to
close the timing channels are exactly equivalent to the
intended sequential execution of the methods. This
requirement introduces the major complication in our
implementation. A secure multiversion protocol for
this synchronization will be presented in a moment.

In general, several message managers may be created
for a user session, depending on the number of mes-
sages sent upwards in security levels. However there
exists only one session manager per user session. A
session manager coordinates the various message man-

agers and other relevant information pertinent to a
user session.

5.2.1 Trusted Message Manager

The message manager algorithms are shown in �gure
6 for processing SEND and QUIT requests. It is easy
to see the correspondence between the cases of the �l-
tering algorithm in �gure 2 and its implementation in
�gure 6. Every message manager runs at a �xed secu-
rity level given by lmsgmgr whose value is determined
by the session manager in a manner to be described
later.

The following functions in the �ltering algorithm need
to be implemented: (1) letting messages pass; (2)
blocking messages; (3) setting return values to NIL;
and (4) setting the status of method invocations.

To address the implementation of the above, we have
to consider the dynamics of message propagation and
method invocation in object-oriented systems. Con-
sider a message propagation sequence involving three
objects. Say, object O1 sends a message to O2 and this
results in the invocation of a method in O2. The ex-
ecution of this method may result in a message being
sent to O3. When the method in O3 �nishes execu-
tion, it will return a reply to O2. The general approach
used (as for example in [10]) to manage contexts for
such sequences of message propagations is to use a call
stack. Our architecture calls for such context manage-
ment to be done in a trusted fashion and thus by the
message manager. Each stack frame stores various in-
formation, such as the message parameters, regarding
a message. The integrity of this information has to be
guaranteed by the message manager.

We now describe the individual cases in �gure 6.
When a message m with parameters p is allowed to
pass, as in cases (1), (3), and (4), a new context frame
is pushed onto the call stack. In case (3), a new mes-
sage manager is created (by a FORK call to the ses-
sion manager as described later), and this operation
is done by the session manager while initializing the
stack of the new message manager. When a message
is blocked, as in case (2) (due to the incompatibility
between sender and receiver levels), no new frame is
pushed onto the stack. When the �ltering algorithm
calls for the return of a NIL value as a reply (as in
cases (2) and (3)), the message manager writes a NIL
value on the top frame of its stack. This value is sub-
sequently returned to the method that sent the mes-
sage. A method terminates by issuing a QUIT call
with the return value (r) as a parameter. The mes-
sage manager then pops the call stack. If the stack is
empty the message manager issues the TERMINATE
call to its session manager to terminate itself; other-
wise it writes the return value into the top frame of
the stack and resumes execution of the method which
was waiting for this reply.

Having discussed the non-primitive cases let us look
at the primitive messages. For a READ (case (5)),
there exists two possibilities. A read at the same level



procedure SEND(m, p, O1, O2)

if O1 6= O2 _ m 62 fREAD, WRITE, CREATEg then case % i.e., m is a non-primitive message

(1) L(O1) = L(O2) : PUSH-STACK(p); t2  select method for O2 based on m; start t2;

(2) L(O1) � L(O2) : WRITE-STACK(NIL); RESUME;

(3) L(O1) < L(O2) : FORK(lmsgmgr, O2, m, p, WStamp); WStamp WStamp + 1;
WRITE-STACK(NIL); RESUME;

(4) L(O1) > L(O2) : PUSH-STACK(p); t2  select method for O2 based on m; start t2;

end case;

if O1 = O2 ^ m 2 fREAD, WRITE, CREATEg then case % i.e., m is a primitive message

(5) m is a READ : if L(O1)= lmsgmgr then v  WSTAMP else v  RSTAMP(L(O1));
read O1 with maxfversion: version � vg;

(6) m is a WRITE : write O1 with version  WStamp;

(7) m is a CREATE : create O with L(O)  L(O1) and version  WStamp;

end case;

end procedure SEND;

procedure QUIT(r)

POP-STACK;
if EMPTY-STACK then TERMINATE(lmsgmgr,WStamp) else [WRITE-STACK(r); RESUME;]

end procedure QUIT;

Figure 6: Message manager algorithms for SEND and QUIT

of the message manager will result in the reading of
the latest version in memory. However, if it is a read
down request the version read will be the latest that
existed as of the time the message manager was forked.
In the case of a WRITE (case (6)), if a version with
time stamp WStamp already exists, it is overwritten
in place. If no such version exists, a new version with
time stamp Wstamp is created. A CREATE (case
(7)) results in the new object being created with the
current time stamp of the message manager. It is im-
portant to point out here that primitive messages are
processed by direct system calls and as such the per-
formance penalty incurred is minimal.

It remains to show how the e�ect of setting the status
of method invocations to restricted or unrestricted is
achieved. Recall that the message manager runs at a
�xed level given by lmsgmgr. Every method executed
by the message manager thereby also runs at the level
lmsgmgr. A method is prevented fromupdating an ob-
ject's state if it violates the standard ?{property of the
Bell-Lapadula security model [3]. Thus, for example, a
method invocation at the secret level is prevented from
writing into an unclassi�ed object's segment thereby
achieving the e�ect of a restricted method invocation
in the unclassi�ed object. An attempt such as this to
violate mandatory security will result in the return of
a \FAILURE" message to the sender's method.

The security level of a message manager is derived at
its time of creation and is equivalent to the rlevel
derived for the corresponding method invocation us-
ing the message �ltering algorithm. Thus, the level is

derived from the level of the receiver object and the
level of the parent message manager issuing the fork
(as shown in the algorithm for FORK in �gure 7).

The interface between a message manager and its ses-
sion manager is made up of two calls: (1) FORK is-
sued by a message manager to its session manager to
request the creation of a new message manager, and
(2) TERMINATE issued by a message manager to its
session manager to terminate itself. This brings us to
consideration of the session manager.

5.2.2 Trusted Session Manager

A session manager is a trusted multilevel subject in-
stantiated on behalf of every active user session in the
system. It is charged with the task of coordinating
the various message managers that are forked. The
algorithms implemented by the session manager are
shown in �gure 7 and are: (i) FORK and (ii) TER-
MINATE, and are used to respectively process fork
and terminate requests from message managers. Both
algorithms utilize a common procedure START to ini-
tiate execution of message managers. A fork request
may not result in the immediate execution of a new
message manager. This is because a session man-
ager enforces a discipline on the concurrent execution
of its message managers so as to achieve the desired
equivalence to the intended sequential execution. Cor-
respondingly, the termination of a message manager
may result in initiating the execution of a queued one.



procedure FORK(lmsgmgr, O2, m, p, WStamp);

mm pointer to msmgr node with level = lmsgmgr and status = active;
% there is a unique msgmgr node with these properties

% create a new msgmgr node with appropriate values
nn  pointer to a new msgmgr node; nn.level  maxflmsgmgr, L(O2)g; nn.lcreator  lmsgmgr;
nn.tcreation  WStamp; nn.object  O2; nn.message  m; nn.p  p;

case
mm.child 6= nil: % enqueue new msgmgr node at tail of mm.queue

nn.status  queued; nn.child  nil; nn.parent  nil; nn.queue  nil; enqueue nn on mm.queue;

mm.child = nil: % insert new msgmgr node as child of mm and activate it
nn.status  active; nn.child  nil; nn.parent  mm; nn.queue  nil; START(nn);

end case

end procedure FORK;

procedure TERMINATE(lmsgmgr, WStamp);

mm pointer to msmgr node with level = lmsgmgr and status = active;
% there is a unique msgmgr node with these properties

% mark this msgmgr as terminated and record its termination time
mm.status terminated; mm.tterminate WStamp;

% attempt to start a queued message manager or end-session if appropriate
loop  true;
while loop do begin case
mm.child 6= nil: % quit while loop

loop  false;

mm.child = nil ^ mm.queue = nil: % update RStamp, delete mm and look to parent (if any)
RStamp[mm.level] mm.tterminate;
if mm.parent = nil then END-SESSION else [mm mm.parent; mm.child nil];

mm.child = nil ^ mm.queue 6= nil % activate head of mm.queue as child of mm
hh  dequeue mm.queue; hh.child  nil; hh.parent  mm; hh.queue  nil;
START(hh); loop  false;

end case end while;

end procedure TERMINATE;

procedure START(nn);

%activate msgmgr node nn and run it concurrently
nn.status  active;
fork message manager process with

STACK  EMPTY-STACK; PUSH-STACK(nn.p);
lmsgmgr nn.level; RStamp[lcreator] nn.tcreation; WStamp  RStamp[nn.level];
t2  select method for nn.O2 based on nn.m; start t2;

end with;

end procedure START;

Figure 7: Session manager algorithms for FORK and TERMINATE



Consider the tree of message managers shown in �gure
8. The labeled nodes (circles) in the �gure represent
computations (message managers executing methods)
while the arrows represent messages. The �gure shows
a snapshot of a tree of message managers (compu-
tations) with message manager 1 at the unclassi�ed
level having sent messages to one secret object, one
top-secret object and one con�dential object in this
sequence. These receiver objects are at a higher level
than the sender and this has resulted in the forking
of message managers 2, 5, and 6 as the children of
1. Similarly message manager 2 at the secret level
has forked o� two message managers at the top-secret
level.

In managing such a tree of message managers the ses-
sion manager guarantees the following invariant.

� Only the leftmost computations are allowed to ex-
ecute concurrently.

The leftmost computations consist of the message
managers on the path from the root of the tree to
the leftmost leaf (message managers 1, 2, and 3 in �g-
ure 8), i.e., the leftmost path. The progress of the tree
of computations in �gure 8 as governed by the session
manager is shown in �gure 9. In each successive di-
agram, a terminated message manager that advances
the computation to the next stage is highlighted. Note
that the leftmost path has at most one message man-
ager at each ascending security level. This property
is the key foundation on which our synchronization
protocol is built.

The implementation of a protocol that guarantees the
above invariant requires the session manager to main-
tain various bits of state information for each message
manager. In particular the status of a message man-
ager is one of the following.

1. Active: If a message manager is one of the left-
most computations, it is allowed to execute and
is thus considered to be active.

2. Queued: If a message manager is not one of
the leftmost computations it is not allowed to be
active and is queued for later execution.

3. Terminated: When an active message manager
terminates its status is changed to terminated
until such point as it can be deleted from the
tree. Deletion is permitted only if all descendants
of this message manager have themselves termi-
nated and been deleted from the tree.

To summarize, the history of a message manager is
as follows: (i) possibly queued, (ii) active, (iii) termi-
nated, and (iv) purged from the tree.

Our objective is to ensure, in a secure manner, that the
concurrent computations managed by a session man-
ager achieve precisely the same result as the intended
sequential execution. The labels on the arrows in �g-
ure 8 convey the order in which the messages (sent to
higher level objects) are processed if we execute this

Figure 8: A tree of concurrent message managers

Figure 9: Progressive execution of �gure 8



tree of computations sequentially. This order can be
derived by a depth-�rst traversal of the tree. We illus-
trate the synchronization problem that arises when
methods are executed concurrently. In the payroll
database of �gure 1, consider a concurrent execution
of methods that led to the message sequence (as iden-
ti�ed by the message labels): a, d, e, f, b, c. In order
to achieve the same result as a sequential execution
(with message sequence: a, b, c, d, e, f ) the method
in object PAY-INFO should not see any changes in
WORK-INFO that occurred after it was forked.

5.3 Multiversion Synchronization

Solving such synchronization problems using classi-
cal techniques such as those based on locking and
semaphores is of course known to be unsuitable for
multilevel secure systems (as they introduce covert
channels). Our solution instead relies on retaining
multiple versions of objects in memory. Thus in
the above scenario the processing of the (e) RESET-
WEEKLY-HOURS message would result in the cre-
ation of a new version of object WORK-INFO with
the reset hours. However, an earlier version of ob-
ject WORK-INFO that existed before the method in
PAY-INFO was forked is used to process the (b) GET-
HOURS message. The versioning scheme is general-
ized for a tree of concurrent message managers and
must ensure that read-down requests see exactly the
object states that would have existed had the tree of
concurrent message managers executed sequentially in
a depth-�rst manner.

We now discuss the management of concurrent mes-
sage managers and the multiversion synchronization
scheme in detail as incorporated in the algorithms im-
plemented by the message and session managers. The
following timestamps are used for this purpose:

� WStamp. This is used by each message manager
to time stamp versions of objects written by the
message manager. Its initial value is determined
as the value of its parent's WStamp at the in-
stant that this message manager was forked. It is
incremented following every fork executed by this
message manager.

� RStamp. This is a table of time stamps, one
per level, used by the active message managers to
read the appropriate version at each level below
lmsgmgr (the version read at lmsgmgr is always
the most recent one). This table is updated on
every START operation and some TERMINATE
operations. An individual message manager only
sees that portion of this table which is for lev-
els strictly dominated by the message manager.
During the execution of a message manager this
portion of the table remains constant. The ses-
sion manager is responsible for maintaining the
RStamp table.

The session manager maintains a data structure to
keep information about the computation tree illus-
trated in �gure 8. This data structure is a doubly

Attribute Comment
status active, terminated or queued
level level of the message manager
lcreator level of creator
tcreation WStamp of creator
tterminate WStamp at termination
child pointer to child msgmgr
parent pointer to parent msgmgr
queue pointer to queue of msgmgr nodes
object receiving object
message message
p message parameters

Table 1: msmgr node data structure

linked list of msgmgr nodes with root pointing to the
head of the list. The list keeps track of the currently
active computations in the computation tree, i.e., the
leftmost path. Each msgmgr node in this list also
points to a queue of queued msgmgr nodes waiting to
become active. Each msgmgr node stores the informa-
tion shown in table 1 about the corresponding message
manager. These attributes should be self-explanatory
at this point.

Let us walk-through the algorithms beginning with
a fork request from a message manager (as shown
in case (3) in �gure 6). On issuing the fork a mes-
sage manager passes its security level (lmsgmgr) and
WStamp among other information to the session man-
ager. The message manager then increments the value
of WStamp. This ensures that it will write a new ver-
sion after issuing each fork. On receiving the fork the
session manager records the Wstamp received from
the message manager that issued the fork, in the tcre-
ation attribute of a new msgmgr node (see �gure 7).
If the parent message manager currently has an ac-
tive or terminated child in the tree, this fork request
is queued. Otherwise execution of the new message
manager is initiated by calling the procedure START.
START initializes a new stack for the created message
manager and updates the RStamp at the level of its
parent (creator) as well as its own WStamp. The up-
date of the RStamp entry of the parent ensures that
read down requests from the newly created message
manager (and its potential descendants) read the ver-
sion that existed before the new message manager was
forked. The new message manager updates its own
WStamp by looking up the RStamp entry at its own
level. The Wstamp is then subsequently used for pro-
cessing read and write requests from local methods
(and will be incremented after any fork call).

On receiving a terminate request (see �gure 7), the
session manager records the new status of the mes-
sage manager as terminated and further records the
WStamp in tterminate. The session manager then
checks to see if the terminated message manager has
an active or terminated child. If it does, no new com-
putations can be started and so the terminate algo-
rithm is exited. If the terminating message manager
has no child but has a non-empty queue of forked mes-
sage managers pending execution, the �rst one in the



queue is started by calling the START procedure. If
the above two conditions are not true, i.e., if there ex-
ists no child and no queue, then this message manager
can be purged from the data structure. The algorithm
then looks to the parent of this message manager to
see if execution of some queued message manager can
be initiated. Eventually the tree becomes empty and
the session terminates.

5.4 Analysis

We now informally sketch a proof of correctness for
the synchronization protocol presented in this paper.
Formal proofs are quite feasible but are beyond the
space constraints of this paper. We begin by making
clear what we mean by correctness. We can model
computations in our system as a sequence of events
as invoked by our algorithms. The events of interest
to us include: read, write, send, fork, quit, start, and
terminate. The events generated by the algorithms
clearly depend on the sequence in which methods are
executed. Now consider the sequence of events gen-
erated by a sequential execution of methods. In such
an execution once a method sends a message it waits
for the reply to this message before proceeding. We
can compare the results of such a sequential computa-
tion to the results obtained by corresponding methods
when executed concurrently under the supervision of
a session manager. If these results are equivalent, we
can conclude that our algorithms are correct (modulo
correctness of the sequential execution). In particular,
all read events in the concurrent execution should read
the same states of objects as in a sequential execution.

We make the following claims.

1. There exists only one active (executing) message
manager at a security level at any given time.
This has been discussed earlier.

2. There exists no write-write conicts at objects.
This is a natural outcome of 1.

3. Consider two write operations in an executing
method. We are guaranteed by our algorithms
that there will never exist an interleaving write
operation from a higher level method. This fol-
lows from the fact that write-down operations are
not permitted.

4. If two methods are at the same rlevel and an in-
terleaving write operation (caused by the second
method) occurs between the writes of an execut-
ing method, then the relative order of these writes
will be the same in both the sequential and con-
current executions. This is because methods at
the same rlevel are executed sequentially.

From (1) to (4) we see that when a method terminates
under the supervision of a session manager, it leaves
all the objects accessed in the same state as it would
have in a sequential execution. To make sure that
such consistent states of objects are made available
to the rest of the system, the session manger updates
the RStamp at the level of the terminated message

manager to reect the latest state of objects available.
This is done in the TERMINATE algorithm of �gure
7 by assignment of the variable tterminate to RStamp.

It now remains to show that a read operation obtains
the same state of objects as in a sequential execution.
If two methods m1 and m2 are executed sequentially
(i.e., m2 is invoked as a result of a SEND from m1)
m2 will always read the state of objects that existed
before the SEND. This is achieved in our synchroniza-
tion scheme by making a message manager remem-
ber the state by recording its parent's WStamp at the
time of fork (i.e., nn.tcreation WStamp in �gure 7).
This remembered state is then requested at the time
of execution (i.e., RStamp[lcreator] nn.tcreation, as
shown in �gure 7). This completes our proof sketch.

Turning to security we have demonstrated how our
�ltering algorithms enforce the security policy by pre-
venting illegal ows of information. In the imple-
mentation of our algorithms we have also addressed
the problems of timing channels. Our implementation
also eliminates covert channels that could arise due to
conicting operations issued by users at various secu-
rity levels. This is because our schemes for executing
methods guarantee that write-write conicts between
multiple users at di�erent security levels will not oc-
cur.

To get a perspective on the performance implications
of our schemes, we can look at the overhead intro-
duced. New concurrent computations are requested
only when messages are sent to higher levels. Also,
at most one message manager (computation) is active
at any level. This limits the overhead considerably in
comparison to schemes that require the creation of a
new process for every method to be executed in the
system. Also our synchronization scheme calls for new
versions to be created only if write operations occur
after a fork request by a message manager.

6 Conclusion

In this paper we have identi�ed the fundamental re-
quirement that secure \writing up" in terms of ab-
stract operations requires logically sequential com-
putations to be executed asynchronously. Further-
more to achieve this and be correct (i.e., equivalent to
the logically sequential computation) the actual asyn-
chronous execution must keep available multiple ver-
sions of the data. Our solution is cast in context of
the object-oriented data model because it is the most
exible data abstraction model known to the authors.
The algorithms, being asynchronous, are inherently
distributed and their interactions can be described
precisely only in a concrete context such as given in
this paper.

As a consequence of our concrete algorithmic descrip-
tion, we have given the conceptual implementation of
the message �lter security model using a traditional
TCB. This demonstrates that the complexity of an
object-oriented implementation is tractable. We have
mapped the message �ltering functions to the tradi-
tional system calls of a secure operating system ker-
nel. The trusted functions in our architecture are



object access, management from memory and persis-
tent store, message management, and context man-
agement. We have presented algorithms for manag-
ing asynchronous method execution and multi-version
synchronization. These algorithms eliminate timing
channels that arise in the logically sequential compu-
tational model of the message �ltering algorithm. The
synchronization protocols hold potential for optimiza-
tions such as reducing the number of versions that
need to be retained. We will be looking at such opti-
mizations in future work.
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