
Proceedings of IEEE Computer Security Foundations Workshop VI, Franconia, NH, June 1990, pages 152-158.

A Formal Framework for Single Level Decomposition of

Multilevel Relations

Sushil Jajodia� & Ravi Sandhu�

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030

Abstract

In this paper, we consider multilevel relations in
which security classi�cations are assigned at the gran-
ularity of individual data elements. Usually these mul-
tilevel relations exist only at the logical level. In real-
ity, a multilevel relation is decomposed into a collec-
tion of single level base relations which are then physi-
cally stored in a database, and a recovery algorithm is
used to reconstruct the original multilevel relation. In
this paper we formalize the relationship that exists be-
tween the decomposition-independent �ltered relations
and the multilevel relations obtained from decomposed
single level relations using the recovery algorithm. We
state three requirements that must be met by any de-
composition and recovery algorithms. In particular
our algorithms in [7] meet these requirements.

1 INTRODUCTION

In recent years, there have been several e�orts to
build multilevel secure relational database manage-
ment systems. A major issue is how access classes
are assigned to data stored in relations. The propos-
als have ranged from assigning access class to rela-
tions, assigning access classes to individual tuples in
a relation, or assigning access classes to individual at-
tributes of a relation.

Unlike these proposals, in the SeaView (Secure
Data Views) project security classi�cations are as-
signed to individual data elements of the tuples of a

�This research was supported (partially) by the Center for
Excellence in Command, Control, Communications, and Intel-
ligence at George Mason University. The Center's general re-
search program is sponsored by the Virginia Center for Innova-
tive Technology, MITRE Corporation, the Defense Communica-
tions Agency, CECOM, PRC/ATI, ASD (C3I), TRW, AFCEA,
and AFCEA NOVA.

relation. See table 1. This project began as a joint ef-
fort by SRI International and Gemini Computers with
the goal of designing and prototyping a multilevel se-
cure relational database management system that sat-
is�es the Trusted Computer System Evaluation Crite-
ria for Class A1 [5]. SeaView researchers have con-
siderably advanced the state of the art in multilevel
database security and the project itself has moved to
a prototype implementation phase using GEMSOS as
the underlying TCB along with the ORACLE rela-
tional DBMS [9]. SeaView has been extensively de-
scribed [4, 8, 9, 10, for instance].

In SeaView, subjects having di�erent clearances see
di�erent versions of the multilevel relation. A user
having a clearance at an access class sees only that
data which lies at that access class or below. Thus,
a user with Top Secret clearance will see the entire
relation in table 1, while a user having Secret clearance
will see the �ltered relation given in table 2.

Multilevel relations in SeaView exist only at the
logical level. In reality multilevel relations are de-
composed into a collection of single level base rela-
tions which are then physically stored in the database.
Completely transparent to users, multilevel relations
can be reconstructed from these base relations on user
demand. The practical advantages of being able to
decompose and store a multilevel real relation by a
collection of single level base relations are almost ob-
vious. In particular the TCB can enforce mandatory
controls with respect to the single level base relations
which allows the DBMS to mostly run as an untrusted
application on the TCB.

Although there have been some changes in SeaView
de�nitions and concepts it has for the most part re-
mained remarkably stable indicating that its founda-
tion is a sound one. Unfortunately there are aspects of
SeaView's decomposition of a multilevel relation into
single level ones which have not been stated or ana-
lyzed with the same rigor devoted to its other aspects.

A1 C1 A2 C2 A3 C3 TC

mad S 17 S x S S
foo S 34 S w TS TS
ark TS 5 TS y TS TS

Table 1: A Multilevel Relation R

A1 C1 A2 C2 A3 C3 TC

mad S 17 S x S S
foo S 34 S null S S

Table 2: A Secret Instance of R

As a result there are many subtle and nontrivial is-
sues which have been overlooked. Some of these were
pointed out by us in [7].

In this paper, we take a closer look at single level
decomposition of multilevel relations. Since a multi-
level relation is stored as single level relations, we need
two algorithms.

1. A decomposition algorithm which breaks multi-
level relations into single level relations.

2. A recovery algorithm to reconstruct original mul-
tilevel relations from single level ones.

How these two functions are related is formalized in
our �rst requirement in Section 4. The requirement
corresponds to the \lossless join property" in the stan-
dard relational theory.

We need to require more in a multilevel world since
a multilevel relation at an access class induces a fam-
ily of relation instances, one at each access class in
the security lattice. Likewise, when a multilevel re-
lation is decomposed into single level relations, these
single level relations are themselves partitioned among
groups of relations, one group (possibly empty) corre-
sponding to each descending access class in the secu-
rity lattice. Thus a relation instance at an access class
c can be obtained in two di�erent ways.

1. Directly from a higher level multilevel relation in-
stance by �ltering out data not dominated by c.

2. Indirectly from a higher level multilevel relation
instance by (i) decomposing at the higher level
into an equivalent collection of single level rela-
tions, (ii) casting aside those single level relations

not dominated by c, and (iii) �nally reconstruct-
ing the multilevel relation instance at c from the
collection in step (ii).

It is obvious that these two ways of arriving at the c
instance of a multilevel relation must yield identical
results, otherwise our decomposition and recovery is
simply incorrect.

There are conversely two di�erent ways of arriving
at a collection of single level relations equivalent to a
multilevel relation instance at access class c.

1. Directly decomposing the c instance of the mul-
tilevel relation.

2. Indirectly from the decomposition of some c0 mul-
tilevel relation instance for c0 > c by (i) decom-
posing at the c0 instance into its equivalent collec-
tion of single level relations, and (ii) casting aside
those single level relations not dominated by c.

From a security perspective these two methods must
give us precisely the same result. Otherwise we will
have interference from c0 to c opening up covert chan-
nels for leakage of information.

In this paper, we formalize the relationship that ex-
ists between the decomposition-independent �ltered
relations and the multilevel relations obtained from
the appropriate single level relations. We state two
additional requirements in Section 6 corresponding to
the two requirements informally outlined above. Our
decomposition and recovery algorithms of [7] are ex-
amples of algorithms that meet all three requirements.

2 BASIC CONCEPTS

The standard relational model [1, 2, 3] is concerned
with data without security classi�cations. Data are
stored in relations which have well de�ned mathemat-
ical properties.

A relation scheme R is a collection of attributes
names A1; A2; : : : ; An where each Ai corresponds to
some domain Di which is a set of values.

A relation over R is a set of distinct tuples of the
form (a1; a2; : : : ; an) where each element ai is a value
in domain Di.

Not all possible relations are meaningful in an ap-
plication; only those that satisfy certain integrity con-
straints (usually entity and referential integrity con-
straints de�ned below) are considered valid.

Let X and Y denote sets of one or more of the
attributes Ai in a relation scheme R. We say Y is

functionally dependent on X, written X ! Y , if given
any relation over R, it is not possible to have two tu-
ples in the relation with the same values for X but
di�erent values for Y . A candidate key of a relation
scheme (or relation) is a minimal set of attributes on
which all other attributes are functionally dependent.
It is minimal in the sense that no attribute can be dis-
carded without destroying this property. It is guaran-
teed that a candidate key always exists, since in the
absence of any functional dependencies it consists of
the entire set of attributes. There can be more than
one candidate key for a relation with a given collection
of functional dependencies.

The primary key of a relation is one of its candi-
date keys which has been speci�cally designated as
such. The primary key serves the purpose of selecting
a speci�c tuple from a relation instance as well as of
linking relations together.

The standard relational model incorporates two in-
tegrity rules, called entity integrity and referential in-
tegrity. Our focus is on the former rule since the lat-
ter is not relevant to the topic of this paper. Entity
integrity simply requires that no tuple in a relation in-
stance can have null values for any of the primary key
attributes. This property guarantees that each tuple
will be uniquely identi�able.

Since we wish to introduce nulls in multilevel rela-
tions, we need to de�ne some notions and notations
used with relations whose tuples may contain nulls. It
is well known that null values in relational databases
result in tricky problems. Fortunately, nulls in multi-
level relations arise due to security considerations in
a speci�c manner which allows us to deal with them
cleanly and rigorously for the problems considered in
this paper.

We use a single type of null value. By a general
relationwe mean a relation over one or more attributes
that are allowed to have null values. Henceforth we
will understand relation to mean general relation and
will use the latter term only for added emphasis where
appropriate. Let G be a general relation on attributes
A1; : : : ; An. Let t and s be two tuples in an instance
of G. We say t subsumes s if for every attribute Ai,
either t[Ai] = s[Ai] or s[Ai] = null. That is t and s

agree everywhere except possibly for some attributes
where s has a null value and t a non-null value. G

is said to be subsumption free if it does not contain
two tuples such that one subsumes the other. Finally,
the nature of functional dependencies with null values
also needs clari�cation. Let X and Y be subsets of
A1; : : : ; An. A tuple t is X-total if it has no null value

for attributes in X. We say the null-valued functional
dependency (NFD) X ! Y is satis�ed by G if for
all X-total tuples t; t0 2 G such that t[X] = t0[X],
we have that t[Y] = t0[Y]. Note that t[Y] and t0[Y]
may contain nulls, and nulls are equal only to other
nulls. Henceforth we understand the term functional
dependency to mean NFD.

In the sequel, we assume that unless otherwise
stated all relations are made subsumption free by ex-
haustive elimination of subsumed tuples.

3 MULTILEVEL RELATIONS

Moving on to a multilevel world, we de�ne mul-
tilevel relations by extending the de�nitions given in
the previous section for the standard relational model.
The extension it turns out is not straight-forward. Un-
like the standard relational model where there is a sin-
gle relation corresponding to each relation scheme, a
multilevel relation scheme has di�erent instances at
di�erent access classes. Thus, the notion of a key is
inherently more complex than for a standard relation.
While in a standard relation the de�nition of candi-
date keys is based on that of functional dependencies,
in a multilevel setting the concept of functional depen-
dencies is itself clouded because a relation instance is
now a collection of sets of tuples rather than a sin-
gle set of tuples. Rather than trying to resolve this
complex issue here, we follow the lead of SeaView and
assume there is a user speci�ed primary key AK con-
sisting of a subset of the data attributes Ai. This is
called the apparent primary key of the multilevel re-
lation scheme. Henceforth we understand the term
primary key as synonymous with apparent primary
key.

In order to simplify the notation, we use A1 instead
ofAK from now on. It should be understood, however,
that in general A1 will consist of multiple attributes.
Our de�nition now consists of two parts:

De�nition 1 [MULTILEVEL RELA-
TION SCHEME] A state-invariant multilevel rela-
tion scheme

R(A1; C2; A2; C2; : : : ; An; Cn; TC)

where each Ai is as before an attribute over domain
Di, each Ci is a classi�cation attribute for Ai and TC
is the tuple-class attribute. The domain of Ci is spec-
i�ed by a range [Li;Hi] which de�nes a sub-lattice of
access classes ranging from Li up to Hi. The domain
of TC is [lubfLig; lubfHig]. 2

De�nition 2 [RELATION INSTANCES] A col-
lection of state-dependent relation instances

Rc(A1; C2; A2; C2; : : : ; An; Cn; TC)

one for each access class c in the given lattice. Each
instance is a subsumption free set of distinct tuples of
the form (a1; c1; a2; c2; : : : ; an; cn; tc) where each ai 2
Di, c � ci and tc = lubfcig. Moreover, if ai is not null
then ci 2 [Li;Hi]. We require that ci be de�ned even
if ai is null, i.e., a classi�cation attribute cannot be
null. Since tc is computed from the other classi�cation
attributes from now on we will include it or omit it as
convenient. 2

The multiple relation instances are, of course, re-
lated; each instance is intended to represent the
version of reality appropriate for each access class.
Roughly speaking, each element t[Ai] in a tuple t is
visible in instances at access class t[Ci] or higher; t[Ai]
is replaced by a null value in an instance at a lower
access class. We will give a more formal description
using the �lter function in Section 5.

It seems appropriate to consider the semantic of
null values in tuples. A null value has two interpreta-
tions: the �rst corresponds to the usual semantics in
the standard relational theory depending on the con-
text and the second corresponds to security consider-
ations. Thus, a null value could be interpreted as an
unknown value which exists but is not recorded (for
whatever reason), as a nonexistent value (such as an
unassigned phone number), or as an inapplicable value
(such as maiden name of a male employee). In the se-
curity context a null could also mean that a value, if
it exists, cannot be seen at that access class.

Similar to the standard relational model, not all re-
lation instances Rc are valid in an application; only
those that satisfy certain integrity constraints are
valid. For now we assume that there is a set F which
speci�es all constraints, and we enforce these con-
straints in all valid instances. Since di�erent mod-
els have proposed di�erent sets of constraints [11], for
now we choose to not be explicit about the contents of
the set F . We will state in Section 6 some properties
we require of decomposition and recovery algorithms.
The point we wish to emphasize is that these require-
ments are sensible, independent of the exact choice of
F or even the exact decomposition and recovery algo-
rithms.

4 LOSSLESS DECOMPOSITION

Since we store a multilevel relation Rc as a collec-
tion of single level relations, it is reasonable to require
that the information contained in Rc must be equiv-
alent to the information contents of the single level
relations. We formalize the notion of equivalence as
follows.

The Decomposition Function

Let Rc(A1; C1; A2; C2; : : : ; An; Cn) be a multilevel
relation. We assume that there is a decomposition
function � which takes a multilevel relation Rc and
yields a collection Rc of single level relations fR̂j;cj :

j = j1; : : : ; jng, where the access class of R̂j;cj is cj.
In other words,

�(Rc) = Rc = fR̂j;cj : j = j1; : : : ; jng

We wish to be as general as possible in developing our
framework, so we will not constrain the R̂ relations
very much. These relations are single level in the sense
that they should satisfy all requirements of traditional
relational theory. The attributes of these relations are
simply data attributes, and there is no formal concept
of a classi�cation attribute. That is, when some Ci

does �gure as an attribute of R̂ it is formally treated as
a piece of data just as an Aj attribute would be. One

would expect the attributes of the R̂'s to be subsets
of the attributes of Rc, but we do not make this a
requirement.

It is reasonable to require that if we start with two
di�erent multilevel relations Rc and Sc, then � will
yield di�erent collections of single level relations. That
is we require that � be a one-to-one function: if Rc 6=
Sc , then �(Rc) 6= �(Sc).

The Recovery Function

Next, we wish to have each tuple in Rc be somehow
recoverable from the tuples in the collection �(Rc) =
fR̂j;cj : j = j1; : : : ; jng. Thus, we require a recovery

function � which takes as input the single level R̂ re-
lations and reconstructs the multilevel relation Rc. In
other words, we require that

� (fR̂j;cj : j = j1; : : : ; jng) = Rc

Lossless Requirement

Obviously these two functions � and � have to be
related; one is an \inverse" of the other, as de�ned

Rc �! Rc = �(Rc) �! Rc

Rc � Rc = � (Rc) � Rc

Figure 1: Requirement 1

below. This gives us the �rst of our three requirements
for decomposition and recovery functions.

Requirement 1 Let � and � denote the decompo-
sition and recovery functions, respectively. For any
multilevel relation Rc, � � �(Rc) = Rc. 2

This requirement can be visualized as shown in �gure
1. The proof outlined in [4] for the proposed SeaView
decomposition described there amounts to proving re-
quirement 1.

Requirement 1 corresponds to the \lossless join
property" in the standard relational theory. If we
end up with more tuples during reconstruction than
what we had originally in Rc, then we have lost some
information. Our �rst requirement guarantees that
when we decompose tuples in a multilevel relation into
smaller tuples, only the original tuples can be recov-
ered; unwanted combinations never occur.

One might attempt to extend requirement 1 to in-
clude its converse, i.e., � � � (Rc) = Rc. This is how-
ever too strong because the decomposition � may not
be onto. So the domain of � will have elements outside
the range of �. The converse of requirement 1 should
hold for those Rc in the range of �(Rc). This will
follow from the requirements we will be formulating.

Before we can state our other two requirements,
we need to de�ne precisely how various instances of
a multilevel relation scheme are related. This is done
using the �lter function, de�ned in the next section.

5 FILTERED INSTANCES

In this section, we formally de�ne a �lter function
which maps a multilevel relation to di�erent instances,
one for each descending access class in the security
lattice. The �lter function limits each user to that
portion of the multilevel relation for which he or she
holds a clearance.

De�nition 3 [Filter Function] Given the c-
instance Rc of a multilevel relation the �lter function
� produces the c0-instance Rc0 = �(Rc; c

0) for c0 � c.
A tuple t0 2 Rc0 if and only if t0 can be derived from
some t 2 Rc as follows:

t0[A1; C1] = t[A1; C1]

t0[Ai; Ci] =

�
t[Ai; Ci] if t[Ci] � c0

< null; c1 > otherwise
for 1 < i � n

2

The following properties of � are easily veri�ed.

1. �(Rc; c) = Rc.

2. For c00 < c0 < c, �(�(Rc; c
0); c00) = �(Rc; c

00)

The �rst property states that �ltering a relation in-
stance at its own level has no e�ect. The second states
that �ltering twice successively at descending levels
has the same e�ect as �ltering directly to the second
level. Both properties are natural ones to expect of a
�lter function.

Now, we can use � to describe how the various in-
stances Rc of a relation scheme are related. Requiring
the instances of a multilevel relation to be related by
� gives the inter-instance property of SeaView.

De�nition 4 [Inter-Instance Property] Let R be
a relation scheme, and let Rc and Rc0 be two relation
instances of R such that c0 < c. Then we have that
�(Rc; c

0) = Rc0 . 2

6 FORMAL FRAMEWORK

As we have seen, we can view a multilevel relation
Rc in two di�erent ways: One way to view Rc is as a
collection of instances at di�erent access classes by ap-
plication of the �lter function. The other way to view
Rc is as a family Rc of single level relations obtained
using the decomposition algorithm. In this section, we
show how these di�erent views �t together in our for-
mal framework. First we require one more de�nition.

De�nition 5 [Projection Function] Let Rc =
fR̂j;cj : j = j1; : : : ; jng be a collection of single level

relations such that the access class of R̂j;cj is cj . Given
an access class c0, we de�ne the projection of Rc at ac-
cess class c0 as follows:

Rc0 = �(Rc; c
0) = fR̂k;ck : R̂k;ck 2 Rc ^ ck � c0g 2

Note that the projection function is a given. Its de�-
nition captures the mandatory access control for reads
as applied to the storage objects containing the R̂ re-
lations. Note that Rc0 � Rc and Rc0 may possibly be
empty.

Now we can state our remaining two requirements.

Requirement 2 Let Rc be a multilevel relation, and
let c0 be an access class such that c0 � c. As before, let
� denote the �lter function, and � and � denote the de-
composition and recovery functions, respectively. Let
Rc = fR̂j;cj : j = j1; : : : ; jng where each R̂cj is a
single level relation at access class cj .

We can derive the c0-view of Rc in one of the fol-
lowing two ways:

1. Directly from Rc by applying the �lter function �
to Rc to obtain the c0-instance: Rc0 = �(Rc; c

0):

2. From decomposed single level relations Rc =
fR̂j;cj : j = j1; : : : ; jng by

(a) �rst selecting those relations which are at or
below access class c0 by means of �(Rc; c

0),
and then

(b) applying the recovery function � to this lat-
ter collection of single level relations.

Our requirement is that both ways produce identical
results. That is,

�(Rc; c
0) = � � �(�(Rc); c

0) 2

We can describe the above situation in terms of the
diagram given in �gure 1. Our second requirement is
that this diagrammust be commutative. Requirement
2 is a generalization of requirement 1, which is neces-
sary in the context of multilevel relations. Figure 1 is
a special case of �gure 2 when c = c0, in which event
both � and � are trivially the identity transformation.

We regard requirement 2 as stating the correct-
ness criteria for the decomposition and recovery al-
gorithms. Our next requirement, illustrated in �gure
3, states the security criteria. It is based on the suppo-
sition that Rc0 will be visible to c0 subjects. Therefore
it must appear as though Rc0 was created directly at
c0 rather than being derived by projection from Rc.
Otherwise we have interference from higher to lower
security classes.

Requirement 3 Let Rc0 be a multilevel relation such
that Rc0 = �(Rc; c

0), and let � denote the decompo-
sition function. We can decompose Rc0 into a set of
single level relations in two di�erent ways:

Rc �! Rc = �(Rc) �! Rc

#

Rc0 = �(Rc; c
0) Rc0 = �(Rc; c

0)

#

Rc0 � Rc0 = � (Rc0) � Rc0

Figure 2: Requirement 2

Rc �! Rc = �(Rc) �! Rc

#

Rc0 = �(Rc; c
0) Rc0 = �(Rc; c0)

#

Rc0 �! Rc0 = �(Rc0) �! Rc0

Figure 3: Requirement 3

1. Apply the decomposition function � to Rc0 di-
rectly to obtain a collection of single level rela-
tions Sc0 = fŜk;ck : k = k1; : : : ; kmg where each

Ŝk;ck is a single level relation at access class ck.

2. First decompose Rc into single level relations
fR̂j;cj : j = j1; : : : ; jng by applying the decom-
position function � to Rc, and then select those
relations from �(Rc) which are at or below access
class c0 to get Rc0 .

Our second requirement is that both ways produce
identical results. That is

� � �(Rc; c
0) = �(�(Rc); c0) 2

In other words our third requirement is that the dia-
gram of �gure 3 must be commutative.

To make requirement 3 more concrete consider the
hypothetical decomposition shown in table 3(a), where
the multilevel relation RS is mapped by � to the collec-
tion RS of single level relations R̂1;S, R̂2;U and R̂3;U.

Each of these R̂'s consists of a single tuple. Projecting
RS to get RU leaves us with R̂2;U and R̂3;U as shown
in table 3(b). Say that our hypothetical recovery al-
gorithm gives us RU as shown there. This postulated
recovery is very plausible since the tuple in R̂3;U is

simply subsumed by that in R̂2;U. Yet it is di�cult
to think of a decomposition which will yield RU of
table 3(b) from RU. The decomposition of table 3(c)
is far more plausible. But then tables 3(b) and 3(c)
collectively violate requirement 3.

The decomposition and recovery algorithms of [7]
are examples of algorithms that satisfy all three re-
quirements. An outline for the proof of requirement
2 is given in [7] and requirement 3 can be similarly
proved. Requirement 1 is of course a special case of re-
quirement 2. The proof outlined in [4] for the proposed
SeaView decomposition described there amounts to
proving requirement 1. Since the SeaView algorithms
are based on the outer join operation it will require
greater e�ort to prove requirements 2 and 3 as com-
pared with proving these for the algorithms of [7].

7 CONCLUSION

In this paper we have provided a conceptual frame-
work for dealing with multilevel real relations as a
collection of single level base relations. We have
formalized the relationship that exists between the
decomposition-independent �ltered relations and the
multilevel relations obtained from decomposed single

level relations using the recovery algorithm. We state
three requirements that must be met by any decom-
position and recovery algorithms. Our decomposi-
tion and recovery algorithms in [7] meet these require-
ments.

In terms of future work much remains to be done.
The e�ciency of the recovery algorithm is clearly cru-
cial to the query response time. It is therefore impor-
tant to consider further optimizations to our recovery
algorithm of [7]. Since we decompose a multilevel real
relation as a collection of single-level base relations, it
remains to show that an update to a multilevel relation
can be correctly translated into equivalent updates to
base relations, and conversely. This will provide a for-
mal basis for the updatability of multilevel relations
vis-a-vis base relations. A formal consideration of up-
dates is also necessary to show that the data model
does not contain covert channels.

Acknowledgement

We are indebted to John Campbell, Joe Giordano,
and Howard Stainer for their support and encourage-
ment, making this work possible.

References

[1] Codd, E.F. \A Relational Model of Data for
Large Shared Data Banks." Communications of
ACM 13(6): (1970).

[2] Codd, E.F. \Extending the Relational Database
Model to Capture More Meaning." ACM Trans-
actions on Database Systems 4(4): (1979).

[3] Date, C.J. An Introduction to Database Systems.
Volume I, Addison-Wesley, fourth edition (1986).

[4] Denning, D.E., Lunt, T.F., Schell, R.R., Shock-
ley, W.R. and Heckman, M. \The SeaView Secu-
rity Model." IEEE Symposium on Security and
Privacy, 218-233 (1988).

[5] Department of Defense National Computer Secu-
rity Center. Department of Defense Trusted Com-
puter Systems Evaluation Criteria. DoD 5200.28-
STD, (1985).

[6] Gajnak, G.E. \Some Results from the Entity-
Relationship Multilevel Secure DBMS Project."
Aerospace Computer Security Applications Con-
ference, 66-71 (1988).

[7] Jajodia, S. and Sandhu, R.S. \Polyinstantiation
Integrity in Multilevel Relations." IEEE Sympo-
sium on Security and Privacy, Oakland, Califor-
nia, May 1990, to appear.

[8] Lunt, T.F., Denning, D.E., Schell, R.R. Heck-
man, M. and Shockley, W.R. \Element-Level
Classi�cation with A1 Assurance." Computers &
Security, Feb. 1988.

[9] Lunt, T.F., Schell, R.R., Shockley, W.R., Heck-
man, M. and Warren, D. \A Near-Term Design
for the SeaView Multilevel Database System."
IEEE Symposium on Security and Privacy, 234-
244 (1988).

[10] Lunt, T.F., Denning, D.E., Schell, R.R. Heck-
man, M. and Shockley, W.R. \Secure Distributed
Data Views. Volume 2: The SeaView Formal Se-
curity Policy Model." SRI-CSL-88-15 (1989).

[11] Sandhu, R. S., Jajodia, S. and Lunt, T. \A New
Polyinstantiation Integrity Constraint for Multi-
level Relations." IEEE Workshop on Computer
Security Foundations, Franconia, New Hamp-
shire, June 1990, to appear.

