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ABSTRACT

The single-object typed access matrix (SOTAM) model was recently in-
troduced in the literature by Sandhu and Suri. It is a special case of
Sandhu's typed access matrix (TAM) model. In SOTAM individual com-
mands are restricted to modifying exactly one column of the access ma-
trix (whereas individual TAM commands in general can modify multiple
columns). Sandhu and Suri have outlined a simple implementation of
SOTAM in a distributed environment using the familiar client-server ar-
chitecture. In particular the stipulation that each command modi�es a
single column of the access matrix, is reected in the desirable property
that each command modi�es a single access control list corresponding to
that column. In this paper we show that TAM and SOTAM are formally
equivalent in their expressive power. This result establishes that SOTAM
has precisely the same expressive power as TAM, while having a simple
implementation at the same time. In a nutshell, this result tells us that
manipulation of access control information can be achieved in its most
general form by manipulation of a single access control list (ACL) at a
time.

1The work of both authors is partially supported by National Science Foundation grant CCR-
9202270. Ravi Sandhu is also supported by the National Security Agency through contract MDA904-
92-C-5141. We are grateful to Dan Atkinson, Nathaniel Macon, Howard Stainer, and Mike Ware for
their support and encouragement in making this work possible.
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1 Introduction

The need for access controls arises in any computer system that provides for controlled
sharing of information and other resources among multiple users. Access control
models (also called protection models or security models) provide a formalism and
framework for specifying, analyzing and implementing security policies in multi-user
systems. These models are typically de�ned in terms of the well-known abstractions
of subjects, objects and access rights with which we assume the reader is familiar.

Access controls are useful to the extent they meet the user community's needs.
They need to be exible so that individual users can specify access of other users to
the objects they control. At the same time the discretionary power of individual users
must be constrained to meet the overall objectives and policies of an organization.
One method for achieving the desired exibility is to allow security administrators
to specify policies for propagation rights, which allow some discretionary freedom to
users but at the same time impose some non-discretionary rules. Several such policies,
and access control models for their speci�cation, have been published in the literature
(see for example [1, 5, 6, 7, 9, 11]).

Security models based on propagation of access rights must confront the safety
problem. In its most basic form, the safety question for access control asks: is there
a reachable state in which a particular subject possesses a particular right for a
speci�c object? There is an essential conict between the expressive power of an
access control model and tractability of safety analysis. The access matrix model
as formalized by Harrison, Ruzzo, and Ullman (HRU) [3] has very broad expressive
power. Unfortunately, HRU also has extremely weak safety properties.

Recently Sandhu [8] has shown how to overcome the negative safety results of HRU
by introducing strong typing into the access matrix model. The resulting model is
called the typed access matrix (TAM). TAM combines the positive safety results
for the Schematic Protection Model [5] with the natural expressive power of HRU.
Although further work on the safety problem|particularly for non-monotonic cases|
remains to be done, it is clear from existing results that TAM o�ers tractable safety
analysis in many cases of practical interest.

This brings us to the feasibility of implementing TAM. An implementation of
TAM in its complete generality would be very cumbersome and awkward at best.
Sandhu and Suri [10] were therefore motivated to de�ne a simpli�ed version of TAM
called single-object TAM (SOTAM). They outlined a very simple implementation for
SOTAM in a distributed environment using the familiar client-server architecture.

The principal contribution of this paper is to demonstrate that TAM and SOTAM
are formally equivalent in terms of expressive power. This result establishes the fact
that SOTAM has the most general expressive power possible, while having a simple
implementation at the same time.

The rest of the paper is organized as follows. Section 2 gives a brief review of
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TAM and SOTAM. Section 3 proves equivalence of the expressive power of TAM and
SOTAM. The proof is in two steps. First we show equivalence without creation and
destruction of subjects and objects, followed by equivalence with such creation and
destruction. Section 4 gives our conclusions.

2 The TAM and SOTAM Models

In this section we review the de�nition of TAM, which was introduced by Sandhu
in [8]. Our review is necessarily brief. The motivation for developing TAM, and its
relation to other access control models are discussed at length in [8]. Following the
review of TAM we briey review the de�nition of SOTAM [10].

2.1 The Typed Access Matrix (TAM) Model

The principal innovation of TAM is to introduce strong typing of subjects and objects,
into the access matrix model of Harrison, Ruzzo and Ullman [3]. This innovation is
adapted from Sandhu's Schematic Protection Model [5], and its extension by Ammann
and Sandhu [1].

As one would expect from its name, TAM represents the distribution of rights in
the system by an access matrix. The matrix has a row and a column for each subject
and a column for each object. Subjects are also considered to be objects. The [X; Y ]
cell contains rights which subject X possesses for object Y .

Each subject or object is created to be of a speci�c type, which thereafter cannot
be changed. It is important to understand that the types and rights are speci�ed
as part of the system de�nition, and are not prede�ned in the model. The security

administrator speci�es the following sets for this purpose:

� a �nite set of access rights denoted by R, and

� a �nite set of object types (or simply types), denoted by T .

For example, T = fuser; so; fileg speci�es there are three types, viz., user, security-
o�cer and �le. A typical example of rights would be R = fr; w; e; og respectively
denoting read, write, execute and own. Once these sets are speci�ed they remain
�xed, until the security administrator changes their de�nition. It should be kept in
mind that TAM treats the security administrator as an external entity, rather than
as another subject in the system.

The protection state (or simply state) of a TAM system is given by the four-tuple
(OBJ; SUB; t; AM) interpreted as follows:

� OBJ is the set of objects.
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� SUB is the set of subjects, SUB � OBJ .

� t : OBJ ! T , is the type function which gives the type of every object.

� AM is the access matrix, with a row for every subject and a column for every
object. The contents of the [S;O] cell of AM are denoted by AM [S;O]. We
have AM [S;O] � R.

The rights in the access matrix cells serve two purposes. First, presence of a right,
such as r 2 AM [X; Y ] may authorize X to perform, say, the read operation on Y .
Second, presence of a right, say o 2 AM [X; Y ] may authorize X to perform some
operation which changes the access matrix, e.g., by entering r in AM [Z; Y ]. In other
words, X as the owner of Y can change the matrix so that Z can read Y .

The protection state of the system is changed by means of TAM commands. The
security administrator de�nes a �nite set of TAM commands when the system is
speci�ed. Each TAM command has one of the following formats.

command �(X1 : t1, X2 : t2, . . . , Xk : tk)
if r1 2 [Xs1 ; Xo1] ^ r2 2 [Xs2 ; Xo2] ^ : : :^

rm 2 [Xsm ; Xom]
then op1; op2; . . . ; opn

end

or

command �(X1 : t1, X2 : t2, . . . , Xk : tk)
op1; op2; . . . ; opn

end

Here � is the name of the command; X1, X2, . . . , Xk are formal parameters whose
types are respectively t1, t2, . . . , tk; r1, r2, . . . , rm are rights; and s1, s2, . . . , sm
and o1, o2, . . . , om are integers between 1 and k. Each opi is one of the primitive

operations discussed below. The predicate following the if part of the command is
called the condition of �, and the sequence of operations op1; op2; . . . ; opn is called
the body of �. If the condition is omitted the command is said to be an unconditional

command, otherwise it is said to be a conditional command.

A TAM command is invoked by substituting actual parameters of the appropriate
types for the formal parameters. The condition part of the command is evaluated
with respect to its actual parameters. The body is executed only if the condition
evaluates to true.

There are six primitive operations in TAM, grouped into two classes, as follows.
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enter r into [Xs; Xo]
create subject Xs of type ts
create object Xo of type to

(a) Monotonic Primitive Operations

delete r from [Xs; Xo]
destroy subject Xs

destroy object Xo

(b) Non-Monotonic Primitive Operations

It is required that s and o are integers between 1 and k, where k is the number of
parameters in the TAM command in whose body the primitive operation occurs.

The enter operation enters a right r 2 R into an existing cell of the access matrix.
The contents of the cell are treated as a set for this purpose, i.e., if the right is already
present the cell is not changed. The enter operation is said to be monotonic because
it only adds and does not remove from the access matrix. The delete operation has
the opposite e�ect of enter. It (possibly) removes a right from a cell of the access
matrix. Since each cell is treated as a set, delete has no e�ect if the deleted right
does not already exist in the cell. Because delete (potentially) removes a right from
the access matrix it is said to a non-monotonic operation.

The create subject and destroy subject operations make up a similar mono-
tonic versus non-monotonic pair. The create subject operation requires that the
subject being created has a unique identity di�erent not only from existing subjects,
but also di�erent from all subjects that have ever existed thus far.1 The destroy
subject operation requires that the subject being destroyed currently exists. Note
that if the pre-condition for any create or destroy operation in the body is false,
the entire TAM command has no e�ect. The create subject operation introduces
an empty row and column for the newly created subject into the access matrix. The
destroy subject operation removes the row and column for the destroyed subject
from the access matrix. The create object and destroy object operations are
much like their subject counterparts, except that they work on a column-only basis.

Two examples of TAM commands are given below.

� command create-�le(U : user; F : file)
create object F of type file

1There is some question about whether or not creation should be treated as a monotonic opera-
tion. The fact that creation consumes a unique identi�er for the created entity, which cannot be used
for any other entity thereafter, gives it a non-monotonic aspect. In our work we have always treated
creation as a monotonic operation. This is principally because systems without creation are not
very interesting. Treating creation as non-monotonic would therefore make the class of monotonic
systems uninteresting. Monotonic systems with creation are, however, an important and useful class
of systems.
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enter own in [U; F ]
end

� command transfer-ownership(U : user; V :
user; F : file)

if own 2 [U; F ] then
delete own from [U; F ]
enter own in [V; F ]

end

The �rst command authorizes users to create �les, with the creator becoming the
owner of the �le. The second command allows ownership of a �le to be transferred
from one user to another.

To summarize, a system in speci�ed in TAM by de�ning the following �nite com-
ponents.

1. A set of rights R.

2. A set of types T .

3. A set of state-changing commands, as de�ned above.

4. The initial state.

We say that the rights, types and commands de�ne the system scheme. Note that
once the system scheme is speci�ed by the security administrator it remains �xed
thereafter for the life of the system. The system state, however, changes with time.

2.2 The Single-Object TAM (SOTAM) Model

SOTAM is a simpli�ed version of TAM, with the restriction that all primitive op-
erations in the body of a command are required to operate on a single object. An
object is represented as a column in the access matrix. Similarly, when a subject is
the \object" of an operation, that subject is viewed as a column in the access matrix.
SOTAM stipulates that all operations in the body of a command are con�ned to a
single column.

To appreciate the motivation for SOTAM consider the usual implementation of
the access matrix by means of access control lists (ACL's). Each object has an ACL
associated with it, representing the information in the column corresponding to that
object in the access matrix. The restriction of SOTAM implies that a single command
can modify the ACL of exactly one object. These modi�cations can therefore be done
at the single site where the object resides. This greatly simpli�es the protocols for
implementing the commands. In particular, we do not need to be concerned about
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coordinating the completion of a single command at multiple sites. There is therefore
no need for a distributed two-phase commit for SOTAM commands. Further details
on an implementation outline of SOTAM are given in [10]. A central result of this
paper is that SOTAM has the same expressive power as TAM, in spite of its much
easier implementation.

3 Equivalence of TAM and SOTAM

This section develops the central result of this paper, which is the formal equivalence
of the expressive power of TAM and SOTAM. Since SOTAM is a restricted version
of TAM, every SOTAM system is also a TAM system. To establish equivalence we
therefore need to show that every TAM system can be simulated by a SOTAM sys-
tem. The construction to do this is quite intricate.2 For ease of exposition, and
understanding, we develop the construction in several phases. First, in section 3.1,
we identify an essential synchronization protocol which is a critical part of the overall
construction. Then, in section 3.2, we show that TAM systems without create or
destroy operations can be reduced to SOTAM systems. Finally we show, in sec-
tion 3.3, how TAM systems with create and destroy operations can be reduced to
SOTAM systems.

3.1 Two Column Synchronization Protocol

It is helpful to approach the TAM to SOTAM simulation by �rst looking at monotonic
systems. Recall that a scheme is monotonic if it does not delete any rights, and does
not destroy subjects or objects. Let us understand an operation to mean a command
with speci�c actual parameters. An important fact in monotonic systems is that once
the precondition for a command is satis�ed with respect to a given set of existing
subjects, no evolution of the protection state can cause the precondition to become
false. In other words, once an operation is authorized it will always remain authorized
in the future.

Given any monotonic TAM scheme, we can therefore get an equivalent mono-
tonic SOTAM scheme as follows. Each TAM command that modi�es n columns
is simulated by n SOTAM commands. Each of these SOTAM commands has the
same condition as the original TAM command, but each SOTAM command modi�es
exactly one of the columns modi�ed by the original TAM command. It is easy to
see that every sequence of TAM operations can be simulated by the corresponding

2It should be kept in mind that our constructions have to deal with the most general case, in
order to demonstrate formal equivalence. In practice we can often employ simpler constructions.
For example, the ORCON (originator control) example of [8] is very simply converted to a SOTAM
system in [10]. The mechanical construction given in this paper would yield a more complex SOTAM
system in this case.
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SOTAM operations. Conversely, any sequence of SOTAM operations corresponds
to a sequence of TAM operations some of which may only be partially completed.
However, the SOTAM sequence can be extended to complete all the partial TAM
operations. Therefore the two systems are equivalent.

The construction outlined above does not extend to non-monotonic systems. In
a non-monotonic system, operations which are currently authorized may have their
preconditions falsi�ed due to deletion of access rights by other non-monotonic op-
erations. At the same time, in SOTAM we have no choice but to simulate TAM
commands which modify multiple columns with multiple commands. The key to do-
ing this successfully is to prevent other TAM operations from interfering with the
execution of a given TAM operation. The simplest way to do this is to ensure that
TAM operations can be executed in the SOTAM simulation only one at a time. To
do this we need to synchronize the execution of successive TAM commands in the
SOTAM simulation (as described in section 3.2).

Thus, surprisingly, the problem of simulating TAM in SOTAM requires solution
of a synchronization problem. Moreover, the synchronization must be achieved using
SOTAM commands which can modify only one column at a time. This e�ectively
rules out standard synchronization solutions based on semaphores, locks, or similar
mechanisms. In e�ect we have to achieve synchronization without having shared
global variables that are writable by concurrent processes.

The basic synchronization problem, which we call two column synchronization,
is illustrated in �gure 1. The solution to this problem turns out to be critical in
constructing a SOTAM simulation of a TAM system. For the moment ignore the
SNC row and column in �gure 1. In �gure 1(a) subject S1 possesses the token,
represented by the token right in the [S1; S1] cell. After S1 is done using the token,
it is passed on to S2 as indicated in �gure 1(b). The next right in the [S1; S2] cell
serves to connect S1 to S2 in sequence, indicating that the token is to be passed from
S1 to S2. Similarly, S2 will pass the token on to S3 in turn.3 For the moment we can
ignore typing and, for simplicity, treat all entities as being of the same type s.

The TAM command for solving the two column synchronization problem is straight-
forward, as follows.

command transfer-token(S1 : s; S2 : s)
if token 2 [S1; S1] ^ next 2 [S1; S2] then

delete token from [S1; S1];
enter token in [S2; S2];

end

This command modi�es both columns S1 and S2, and is therefore not a SOTAM

3The exact manner in which the sequence of token passing is encoded in the access matrix is
not material to the synchronization problem. For illustrative purposes we have adopted the scheme
described here. The construction of section 3.2 uses a slightly di�erent technique.
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SNC S1 S2 S3 . . .

SNC 0 0 0 0 . . .

S1 token next . . .

S2 next . . .

S3 . . .
. . . . . . . . . . . . . . . . . .

(a) S1 possesses the token

SNC S1 S2 S3 . . .

SNC 0 0 0 . . .

S1 next . . .

S2 token next . . .

S3 . . .
. . . . . . . . . . . . . . . . . .

(b) The token has been transferred to S2

Figure 1: Two Column Synchronization

command.

The transfer-token TAM command can be simulated by four SOTAM commands,
which use the SNC row in the access matrix to synchronize. We use three rights
denoted 0, 1, and 2, for this purpose. Only one of these rights can be present at a
time in a [SNC; Si] cell, and they do not occur outside of the SNC row. Normally
each column Si has 0 2 [SNC; Si] indicating the quiescent state with respect to the
synchronization commands. The meaning of 1 2 [SNC; Si] is that Si is ready to pass
the token. The meaning of 2 2 [SNC; Sj] is that Sj is ready to receive the token.
The four SOTAM commands to simulate the transfer-token TAM command are as
follows.

command transfer-token-1(S1; SNC)
if token 2 [S1; S1] then

delete token from [S1; S1];
delete 0 from [SNC; S1];
enter 1 in [SNC; S1];

end

command transfer-token-2(S1; S2; SNC)
if 1 2 [SNC; S1] ^ next 2 [S1; S2] then
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delete 0 from [SNC; S2];
enter 2 in [SNC; S2];

end

command transfer-token-3(S1; S2; SNC)
if 1 2 [SNC; S1] ^ 2 2 [SNC; S2]^

next 2 [S1; S2]
then

delete 1 from [SNC; S1];
enter 0 in [SNC; S1];

end

command transfer-token-4(S1; S2; SNC)
if 0 2 [SNC; S1] ^ 2 2 [SNC; S2]^

next 2 [S1; S2]
then

delete 2 from [SNC; S2];
enter 0 in [SNC; S2];
enter token in [S2; S2];

end

The correctness of these commands is intuitively obvious, and a formal proof could
be easily given. Also note that the enter operation in the transfer-token-4 command
can be modi�ed to enter token0, rather than token, in [S2; S2]. In this way we can
pass a modi�ed token from one column to another by means of SOTAM commands.

We call the protocol described by these four commands as the two column syn-
chronization protocol. As we will see this protocol is repeatedly invoked in the con-
structions of this paper.

3.2 Equivalence Without Create and Destroy

We now prove the equivalence of TAM and SOTAM in the absence of create and
destroy operations. This is done by giving a procedure to construct a SOTAM system
that can simulate any given TAM system. Every TAM subject or object is simulated
in the SOTAM system as a subject (i.e., every column has a corresponding row in the
access matrix). In other words the access matrix of the SOTAM system is square.
This entails no loss of generality, since TAM subject are not necessarily active entities.

The SOTAM system contains a subject SNC of type snc, where snc is distinct
from any type in the given TAM system. The role of SNC is to enable two column
synchronization, as discussed in section 3.1. As we will see, SNC is also used to
sequentialize the execution of TAM operations, and to sequentialize the multiple
SOTAM operations needed to simulate a given TAM operation.
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The SOTAM system also contains the following rights, in addition to the rights
de�ned in the given TAM system.

� f0; 1; 2; token; token0g

� fpi;j j j = 1 : : : n; for each TAM command Ci

(where Ci has n parameters)g

Except for token, these rights occur only in the SNC row and column. The token
right also occurs in the diagonal cells of the SOTAM access matrix. It is assumed,
without loss of generality, that these rights are distinct from the rights in the given
TAM system.

The initial state of the SOTAM system consists of the initial state of the TAM
system augmented in two respects. First, an empty row is introduced for every TAM
object, which does not have a row in the given TAM access matrix. Secondly, the
SNC subject is introduced in the access matrix with [SNC; SNC] = ftoken; 0g, and
[SNC; Si] = f0g for all subjects Si 6= SNC.

In the absence of creates and destroys, the body of a TAM command with n
parameters can be rearranged to have the following structure.

command Ci(S1 : s1; S2 : s2; : : : ; Sn : sn)
if �(S1; S2; : : : ; Sn) then

enter in/delete from column S1;
enter in/delete from column S2;
. . .
enter in/delete from column Sn;

end

That is, the primitive operations occur sequentially on a column-by-column basis. Of
course, some of the columns may have no operations, being referenced only in the
condition part; but for the general case we assume the above structure.

Let us suppose the above TAM command is invoked with actual parameters
S1; S2; : : : ; Sn.

4 This operation will be simulated by several SOTAM operations. The
simulation proceeds in three phases, respectively illustrated in �gures 2, 3 and 4. In
these �gures we show only the relevant portion of the access matrix, and only those
rights introduced speci�cally for the SOTAM simulation. It is understood that the
TAM rights are distributed exactly as in the TAM system.

The �rst phase consists of a single SOTAM command Ci-I which tests whether
(i) the condition of the TAM command �(S1; S2; : : : ; Sn) is true, and (ii) whether

4For convenience and readability, we are using the same symbols for the formal parameters of
the command Ci, as well as for the actual parameters of a particular invocation of Ci. The context
will make it clear whether the symbol Si refers to a formal or actual parameter.
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token 2 [SNC; SNC]. The former test is obviously required. The latter ensures that
the SOTAM simulation of Ci(S1; S2; : : : ; Sn) can begin only if no other TAM operation
is currently being simulated. It also ensures that once phase I of the simulation
of Ci(S1; S2; : : : ; Sn) has started, the simulation will proceed to completion before
simulation of another TAM command can begin. In other words TAM operations are
simulated serially, with no interleaving. The phase I SOTAM command is as follows.

command Ci-I(S1 : s1; S2 : s2; : : : ; Sn :
sn; SNC : snc)

if �(S1; S2; : : : ; Sn) ^ token 2 [SNC; SNC]
then

enter pi;1 in [S1; SNC];
enter pi;2 in [S2; SNC];
. . .
enter pi;n in [Sn; SNC];
delete token from [SNC; SNC];
delete 0 from [SNC; SNC];
enter 1 in [SNC; SNC];

end

The body of this command enters pi;j in [Sj; SNC] for j = 1 : : : n, signifying that
Sj is the j-th parameter of the TAM command being simulated. It also removes the
token right from [SNC; SNC], and replaces 0 in [SNC; SNC] by 1 signifying that
the token can be moved from SNC column. The states of the access matrix, before
and after execution of Ci-I, are outlined in �gures 2(a) and 2(b) respectively.

In phase II of the simulation the token right is passed, in turn, from [SNC; SNC]
to [S1; S1] to [S2; S2], and so on to [Sn; Sn]. Each passage requires a total of four
SOTAM commands based on the two-column synchronization protocol of section 3.1.5

The details of the protocol are shown here only for the transfer of the token from
column Sj to Sj+1. The SOTAM commands for transferring the token from SNC to
S1, and from Sn to SNC are not explicitly shown, since they are so similar.

Let �(S1; S2; : : : ; Sn; SNC) represent the following predicate.

[pi;1 2 [S1; SNC] ^ pi;2 2 [S2; SNC] ^ : : : ^ pi;n
2 [Sn; SNC]

The changes in column Sj in the original TAM command are carried out by a SO-
TAM command whose condition tests for �(S1; S2; : : : ; Sn; SNC), and the presence of
the token in [Sj; Sj]. The SOTAM command which carries out the changes in column
Sj also removes token from [Sj; Sj], and replaces 0 in [SNC; Sj] by 1 signifying that

5One di�erence in detail is that the connection between consecutive columns is achieved by means
of the pi;j rights in the SNC column, rather than by the next right in the [Sj ; Sj+1] cell.
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SNC S1 S2 . . . Sn

SNC token, 0 0 0 0

S1

S2

. . .

Sn

(a)

SNC S1 S2 . . . Sn

SNC 1 0 0 0

S1 pi;1

S2 pi;2

. . .

Sn pi;n

(b)

Figure 2: SOTAM Simulation of the n-Parameter TAM Command Ci: Phase I

the token can be moved to the next column. The SOTAM command for simulating
changes by the TAM command in column j is shown below.

command Ci-II-j-1(S1 : s1; S2 : s2; : : : ; Sn :
sn; SNC : snc)

if �(S1; S2; : : : ; Sn; SNC) ^ token 2 [Sj; Sj]
then

enter in/delete from column Sj;
delete token from [Sj; Sj];
delete 0 from [SNC; Sj];
enter 1 in [SNC; Sj];

end

The two-column synchronization protocol, begun above, is then completed to move
token to [Sj+1; Sj+1], using the following commands.

command Ci-II-j-2(S1 : s1; S2 : s2; : : : ; Sn :
sn; SNC : snc)

if 1 2 [SNC; Sj] ^ �(S1; S2; : : : ; Sn; SNC)
then
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delete 0 from [SNC; Sj+1];
enter 2 in [SNC; Sj+1];

end

command Ci-II-j-3(S1 : s1; S2 : s2; : : : ; Sn :
sn; SNC : snc)

if 1 2 [SNC; Sj] ^ 2 2 [SNC; Sj+1]^
�(S1; S2; : : : ; Sn; SNC)

then
delete 1 from [SNC; Sj];
enter 0 in [SNC; Sj];

end

command Ci-II-j-4(S1 : s1; S2 : s2; : : : ; Sn :
sn; SNC : snc)

if 0 2 [SNC; Sj] ^ 2 2 [SNC; Sj+1]^
�(S1; S2; : : : ; Sn; SNC)

then
delete 2 from [SNC; Sj+1];
enter 0 in [SNC; Sj+1];
enter token in [Sj+1; Sj+1];

end

In this manner, the simulation of the TAM command proceeds on a column-by-column
basis, as depicted in �gure 3.

Finally, when the token is passed from [Sn; Sn] back to [SNC; SNC], the two-
column synchronization passes it back as the token0 right, instead of token, as shown
in �gure 4(a). At this point the SNC column is cleaned out to the state of �gure 4(b)
using the following SOTAM command.

command Ci-III(S1 : s1; S2 : s2; : : : ; Sn :
sn; SNC : snc)

if �(S1; S2; : : : ; Sn; SNC) ^ token0 2
[SNC; SNC]

then
delete pi;1 from [S1; SNC];
delete pi;2 from [S2; SNC];
. . .
delete pi;n from [Sn; SNC];
delete token0 from [SNC; SNC];
enter token in [SNC; SNC];

end

The SOTAM system is now ready to simulate another TAM command.
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SNC S1 S2 . . . Sn

SNC token, 0 0 0 0

S1 pi;1

S2 pi;2

. . .

Sn pi;n

(a)

SNC S1 S2 . . . Sn

SNC 0 0 0 0

S1 pi;1 token

S2 pi;2

. . .

Sn pi;n

(b)

SNC S1 S2 . . . Sn

SNC 0 0 0 0

S1 pi;1

S2 pi;2 token

. . .

Sn pi;n

(c)

SNC S1 S2 . . . Sn

SNC 0 0 0 0

S1 pi;1

S2 pi;2

. . .

Sn pi;n token

(d)

Figure 3: SOTAM Simulation of the n-Parameter TAM Command Ci: Phase II
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SNC S1 S2 . . . Sn

SNC token0, 0 0 0 0

S1 pi;1

S2 pi;2

. . .

Sn pi;n

(a)

SNC S1 S2 . . . Sn

SNC token, 0 0 0 0

S1

S2

. . .

Sn

(b)

Figure 4: SOTAM Simulation of the n-Parameter TAM Command Ci: Phase III

Note that a n-parameter TAM command requires 4(n + 1) + 1 (or 4n + 5) SO-
TAM commands in this construction. The SOTAM simulation operates on n + 1
columns consisting of the n columns in the TAM command, and the SNC column.
The modi�cation of each column is bundled with the �rst step of the two-column
synchronization protocol, giving us 4(n + 1) commands. One command is required
to clean out the SNC column at the end. Various optimizations are possible. Sig-
ni�cantly, the SOTAM simulation is linear in the size of the TAM command being
simulation.

A proof sketch for the correctness of the construction is given below.

Theorem 1 For every TAM system S1 the construction outlined above produces an
equivalent SOTAM system S2.

Proof Sketch: It is easy to see that any reachable state in S1 can be reached in
S2 by simulating each TAM command by SOTAM commands as discussed above.
Conversely any reachable state in S2, with token 2 [SNC; SNC], will correspond to
a reachable state in S1. A reachable state in S2, with token =2 [SNC; SNC], will
correspond to a state in S1 where one TAM command has been partially completed.
These claims follow from the property that once the SOTAM command Ci-I removes
the token right from [SNC; SNC], the entire TAM command Ci must be simulated
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before the token right is returned to [SNC; SNC]. Moreover, no SOTAM commands
other than those that simulate Ci with the speci�c parameters used in Ci-I can
execute until the token right is returned to [SNC; SNC]. 2

A formal inductive proof can be easily given, but is omitted for lack of space.

3.3 Expressive Power With Create and Destroy

We now consider TAM with create and destroy operations. There are several ways
in which the construction of section 3.2 can be extended to allow for creation and
destruction. We describe one of them here. We have already assumed that the
SOTAM system will have a square access matrix, in which every object (column) is
also a subject (row). So our focus will be on subject creation.

The primitive TAM operation \create subject Si" introduces an empty row and
column in the access matrix for the newly created subject Si. A SOTAM command
which has this primitive operation in its body is quite restricted in what it can do,
since all enter and delete operations will be con�ned to the new column Si. We will
therefore simulate creation in SOTAM in two steps.

� First we will allow unconditional creation of subjects to occur. However, the
created subject will be dormant, indicated by the dormant right in the diago-
nal cell [Si; Si]. The unconditional creation also introduces the 0 right in the
[SNC; Si] cell. We view the unconditional creation as occurring on demand as
needed.

� Dormant subjects will be brought to life by replacing dormant in the diagonal
cell by alive.

A dormant subject cannot be a parameter in any TAM command. This will be
ensured by modifying the TAM system so that each TAM command tests for the
alive right in the diagonal cells for every parameter in the command.

Consider a TAM command which requires m pre-existing subjects or objects,
S1; : : : ; Sm, and creates n � m subjects or objects, Sm+1; : : : ; Sn. We will modify
the given TAM command as follows. Let �(S1; : : : ; Sm) be the given condition in
this command. This condition will be supplemented by the tests alive 2 [Si; Si],
for i = 1 : : :m. It will be further supplemented by the tests dormant 2 [Si; Si], for
i = m+1 : : : n. All create operations in the body of the original TAM command will
be discarded. Instead the dormant subjects will be made alive by the operations

enter alive in [Sj; Sj];
delete dormant from [Sj; Sj]

for j = m + 1 : : : n.
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The destroy operation can be similarly removed from the body of the given TAM
commands, and relegated to a background \garbage collection" activity. To do this
every \destroy Sj" primitive operation is replaced in the TAM command by the
following operations

enter dead in [Sj; Sj];
delete alive from [Sj; Sj];

The meaning of dead 2 [Sj; Sj] is that Sj has e�ectively been destroyed, since it
cannot function as a parameter in any TAM command. The background garbage
collection can be done by introducing the following command for every type s.

command expunge(S : s)
if dead 2 [S; S] then

destroy subject S;
end

In this manner the original TAM command has been reduced to one which only has
enter and delete operations in its body. The construction of the SOTAM simulation
can now proceed as in section 3.2.

4 Conclusion

In this paper we have shown that the expressive power of the typed access matrix
(TAM) model [8], and the single-object TAM (SOTAM) model are formally equiv-
alent. This is an important result because SOTAM is known to have a simple and
e�cient implementation in a distributed environment, using the familiar client-server
architecture [10]. In a nutshell, this result tells us that manipulation of access control
information can be achieved in its most general form by manipulation of a single
access control list (ACL) at a time.

The principal conclusion of this paper is that SOTAM has the same expressive
power as TAM, while having a simple implementation at the same time. Looking
towards future work, our goal is to �nd other simpler cases of TAM which retain
equivalence of expressive power to TAM. The motivation in �nding such simpler cases
is that even though these simpler cases are equivalent to TAM they could still be easily
implemented (than TAM) in a distributed environment. The construction given in
this paper is general, and it gives an equivalent SOTAM scheme for every given TAM
scheme. In many practical cases there are much simpler constructions, for example
see the ORCON construction in [10]. (This situation is analogous to constructions
which show that the goto statement can be eliminated in programming languages.
Those constructions would never be used to actually write a program. But they do
establish equivalence of expressive power.)
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