
Proc. of 7th Annual Computer Security Applications Conference, San Antonio, TX, Dec 2-6 1991, pp 152-164.

A Distributed Implementation of the

Extended Schematic Protection Model

Paul Ammann, Ravi S. Sandhu and Gurpreet S. Suri

Center for Secure Information Systems

and

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030-4444

Abstract

Protection models provide a formalism for speci-
fying control over access to information and other
resources in a multi-user computer system. One
such model, the Extended Schematic Protection Model
(ESPM), has expressive power equivalent to the mono-
tonic access matrix model of Harrison, Ruzzo, and
Ullman [7]. Yet ESPM retains tractable safety analy-
sis for many cases of practical interest. Thus ESPM
is a very general model, and it is of interest whether
ESPM can be implemented in a reasonable manner. In
this paper, we outline a distributed implementation for
ESPM. Our implementation is capability-based, with
an architecture where servers act as mediators to all
subject and object access. Capabilities are made non-
transferable by burying the identity of subjects in them,
and unforgeable by using a public key encryption algo-
rithm. Timestamps and public keys are used as mech-
anisms for revocation.

1 Introduction

In distributed systems, it has become vital to have
some sort of access control to be able to safely share
information and other resources on the network. Over
a period of time many access control models have ap-
peared in literature [3, 4, 7, 10], but unfortunately very
few have been implemented in actual systems. These
models provided a basis for specifying security policies
in a multi-user environment.

Security models do not by themselves guarantee
security. Systems speci�ed in these models require
safety analysis (of access rights) to determine how se-
cure they actually are. Safety analysis issues were �rst
formalized by Harrison, Ruzzo and Ullman (HRU) [7]
in the context of the well known access matrix model.

Upon analysis of this model it was discovered that the
model su�ered from a lack of a useful special case for
which safety was decidable. In addition the assump-
tions from which undecidability follows are extremely
weak. The Schematic Protection Model (SPM) [10]
and various other models were developed in response
to these weak safety properties inherent in the HRU
model.

It has been shown that SPM has very strong expres-
sive power [13] and at the same time allows for e�cient
safety analysis under very general conditions [10, 12].
SPM subsumes many other models not only in terms
of its expressive power but also in terms of safety anal-
ysis [13]. ESPM is derived from SPM by extending
the creation operation to allow multiple parents for
a child, as opposed to the conventional create opera-
tion of SPM which has a single parent for a child [1].
This is the only di�erence between SPM and ESPM. It
has been shown that ESPM is precisely equivalent to
HRU's monotonic access matrix model in terms of ex-
pressive power and yet it retains SPM's e�cient safety
properties [2]. In this paper we have focused on pro-
viding a distributed capability-based implementation
of ESPM.

Our implementation is strongly in
uenced by the
architecture presented by Sandhu and Suri for imple-
mentation of the Transform model [14]. Propagation
based on links and on the state of the subject, which
consists of the capabilities it possesses in its domain,
is incorporated in this architecture. Ours is a typi-
cal client-server architecture. Capabilities have been
made non-transferable by embedding the identity of
the user in them. Their freshness is maintained by
means of a timestamp. Unforgeability is achieved with
public key encryption. Two types of revocation pro-
tocols are provided in this implementation.

The paper is organized as follows. Section 2 con-
tains a brief review of ESPM. In section 3 the gen-

eral architecture is discussed followed by details, along
with its implementation, in section 4. An example of
a security scheme in ESPM is presented in section 5.
The paper concludes in section 6.

2 The Extended Schematic Protection

Model

In this section we de�ne ESPM. For convenience,
we de�ne ESPM directly, rather than �rst de�ning
SPM and then de�ning ESPM as an extension. Our
review of ESPM here is necessarily brief. Detailed
motivation of the various components of the model is
given in [1, 10].

ESPM is based on the key principle of protection
types, henceforth abbreviated as types. ESPM sub-
jects and objects are strongly typed, i.e., the type
of an entity (subject or object) is determined when
the entity is created and does not change thereafter.
Types are an abstraction of the intuitive notion of
properties that are security relevant.

An ESPM scheme is to a large extent, but not
exclusively, de�ned in terms of types. The dynamic
privileges in ESPM are tickets of the form Y/r where
Y identi�es some unique entity and r is a right.
The notion of type is extended to tickets by de�n-
ing type(Y/r) to be the ordered pair type(Y)/r. That
is, the type of a ticket is determined by the type of
entity it addresses and the right symbol it carries.

ESPM has only two operations for changing the
protection state, viz., create and copy. These oper-
ations are authorized by rules which are de�ned by
specifying the following (�nite) components.

1. Disjoint sets of subject types TS and object types
TO. Let T = TS [TO.

2. A set of rights R. The set of ticket types is
thereby T�R.

3. A can-create function:

cc:TS�TS�:::�TS ! 2T

4. Create rules of the form:

crpi(u1; u2; :::; uN; v) = c=Ri
1
[pi=R

i
2
for i = 1..N

crc(u1; u2; :::; uN; v) = c=R3[p1=R
1

4
[:::[pN=R

N
4

5. A collection of link predicates flinkig.

6. A �lter function fi : TS�TS ! 2TXR for each
predicate link i .

An ESPM scheme is itself static and does not change.
We now explain how the scheme controls and regulates
the propagation and creation of access rights.

2.1 The Create Operation

Creation is authorized exclusively by types. Sub-
jects of type u1; u2; :::; uN can (jointly) create entities
of type v if and only if v 2 cc(u1; u2; :::; uN). N may
take on any positive value once cc has been de�ned
(for any given scheme this value is bounded). The
case ofN = 1 corresponds to the conventional creation
operation in SPM. The case of N > 1 makes ESPM
di�erent from SPM by authorizing multiple parents to
jointly and cooperatively create a child subject or ob-
ject. Note that, if type constraints are met, we allow
a subject to redundantly participate as more than one
parent in a joint create operation.

Tickets introduced as the side e�ect of creation are
speci�ed by create-rules. In the create rules, c is the
name of the jointly created entity and pi is the name
of the ith parent. The sets Ri

1
; Ri

2
; R3, and Ri

4
, for i =

1::N are subsets of R. When subjects U1; U2; :::; UN of
type u1; u2; :::; uN create entity V of type v, the parent
Ui gets the tickets V=Ri

1
and Ui=R

i
2
as speci�ed by

crpi . The child V similarly gets the tickets V=R3 and
Ui=R

i
4
for each parent Ui as speci�ed by crc. As an

example, consider the single parent creation case in
which file 2 cc(user) authorizes users to create �les;
crp (user, �le) = c/r,w and crc (user, �le) = � gives
the creator r and w tickets for the created �le. Note
that the superscript i is used to specify a (potentially)
di�erent set for each of the N parents. Also note that
the parents are not allowed to directly exchange tickets
with other parents as a result of creation.

2.2 The Copy Operation

A copy of a ticket can be transferred from one sub-
ject to another leaving the original ticket intact. Per-
mission to copy a ticket Y/r depends in part on posses-
sion of the ESPM copy
ag, c, for that ticket, denoted
Y/rc. Possession of Y/rc implies possession of Y/r
but not vice versa. It is possible to copy Y/r only, or
to copy Y/rc, in which case the ticket may be further
copied. Let dom(U) signify the set of tickets possessed
by U. Three independent pieces of authorization are
required to copy Y/r from U to V.

1. Y/rc 2 dom(U), i.e., U must possess Y/rc for
copying either Y/rc or Y/r.

2. There is a link from U to V. Links are established
by tickets for U and V in the domains of U and

V. The predicate linki(U; V) is de�ned as a con-
junction or disjunction, but not negation, of one
or more of the following terms for any r 2 R:
U/r 2 dom(U), U/r 2 dom(V), V/r 2 dom(U),
V/r 2 dom(V), and TRUE. Some examples of
link predicates from the literature are given be-
low [8, 9, 13] respectively:

linktg(U; V) � V=g 2 dom(U) _ U=t 2 dom(V)

linkt(U; V) � U=t 2 dom(V)

linksr(U; V) � V=s 2 dom(U) ^ U=r 2 dom(V)

linku(U; V) � TRUE

3. The �nal condition is de�ned by the �lter func-
tions fi, one per predicate linki. The value of
fi(u; v) speci�es types of tickets that may be
copied from subjects of type u to subjects of type
v over linki. Also fi determines whether or not
the copied ticket can have the copy
ag. Example
values are T � R; TO� R and � respectively au-
thorizing all tickets, object tickets and no tickets
to be copied via a linki.

In short Y/r can be copied from U to V if and only if
there exists some linki such that:

Y/rc 2 dom(U) ^ linki(U; V) ^ y=r 2 fi(u; v)

where the types of U; V and Y are respectively u; v
and y. To copy Y/rc from U to V , it must also be the
case that y/rc 2 fi(u; v).

2.3 Owner-Based Policy Example

In this section we present an example of a policy
speci�ed in ESPM. The example is provided to demon-
strate the power of the ESPM framework to easily
express a security policy. More detailed examples of
ESPM are provided in [1, 10].

In an owner based policy a user is regarded as the
owner of all �les he� or she has created and has com-
plete discretion regarding access to these �les. Most
operating system mechanisms are based on this con-
cept. In this context a simple policy is that a user U
can authorize another user U 0 to access �le F if and
only if U is the owner of F. The following scheme spec-
i�es this policy in ESPM.

1. TS = fuserg; TO = ffileg

2. R = fm:cgy

�It can be assumed he/she can be used interchangeably any-
where in this paper.

yThe notation m:c denotes m or mc.

3. linku(X,Y) � true

4. fu(user; user) = ffile/mg

5. cc(user) = ffileg

6. cr(user; file) = ffile/mcg

The types user and �le obviously correspond to users
and �les, respectively. For simplicity, a single right
m:c provides access to �les. This su�ces so long as
the policy regarding the dynamics of di�erent rights,
such as read, write execute, and append, remains the
same. A universal link predicate is de�ned. Tickets
for �les, without the copy
ag, can be copied across
universal links. Owners get a copiable ticket for each
created �le.

3 The Architecture

We now describe a distributed architecture to im-
plement ESPM. This is a typical client-server archi-
tecture, with no centralized authority. In this archi-
tecture, all rights are propagated through unforgeable
capabilities and the propagation is mediated by the
online servers.

Although revocation is not addressed in ESPM,
there is a clear need for revocation in practical sys-
tems. This architecture supports revocation protocols,
though they are of rather coarse granularity. Giving a
notation to specify revocation is not di�cult; however,
analyzing the general safety properties of a model that
allows revocation is. Thus a complete treatment of re-
vocation is beyond the scope of this work.

Here we adopt a simple, if standard, approach to
implement revocation. We allow some privileged sub-
ject, representing say, the security o�cer, to period-
ically cause the revocation of capabilities. Below we
enumerate some properties that our revocation mech-
anisms will embody:

1. Revocation occurs quickly.

2. Revocation has minimal adverse e�ects on third
parties.

3. Revocation can be undone.

Our approach is similar to Gong's [6], in that the
identity of a capability's holder is recorded within the
capability. Our approach extends the role of object
servers described in the transform model implementa-
tion [14].

3.1 Object, Subject and Capability
Servers

ESPM de�nes objects to be passive entities which
do not permit objects to hold tickets. A typical ex-
ample of an object is a �le. As in [14], we encapsu-
late objects in an object server and rely on the object
server to mediate all access to the object. The ob-
ject server implements the response to messages such
as \update record X", and ensures that the autho-
rized update does occur and that no other action takes
place. For purposes of revocation, object servers main-
tain a timestamp for each object they manage.

In ESPM subjects may be either passive or active.
In either case, the subject may hold tickets within its
domain. An example of a passive subject is a direc-
tory; an example of an active subject is a user process.

Since both passive and active subjects must re-
spond to certain messages in a speci�c way, we extend
the notion of an object server to subjects. For exam-
ple, consider a directory that is requested to list the
�les and directories which it contains. The response
clearly does not propagate access rights; nonetheless
it is necessary to ensure that only the desired trans-
mission occurs. For instance, a request to list direc-
tory entries should not change any entry. Enclosing
the subject in a server limits changes to prede�ned
operations and provides a mechanism for checking au-
thorization prior to access. An example that involves
an active subject is the response of a child process
to an interrupt signal. If the sender of the interrupt
holds speci�c capabilities, for instance if the sender is
an ancestor of the child, then the operating system
implements the resulting change in the child's control
block.

For subjects in ESPM, we are also concerned about
the propagation of access rights, and hence about the
links that enable subjects to copy tickets to other sub-
jects. To ensure that tickets are not copied unless the
relevant link is enabled, we introduce the notion of
a capability server and force every valid ticket to be
authenticated by the capability server. In addition
to controlling links, capability servers generate tickets
during creation.

To summarize, we employ object and subject
servers to mediate operations that do not change the
protection state of the system. We employ capability
servers to mediate operations that propagate access
rights. Clearly the two types of servers must commu-
nicate, in that an object or subject server typically
requires the exhibition of speci�c tickets before allow-
ing an operation to proceed. Although both type of
servers must be part of the trusted computing base,

a given environment may demand more assurance, for
example, for the propagation of access rights than for
their use. Thus it is useful to separate object and
subject servers from capability servers.

3.2 Raw Tickets

We implement a raw ticket with the following four
components:

1. Each subject or an object has an identi�er which
consists of a unique name and a type. The ticket
refers to the unique identi�er of a subject or ob-
ject.

2. A timestamp associated with the subject or ob-
ject to which the ticket refers. Timestamps are
useful for the implementation of revocation.

3. One or more right symbols (read (r), write (w)
etc.) with or without the copy
ag.

4. The identi�er of the subject or object whose do-
main contains the ticket. The identi�er again con-
sists of a unique name and type.

According to the above scheme, we represent Y/r
2 dom(X) by the tuple (Y, ts, r, X), where Y is an
object or subject identi�er, ts is a timestamp for Y,
r is one or more rights, and X is a subject identi�er.
The timestamp for an object (subject) Y is managed
by the object (subject) server for Y. Raw (i.e., not
cryptographically sealed) tickets can be generated at
will and thus are not secure. The format of a raw
ticket is shown below.

Y ts r X

3.3 Capabilities

To ensure that a ticket cannot be forged, we cryp-
tographically seal the ticket. We de�ne a capability to
be a sealed raw ticket. We set three requirements on
the sealing process:

1. A ticket can only be sealed by the part of the TCB
that is responsible for controlling the propagation
of access rights, i.e., the capability server.

2. Only properly sealed tickets can be used by an
object or subject server to authenticate access.

3. Only properly sealed tickets can be used by a ca-
pability server to propagate access rights.

We choose to use some standard public key based
digital signature scheme, such as described in [5] to
implement the seal. An authorized process uses a se-
cret encryption key Ke to seal a ticket. A capability,
c, is c = E(t;Ke) where E is the public encryption
function, t is a ticket of the form (Y, ts, r, X), and Ke

is a particular encryption key. The capability formed
is shown below.

Y ts r X Ke

The corresponding decryption key,Kd, is made public.
Thus any holder of c may use the public decryption
function D to recover the raw ticket by computing
t = D(c;Kd).

3.4 Basic Key Selection

For our basic implementation, we specify an encryp-
tion key for each subject. We denote the secret encryp-
tion key for subject U by KU

e . We denote the corre-
sponding public decryption key for U by KU

d . Subject
keys are not managed by the subject, but are managed
by distributed (and trusted) capability servers.

The digital signature scheme described above only
applies to part of the communication necessary in our
implementation. In addition, we assume that mutu-
ally authenticated, secure channels between processes
are supplied as fundamental primitives. Thus when
two processes A and B communicate, A is assured
that B and only B receives those messages sent by
A, and B is assured that the received messages indeed
originated from A. Many such schemes have been pro-
posed in literature [5]. In our implementation, object
and subject servers rely on these secure channels to
respond properly to messages.

4 Implementation

This section describes the various protocols needed
for an ESPM implementation. These implementation
details are based on the architecture discussed in the
previous section.

4.1 Object Access

When a subject U attempts to access an object V,
U presents the appropriate capabilities to the object
server for V. Such capabilities correspond to tickets of
the form V/r 2 dom(U). The object server decrypts
the capabilities with the public decryption key KU

d .
For all tickets of the form V/r, the object server for V

examines the timestamp in the ticket and compares it
with the current timestamp for V. Since the current
timestamp for V is maintained by the object server
for V, this operation is straightforward. Tickets with
out of date timestamps are no longer valid and so are
rejected by the object server for V. The requested ac-
cess to V is granted if the object server validates the
necessary capability.

4.2 Subject Access

Subject access is similar to object access. If an
operation that does not involve the propagation of ac-
cess rights is performed on a subject, then the subject
server mediates the access. For example, if a direc-
tory is requested to list its entries, the subject server
for the directory authenticates and implements the ac-
cess. The di�erence between object and subject access
is that subjects can hold tickets in their domains, and
so the subject server for a given subject S must check
tickets within the domain of S in addition to tickets
outside the domain of S.

4.3 Copy Operation

For propagation of access rights, we de�ne capabil-
ity servers. We associate each subject with a speci�c
capability server. The capability server for a subject
U maintains the secret encryption key KU

e for subject
U. Thus each secret encryption key only resides in a
single location, and only the capability server for U
can seal those tickets that reside in the domain of U.
All decryption keys are public and can be broadcast
to other capability servers.

We outline the steps by which link authentication
takes place. Suppose that U attempts to copy X=r : c
to V.

1. U and V each send a su�cient set of capabili-
ties for a given link to the capability server for
V.z The capability server for V decrypts each of
these capabilities using the public key KU

d for the
capabilities sent by U and the public key KV

d for
the capabilities sent by V. The capability server
uses the validated raw tickets to check the rele-
vant link predicate.

2. U sends the capability corresponding to the ticket
X/rc 2 dom(U) to the capability server for V.x

zSince the link predicate may be a disjunction, there may be
more than one su�cient set of capabilities.

xRecall that to use the link to send X/r:c, there must be a
copy
ag on the ticket; that is, X/rc must be in the domain of
U.

The capability server for V decrypts the capabil-
ity with the public key KU

d and thus checks that
indeed X/rc 2 dom(U).

3. The capability server checks that X/r:c is allowed
to be copied by the �lter function for the link.
Since the type of subject or object X is recorded
in the identi�er for X, the capability server is able
to make this determination.

4. Additionally, for all tickets of the form V/r, the
capability server examines the timestamp in the
ticket and compares it with the current times-
tamp for V. The current timestamp for V is main-
tained by the subject server for V. To validate the
timestamp for tickets for U, the capability server
for V consults the latest value published by the
subject server for U. (Note that, there may be
a propagation delay in the case of revocation.)
Tickets with out of date timestamps are no longer
valid and so are rejected.

If these four conditions are satis�ed, the capability
server for V constructs a ticket for X/r:c in the domain
ofV and seals it with the secret keyKV

e . The resulting
capability is sent to V.

The capability server uses the timestamp for X
that was given in the capability for the ticket X/r
2 dom(U). The timestamp for an object ticket X/r
need not be checked since the object server for X
will eventually authenticate the ticket. Similarly, the
timestamp for a subject ticketX/r need not be checked
since out of date tickets cannot be used to enable any
links or authorize any access.

4.4 Creation

Here we concentrate on those aspects of creation
that involve type and the proper distribution of cre-
ation tickets. We address single parent creation �rst
and then generalize to multiple parent creation.

For single parent creation of objects, an object
server �rst checks that the parent is of the correct
type by consulting cc. If the parent is of the cor-
rect type, the object server creates a new object O
and assigns it an initial timestamp. Note that no en-
cryption or decryption keys for O are required. The
object server informs the capability server responsible
for the parent subject to construct the appropriate ca-
pabilities according to the creation rules. For multiple
parent creation, the object server informs the capabil-
ity server responsible for each parent to construct the
appropriate capabilities.

For the creation of a subject U, similar rules are
followed, except that a subject server takes the place
of an object server. The subject server that is re-
sponsible for the new subject checks the types of the
parents, performs the creation of the new subject, and
informs the capability servers responsible for the par-
ent subjects and the (new) child subject to generate
capabilities determined by the create rules. It is neces-
sary for the capability server for the child to generate
a secret encryption key KU

e and corresponding public
decryption key KU

d .

4.5 Revocation

We implement revocation in two ways:

1. Alteration of Encryption and Decryption Keys:
Changing the keys for a speci�c subject inval-
idates all of the capabilities in the domain of
that subject. Revocation for the domain of U
is achieved by changing the keys KU

e and kUd and

generating new encryption keys K
0U
e and K

0U
d .

The new decryption key K
0U
d is made public.

2. Alteration of a Timestamp: Changing the times-
tamp for a subject or a object X invalidates all
tickets of the form X/r in the domain of any sub-
ject. If a capability for a ticket Y/r 2 dom(X),
with an out of date timestamp, is used to access
object Y (or to link subject Y with some other
subject), then the capability is rejected as invalid.

The two algorithms of key and timestamp alter-
ation have the following properties.

1. Timeliness: In the case of key alteration, revo-
cation is e�ective at a capability server as soon
as the new public decryption key is received. In
the case of timestamp alteration, revocation is ef-
fective as soon as the new timestamp is received.
Thus there may be propagation delay in revoca-
tion. Even though out of date capabilities may be
propagated through the system, they cannot be
used to enable any link or to access any object,
and so do not pose a security problem.

2. Third party side e�ects: In the case of altered
keys, assume a third party V holds a capability
for the ticket U/r in its domain. V is una�ected
by the revocation of a ticket in the domain of
U since this capability is encrypted with the key
KV
e . V may continue to use this capability as

before. However, in the case of timestamp al-
teration for U, all third parties are immediately

a�ected, since capabilities for tickets of the form
U/r 2 dom(V) no longer enjoy any currency.

3. Reversal of revocation: In the case of key alter-
ation, revocation reversal requires the capability
server to generate a replacement capability with
the current encryption key. In the case of times-
tamp alteration, revocation can be undone by ar-
ranging for a subject to receive a capability with
a current timestamp. In either case, the revoca-
tion reversal can occur through continuing evolu-
tion according to the ESPM scheme, or by explicit
grants from an external authority.

5 The Department Example

In this section, an implementation of ESPM is
demonstrated with an example. As in section 2 a
security scheme is expressed in ESPM notation and
then, in addition, the protocols to implement it are
described.

Let us take the example of a department whose sub-
jects (users) frequently work on projects jointly with
subjects outside their department. Access rights to
outsiders for the internal documents of the department
can only be authorized by the head of the depart-
ment. Members of the department can freely share
access rights for internal documents with other mem-
bers. All the subjects that are to work on the project
are created by the security-o�cer of the department.
It is assumed that there exists a universal link between
the security o�cer and the rest of the subjects.

The ESPM scheme for this policy is given below:

1. TS = fin, out, head, sec-o�g, TO = fdocg

2. R = fr, rc, w, wc, t, tcg

3. linku(X,Y) � true
linkt(X,Y) � Y/t 2 dom(X)

4. fu(in, in) = fdoc/r, wg
fu(in, head) = fdoc/r, wg
fu(sec-o�, head) = fin/tg
ft(in, head) = fdoc/rc, wcg
fu(head, out) = fdoc/r,wg
All other values of f are empty.

5. cc(in) = fdocg
cc(sec-o�) = fin, head, outg

6. crp(in, doc) = p/rc, wc
crp(sec-o�, in) = p/tc, crc(sec-o�, in) = �
crp(sec-o�, head) = �, crc(sec-o�, head)=�
crp(sec-o�, out) = �, crc(sec-o�, out) =�

In this scheme a reasonable revocation policy could be
which allows the department head to revoke access by
outside users to internal documents, or to revoke all
access to a given project.

This scheme de�nes the types involved in a project
to be in for subjects working inside the department,
out for subjects working on the project from outside
the department, head for the head of the department
and sec-o� for the security-o�cer respectively.

Users of type in can create objects of type doc. The
creator gets the rc and wc tickets for the created docu-
ment. The creator can then copy these tickets to other
users of type in or the head using the universal link
(linku). The copied tickets are themselves without the
copy
ag so they cannot be further propagated.

The security-o�cer creates all the subjects that are
to work on the project as allowed by cc. By being the
parent of type in he acquires the right in/tc as per the
cr policy. The head, in order to pass the access rights
to a user of type out, needs to acquire copiable rights
for the doc from in (eg. doc/rc, wc) and he can only
do this if he possesses the ticket in/t. The in/t ticket
is copied from the sec-o� to head over the universal
link (linku). With this ticket in its domain, head can
copy the rights for doc from in over the resulting take
take link, (linkt). This copy operation is regulated by
the �lter function ft. In the next operation, the head
copies the ticket doc/r,w to user out over the universal
link, linku. This copy operation is mediated by a �lter
function which only allows tickets of the type doc/r,w
to be copied across it.

The above operations are illustrated in Figure 1. In
this �gure, subjects and objects are shown as circles.
Tickets in the domain of a subject are shown inside the
circle. The type and name of a given subject or object
is shown next to the circle. Links are shown by arrows.
Figure 1A shows the universal links (broad arrows) set
up between the various subjects. It also shows Jack
possessing the SDI/rc ticket for the SDI document and
Joe in possession of the Jack/tc ticket for Jack. In
�gure 1B one can see the take link (narrow arrow)
between Sam and Jack due to propagation of access
right Jack/t from Joe to Sam. Figure 1C depicts the
propagation of the SDI/rc ticket to Sam from Jack,
followed by the copy operation of SDI/r ticket to Jill
from Sam. These operations are carried out in our
implementation as follows.

1. First the security-o�cer, Joe, creates the users
that are going to work on a project. Let the inside
user be Jack, the head be Sam and the outside
user be Jill. For creation, Joe presents his request
to the respective subject servers:

Figure 1: Pictorial Representation of the Example

create(Joe, in.Jack)
create(Joe, out.Jill)

create(Joe, head.Sam)

The servers check the cc policy against the types
of subject involved and the nature of the request.
In their internal tables, the respective subject
servers store the following associations of the cre-
ated subject and the associated time stamp:

in.Jack 0

head.Sam 0

out.Jill 0

Then the subject servers check the cr policy and
inform their respective capability servers to ser-
vice the request. The capability servers then ser-
vice the request according to the cr rule. The
capability servers create capabilities for the cre-
ated subjects as speci�ed by crc (in this case there
are none, as none of the subjects get any rights
on creation according to the cr policy). The ca-
pability servers generate the private and public
keys for the created subjects, as follows.

KJack
e and KJack

d for Jack
KJill
e and KJill

d for Jill
KSam
e and KSam

d for Sam

The capability server of each child informs the
capability server of the parent (i.e., Joe) to com-
pute the capabilities according to crp policy. The
capability server of Joe computes the following
capabilities for Joe:

in.Jack 0 tc sec-o�.Joe KJoe
e

2. Now Jack, who is working on the project, wants
to create a document, say SDI, of the type doc so
he presents his request to the document server{.

create(in.Jack, doc.SDI)

When the document server receives the request it
proceeds to check the cc and the cr policy. Since
the request conforms to the policies, the docu-
ment server stores the following tuple in its inter-
nal tables:

{Note that the document server manages objects only of the
type doc.

doc.SDI 0

Then the document server informs Jack's capabil-
ity server to compute the capabilities according to
the cr policy with the time stamp 0. The capa-
bility server computes the following for Jack:

doc.SDI 0 rc, wc in.Jack KJack
e

Jack now has the ability to access the SDI doc-
ument. To do so he just presents the capability
above. The document server decrypts the capa-
bility with Jack's public key:

(doc.SDI 0 rc, wc in.Jack KJack
e)KJack

d

If decryption is correct, the document server has
authenticated that the capability belongs to Jack,
because only Jack's capability server possesses the
corresponding private key (i.e., KJack

e). The doc-
ument server checks the timestamp from the de-
crypted capability against the timestamp stored
in its internal tables for SDI. If the values match,
the validity of the capability is con�rmed. Once
the validity is con�rmed Jack has access to SDI
according to the rights present in the decrypted
capability.

3. Now suppose Jill needs to work on SDI. She can't
access the document as she possesses no access
rights for it. According to the policy only the
head can grant document access to outsiders, thus
access rights for SDI can only be given to her by
Sam. To do so Sam needs to copy the rights for
SDI from Jack. To copy these rights he needs
to have the in.Jack/t ticket. In order to obtain
this authorization he requests Joe to initiate the
following copy operation:

copyu(sec-o�.Joe, head.Sam, in.Jack/t)

Joe can use the universal link to copy this ticket to
Sam, thus no link predicate needs to be veri�ed.
The capability server for Sam ensures that Joe
really does hold Jack/tc. The capability server of
Sam computes the following capability for Sam.

in.Jack 0 t head.Sam KSam
e

With this capability Sam can get the tickets
doc.SDI/rc,wc from Jack by means of the copy
operation:

copyt(in.Jack, head.Sam, doc.SDI/rc,wc)

Sam's capability server decrypts the capability

in.Jack 0 t head.Sam KSam
e

with Sam's public key KSam
d to get:

in.Jack 0 t head.Sam

The capability server veri�es that Sam has the
valid capability to set up the link. The capability
server for Sam then decrypts the doc.SDI capa-
bility with Jack's public key KJack

d to get:

doc.SDI 0 rc, wc in.Jack

The capability server checks if Jack has the read
and write rights with the copy
ag or not. It
checks the �lter function and, since the function
allows the copy operation, the capability server
computes a new capability for Sam with the same
time stamp as that was in the capability presented
by Jack. This new capability is computed as:

doc.SDI 0 rc, wc head.Sam KSam
e

With this capability the Sam can access SDI and
also pass the access rights for SDI to Jill.

Note, however, the validity of the timestamp for
SDI is not checked at this time. It will only be
checked during an attempt to access SDI.

4. Jill gets access to SDI from Sam via the copy
operation below:

copyu(head.Sam, out.Jill, SDI/r,w)

Since this operation uses the universal link, Jill's
capability server does not need to verify existence
of the link. Jill's capability server validates the
capability held by Sam using Sam's public key, as
follows.

(doc.SDI 0 rc, wc head.Sam KSam
e)KSam

d

Jill's capability server then computes the follow-
ing capability,

doc.SDI 0 r, w out.Jill KJill
e

and returns it to Jill. This capability then can
then be presented by Jill to the document server,
in order to access SDI.

At the end of this operation the state of the sub-
jects and the various servers is shown in Figure
2. In the Figure, subject Sam is represented by
a rectangle within which the capabilities he pos-
sesses are shown. Jack and Jill are similarly de-
picted. Also shown are the capability servers for
these subjects with the current encryption keys.
Recall that the encryption key Ke is public while
Kd is private, known only to the subject's capa-
bility server. Subject servers are shown with the
subject they manage and the current time stamp.
The object is shown as an empty rectangle, since
an object cannot possess any capabilities. The
document server of the object is shown with the
current time stamp.

5. In this example, we have assumed it is the job of
the head to revoke further access to the depart-
ment's internal documents by outsiders once the
project is �nished. This implementation provides
two types of revocation. In one, the timestamp is
updated thus invalidating all previous capabilities
associated with older timestamps. In the other,
the encryption keys of the subject are changed
thus invalidating all the capabilities in that sub-
ject's domain.

Consider the situation in Figure 2 which shows
the state of various components of the system be-
fore revocation is initiated. To see how each type
of revocation works, let us suppose the project
is complete and there is no further need for ei-
ther Jack or Jill to have any access to SDI. The
command

revoke(doc.SDI)

revokes all access to SDI, for all subjects.

The document server updates the timestamp as-
sociated with SDI in its internal tables. The new
association shown below is stored in its internal
tables.

doc.SDI 1

Now if either Jack or Jill present their capabilities
to access SDI, the server matches the timestamps
in the presented capabilities to the timestamp in
its internal tables for SDI. When it �nds them
di�erent, access to SDI is denied. The changes

Figure 2: State of Subjects and Objects before Revocation

Figure 3: Revocation when the timestamp is changed

Figure 4: Revocation when Jill's keys are changed

that occur due to this revocation are shown in
Figure 3 where the shaded capabilities are the
ones which have been revoked.

To illustrate the second type of revocation, let's
say the project is not yet complete but for some
reason Jill is moved to a new project. Sam decides
to revoke Jill's access rights. The command

revoke(out.Jill)

revokes all the capabilities held by Jill. The capa-
bility server changes the private and public keys
for Jill to K

0Jill
e and K

0Jill
d respectively. The ca-

pability server broadcasts the new public key. If
Jill tries to access SDI with a capability she pos-
sesses, the request will be turned down since the
old capability will not decrypt successfully. The
e�ect of this revocation is shown in Figure 4.

This completes the example.

6 Summary and Conclusions

To summarize, we have provided an architecture
for a distributed implementation for the Extended

Schematic Protection Model. The architecture is
based on object and subject servers which act as me-
diators to objects and subjects respectively. Capabil-
ity servers set up links and generate encryption keys.
Capabilities are made non-transferable by embedding
the identity of the user in them, and unforgeable by
using a public key encryption algorithm. Two types
of revocation have been provided by means of chang-
ing the encryption keys of a user, or by updating the
timestamp associated with a subject or object.

Though revocation has not been addressed for-
mally in ESPM, in our implementation we have de-
�ned it, with certain limitations. Revocation, as pre-
sented above, lacks granularity and can have unde-
sirable third party e�ects. Some suggestions schemes
for minimizing e�ect of revocation on third parties are
presented below.

One way is to de�ne encryption keys for each right
in R, thus allowing certain capabilities to be revoked
while others are una�ected. This technique speci�es
subsets of capabilities in the domain of a given subject
U . As an example, the techniques allows the revoca-
tion of \w" access for a given subject U by revoking
all capabilities of the form V/w in the domain of U .
However, capabilities of the form V/r are una�ected.

Another scheme for minimizing e�ect of revocation
on third parties is to de�ne timestamps for each right
in R, again allowing certain capabilities to be revoked
while others are una�ected. For a given U , this tech-
nique speci�es capabilities U/r in the domain of an
arbitrary subject V . For example, \w" access for a
given �le U can be revoked for all subjects V without
a�ecting \r" access for those subjects.

Lastly, we could also include revocation lists so as
to explicitly deny access. Together these schemes can
provide very �ne grain revocation and are areas for
future research.

Acknowledgment

We are indebted to Howard Stainer for his support
and encouragement, in making this work possible.

References

[1] Ammann, P.E. and Sandhu, R.S. \Extending the
Creation Operation in the Schematic Protection
Model." Proc. Sixth Annual Computer Security
Applications Conference, Tucson, Arizona, De-
cember 1990, pages 340-348.

[2] Ammann, P.E. and Sandhu, R.S. \Safety Anal-
ysis for the Extended Schematic Protection
Model." Proc. IEEE Symposium on Research in
Security and Privacy, Oakland, California, May
1991, pages 87-97.

[3] Bell, D.E. and LaPadula, L.J. \Secure Computer
Systems: Uni�ed Exposition and Multics In-
terpretation." MTR-2997, Mitre, Bedford, Mas-
sachusetts (1975).

[4] Clark, D.D. and Wilson, D.R. \A Comparison
of Commercial and Military Computer Security
Policies." Proc. IEEE Symposium on Security
and Privacy Oakland, California, April 1987,
pages 184-194.

[5] Davies, D.W. and Price, W.L. Security in Com-
puter Networks. John Wiley & Sons (1989).

[6] Gong, L. \A Secure Identity-Based Capability
System." Proc. IEEE Symposium on Security and
Privacy, Oakland, California, May 1989, pages
56-63.

[7] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D.
\Protection in Operating Systems." Communica-
tions of ACM 19(8):461-471 (1976).

[8] Lipton, R.J. and Snyder, L. \A Linear Time Al-
gorithm for Deciding Subject Security", Journal
of ACM, 24(3):455-464 (1977).

[9] Lockman, A. and Minsky, N. \Unidirectional
Transport of Rights and Take-Grant Control",
IEEE Transactions on Software Engineering, SE-
8(6):597-604 (1982).

[10] Sandhu, R.S. \The Schematic Protection Model:
Its De�nition and Analysis for Acyclic Attenu-
ating Schemes." Journal of ACM 35(2):404-432
(1988).

[11] Sandhu, R.S. \Transformation of Access Rights."
Proc. IEEE Symposium on Security and Privacy,
Oakland, California, May 1989, pages 259-268.

[12] Sandhu, R.S. \Undecidability of Safety for the
Schematic Protection Model with Cyclic Cre-
ates." Journal of Computer and System Sciences,
to appear.

[13] Sandhu, R.S. \Expressive Power of the Schematic
Protection Model." Proc. IEEE Computer Se-
curity Foundations Workshop I, Franconia, New
Hampshire, June 1988, pages 188-193.

[14] Sandhu, R.S. and Suri, G.S. \A Distributed Im-
plementation of the Transform Model" 14th Na-
tional Computer Security Conference, Washing-
ton, DC, October 1991.

