
Proc. of 6th Annual Computer Security Applications Conference, Tucson, Arizona, Dec 1990, pages 103-112

Update Semantics for Multilevel Relations�

Sushil Jajodiay, Ravi Sandhu and Edgar Sibley

Department of Information Systems

and Systems Engineering

George Mason University

Fairfax, VA 22030

Abstract

In this paper we give a formal operational semantics
for update operations on multilevel relations, i.e., rela-
tions in which individual data elements are classi�ed at
di�erent levels. For this purpose, the familiar INSERT,
UPDATE and DELETE operations of SQL are suitably
generalized to cope with polyinstantiation. We con-
jecture that these operations are consistent (or sound)
in that all relations which can be constructed will sat-
isfy the basic integrity properties required of multilevel
relations. We also conjecture that the operations are
complete in that every multilevel relation can be con-
structed by some sequence of these operations.

1 INTRODUCTION

In a multilevel world of classi�ed information it is in-
herent that users with di�erent clearances see di�erent
sets of facts. The presence of classi�ed information in-
evitably leads to polyinstantiation, i.e., the simultane-
ous existence of data objects or attributes which are
indistinguishable except for classi�cation. Polyinstan-
tiation arises at all levels of granularity and it will be as
�ne-grained as the elementary unit of classi�cation. For
example, there may be a secret starship called Enter-
prise in a database along with an unclassi�ed starship
which is also named Enterprise. This happens because
it is not possible, in general, to prevent creation of the
unclassi�ed Enterprise without leaking the fact that a
classi�ed Enterprise already exists. At a �ner grain,

�This researchwas supported (partially) by the Center for Ex-
cellence in Command, Control, Communications, and Intelligence
at George Mason University. The Center's general research pro-
gram is sponsored by the Virginia Center for Innovative Technol-
ogy, MITRE Corporation, the Defense Communications Agency,
CECOM, PRC/ATI, ASD (C3I), TRW, AFCEA, and AFCEA
NOVA.

yAlso with Secure Technology Center, The MITRE Corpora-
tion, 7525 Colshire Drive, McLean, VA 22102-3481.

the unclassi�ed Enterprise might have the unclassi�ed
destination of Talos while its secret destination is Rigel.
Polyinstantiation does complicate the meaning of

multilevel relations relative to relations as ordinarily
considered in a single level world. This is unfortu-
nate since much of the appeal of the relational model is
due to its intuitive simplicity and economy of concepts.
Polyinstantiation is however inevitable and must be
confronted [1, 2]. The best we can do is to give as sim-
ple a semantics for polyinstantiation as feasible. The
semantics of polyinstantiation is reasonably straight-
forward so long as security classi�cations are applied to
entire tuples (\rows") or attributes (\columns") of a re-
lation. This level of granularity is however cumbersome
and arti�cial for modeling the real world. When clas-
si�cations are assigned at the level of individual data
elements, the semantics of polyinstantiation turns out
to be surprisingly subtle [3, 6, 7, 9, 11]. As work on
this topic has progressed it has become increasingly ev-
ident that a formal consideration of update operations
is necessary to fully articulate the meaning of polyin-
stantiation.
Our principal objective in this paper is to give a sim-

ple operational semantics for update operations on mul-
tilevel relations. In developing the semantics we are
motivated by the following principles.

1. The update operations should be as close to stan-
dard SQL as possible.

2. An update should result in polyinstantiation only
when absolutely required for closing signaling
channels (or optionally for deliberately establish-
ing cover stories). Moreover, the fewest possible
tuples should be introduced in such cases.

In the latter requirement we deliberately use the term
signaling channel rather than covert channel. A sig-
naling channel is a means of information 
ow which is
inherent in the model and will therefore occur in ev-

ery implementation of the model. A covert channel on



the other hand is a property of a speci�c implementa-
tion and not a property of the model. That is, even if
the model is free of signaling channels, a speci�c im-
plementation may well contain covert channels due to
implementation quirks.
This paper is organized as follows. In Section 2, we

begin by giving basic de�nitions related to multilevel
relations, and then we state four integrity requirements
which we feel must be satis�ed by all multilevel rela-
tions. In Section 3, we discuss in detail the three update
(insert, update, and delete) operations in the context of
multilevel relations. Finally, the conclusion is given in
Section 4.

2 MULTILEVEL RELATIONS

The standard relational model is concerned with data
without security classi�cations. Data are stored in rela-
tions which have well de�ned mathematical properties.
Each relation R has two parts as follows.

1. A state-invariant relation scheme

R(A1; A2; : : : ; An)

where each Ai is an attribute over some domain Di

which is a set of values.

2. A state-dependent relation instance R, which is a
set of distinct tuples of the form

(a1; a2; : : : ; an)

where each element ai is a value in domain Di.

LetX and Y denote sets of one or more of the attributes
Ai in a relation scheme. We say Y is functionally de-

pendent on X, written X ! Y , if and only if it is not
possible to have two tuples with the same values for X
but di�erent values for Y . A candidate key of a rela-
tion is a minimal set of attributes on which all other
attributes are functionally dependent. It is minimal in
the sense that no attribute can be discarded without
destroying this property. It is guaranteed that a can-
didate key always exists, since in the absence of any
functional dependencies it consists of the entire set of
attributes. There can be more than one candidate key
for a relation with a given collection of functional de-
pendencies.
The primary key of a relation is one of its candidate

keys which has been speci�cally designated as such.
The primary key serves the purpose of selecting a spe-
ci�c tuple from a relation instance as well as of linking
relations together. The standard relational model in-
corporates two application independent integrity rules,

called entity integrity and referential integrity, respec-
tively to ensure these purposes are properly served. En-
tity integrity in the standard relational model simply
requires that no tuple in a relation instance can have
null values for any of the primary key attributes. This
property guarantees that each tuple will be uniquely
identi�able. In this paper our focus is on single rela-
tions, so referential integrity is not relevant.
Moving on to a multilevel world, we follow the lead

of SeaView in extending the standard relation model
to de�ne a multilevel relation R as consisting of the
following two parts.

De�nition 1 [RELATION SCHEME] A state-
invariant multilevel relation scheme

R(A1; C1; A2; C2; : : : ; An; Cn; TC)

where each Ai is a data attributez over domain Di,
each Ci is a classi�cation attribute for Ai and TC is
the tuple-class attribute. The domain of Ci is speci�ed
by a range [Li;Hi] which de�nes a sub-lattice of access
classes ranging from Li up to Hi. The domain of TC
is [lubfLi : i = 1 : : :ng; lubfHi : i = 1 : : :ng]. 2

De�nition 2 [RELATION INSTANCES] A col-
lection of state-dependent relation instances

Rc(A1; C1; A2; C2; : : : ; An; Cn; TC)

one for each access class c in the given lattice. Each
instance is a set of distinct tuples of the form

(a1; c1; a2; c2; : : : ; an; cn; tc)

where each ai 2 Di or ai = null, c � ci and tc =
lubfci : i = 1 : : :ng. Moreover, if ai is not null then
ci 2 [Li;Hi]. We also require that ci be de�ned even if
ai is null, i.e., a classi�cation attribute cannot be null.

2

Since tc is computed from the other classi�cation at-
tributes, it is included or omitted as convenient. We
use the notation t[Ai] to mean the value of the Ai at-
tribute in tuple t, and similarly for t[Ci] and t[TC].
Because a multilevel relation has di�erent instances

at di�erent access classes it is inherently more com-
plex than a standard relation. It is most important to
understand what constitutes the full primary key of a
multilevel relation. In a standard relation the de�nition

zIn many cases it is useful to have a group of uniformly clas-

si�ed data attributes. Our de�nition easily extends to such cases
by treating each Ai as a group of data attributes. This extension
requires straightforward, but tedious, modi�cations to the state-
ment of our update semantics which are stated in this paper in
terms of the Ai's being individual data attributes.



of candidate keys is based on functional dependencies.
In a multilevel setting the concept of functional depen-
dencies is itself clouded because a relation instance is
now a collection of sets of tuples rather than a single set
of tuples. Rather than trying to resolve this complex
issue here, we follow the lead of SeaView and assume
there is a user speci�ed primary key AK consisting of
a subset of the data attributes Ai. This is called the
apparent primary key of the multilevel relation scheme.
Henceforth we understand the term primary key as syn-
onymous with apparent primary key.
In general AK will consist of multiple attributes. En-

tity integrity from the standard relational model pro-
hibits null values for any of the attributes in AK. Sea-
View extends this property to multilevel relations as
follows.

Property 1 [Entity Integrity]Let AK be the appar-
ent key of R. Instance Rc of R satis�es entity integrity
if and only if for all t 2 Rc

1. Ai 2 AK ) t[Ai] 6= null,

2. Ai; Aj 2 AK ) t[Ci] = t[Cj], i.e., AK is uniformly
classi�ed, and

3. Ai 62 AK ) t[Ci] � t[CAK] (where CAK is de�ned
to be the classi�cation of the apparent key). 2

The �rst requirement is an obvious extension from the
standard relational model and ensures that no tuple in
Rc has a null value for any attribute in AK. The sec-
ond requirement says that all AK attributes have the
same classi�cation in a tuple, i.e., they are either all U
or all S and so on. This will ensure that AK is either
entirely visible or entirely null at a speci�c access class
c. The �nal requirement states that in any tuple the
class of the non-AK attributes must dominate CAK.
This rules out the possibility of associating non-null at-
tributes with a null primary key. These requirements
seem quite reasonable. Further intuitive justi�cation
for them is given in [1, 5].
At this point it is important to clarify the semantics

of null values. There are two major issues: (i) the clas-
si�cation of null values, and (ii) the subsumption of null
values by non-null ones. Our requirements are respec-
tively that null values be classi�ed at the level of the
key in the tuple, and that a null value is subsumed by a
non-null value independent of the latter's classi�cation.
These two requirements are formally stated as follows.

Property 2 [Null Integrity] Instance Rc of R sat-
is�es null integrity if and only if both of the following
conditions are true.

1. For all t 2 Rc, t[Ai] = null) t[Ci] = t[CAK], i.e.,
nulls are classi�ed at the level of the key.

Starship Objective Destination TC

Enterprise U Exploration U null U U

Figure 1: SODU

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

Figure 2: SODS

Starship Objective Destination TC

Enterprise U Exploration U null U U
Enterprise U Exploration U Rigel S S

Figure 3: Violation of Null Integrity

2. We say that tuple t subsumes tuple s if for every
attribute Ai, either t[Ai; Ci] = s[Ai; Ci] or t[Ai] 6=
null and s[Ai] = null. Our second requirement is
that Rc is subsumption free in the sense that it
does not contain two distinct tuples such that one
subsumes the other. 2

We will henceforth assume that all computed relations
are made subsumption free by exhaustive elimination
of subsumed tuples.

Throughout this paper, we use the following exam-
ple to provide the motivationand the illustrations of the
main ideas. We consider a multilevel relation scheme
SOD consisting of three data attributes Starship, Ob-
jective, and Destination, with Starship as the apparent
primary key. We will also be using the standard secu-
rity hierarchy with U (unclassi�ed) < C (con�dential)
< S (secret).

A typical relation instance for SOD is given in Fig-
ure 1. The motivation behind the null integrity prop-
erty is that if a S-user updates the destination of Enter-
prise to be Rigel, he or she will see the instance given
in Figure 2 rather than the one given in Figure 3; since
the �rst tuple in Figure 3 is subsumed by the second
tuple.

The next property is concerned with consistency be-
tween relation instances at di�erent access classes.

Property 3 [Inter-Instance Integrity] R satis�es
inter-instance integrity if and only if for all states and
all c0 � c we have Rc0 = �(Rc; c

0) where the �lter func-
tion � produces the c0-instance Rc0 from Rc as follows:



1. For every tuple t 2 Rc such that t[CAK] � c0 there
is a tuple t0 2 Rc0 with t

0[AK;CAK] = t[AK;CAK]
and for Ai 62 AK

t0[Ai; Ci] =

�
t[Ai; Ci] if t[Ci] � c0

< null; t[CAK] > otherwise

2. There are no tuples in Rc0 other than those derived
by the above rule.

3. The end result is made subsumption free by ex-
haustive elimination of subsumed tuples. 2

The �lter function maps a multilevel relation to di�er-
ent instances, one for each descending access class in
the security lattice. Filtering limits each user to that
portion of the multilevel relation for which he or she is
cleared. Thus, for example, a S-user will see the entire
relation given in Figure 2 while a U-user will see the
�ltered instance given in Figure 1. It is evident that

�(Rc; c) = Rc

�(�(Rc; c
0); c00) = �(Rc; c

00) for c > c0 > c00

as one would expect from the intuitive notion of �lter-
ing.
Finally we have the following polyinstantiation in-

tegrity constraint which prohibits polyinstantiation
within a single access class.

Property 4 [Polyinstantiation Integrity] R satis-
�es polyinstantiation integrity if and only if for every
Rc we have for all Ai

AK;CAK; Ci! Ai 2

This property stipulates that the user-speci�ed appar-
ent key AK, in conjunction with the classi�cation at-
tributes CAK and Ci, functionally determines the value
of the Ai attribute.
We regard property 4 as the formal de�nition of the

informalnotion ofAK as the user-speci�ed primary key.
The e�ect of polyinstantiation integrity is to rule out
instances such in Figure 4, where there are two values
labeled U for the Objective attribute of the Enterprise.
Note that for single level relations CAK and Ci will be
equal to the same constant value in all tuples. In this
case property 4 amounts to saying AK ! Ai, which
is precisely the de�nition of primary key in relational
theory.

3 UPDATE OPERATIONS

In this section, we discuss in detail the three update
(insert, update, and delete) operations. We keep the

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying U Rigel S S

Figure 4: SODS

syntax for these operations identical to the standard
SQL. The e�ect of these operations, however, on multi-
level relation instances is sometimes not as straightfor-
ward as in the case of standard (single-level) relations
because of two factors: (1) star-property must be pre-
served which prevents any write downs, and (2) signal-
ing channels must be avoided.

Let R(A1; C1; : : : ; An; Cn; TC) be a multilevel rela-
tion scheme. In order to simplify the notation, we un-
derstand A1 as equivalent to AK from now on, i.e., A1
is the apparent primary key.

Consider a user logged on at access class c. For the
sake of brevity we also refer to such a user as a c-user.
Now a c-user directly sees and interacts with the c-
instance Rc. From the viewpoint of this user the re-
maining instances of R can be categorized into three
cases: those strictly dominated by c, those that strictly
dominate c and those incomparable with c. The follow-
ing notation is useful for ease of reference to these three
cases.

Rc0<c � Rc0 , such that c0 < c

Rc0>c � Rc0 , such that c0 > c

Rc0�c � Rc0 , such that c0 incomparable with c

Security considerations, and in particular the star-
property, dictate that a c-user cannot insert, update,
or delete a tuple, directly or indirectly (as a side-e�ect)
in any Rc0<c or Rc0�c. Since his actions cannot impact
any Rc0<c, from the user's point of view the e�ect of
insertion, update or deletion must be con�ned to those
tuples in Rc with tuple class equal to c. Because of the
inter-instance property these changes must be properly
re
ected in the instances Rc0>c. In general this may
require the insertion, update or deletion of some tuples
in Rc0>c whose tuple class strictly dominates c. More-
over there may be several di�erent ways to do this while
maintaining inter-instance integrity. This fact compli-
cates the semantics of insert, update and delete opera-
tions; underscoring the need for a formal de�nition.

It is important to realize that the general behavior
outlined above is a necessary consequence of simple-
security, the star-property and inter-instance integrity.
The precise articulation of this behavior is given on a
statement-by-statement basis in the rest of this section.



In all cases operations performed by a c-userx on Rc

have no e�ect on any Rc0<c or Rc0�c. The direct e�ect
of the operation is on Rc. However each operation also
indirectly e�ects every Rc0>c. The latter e�ect is only
partly determined by the core integrity properties of
section 2 leaving room for at least the two di�erent
interpretations identi�ed in section 3.2.3.

3.1 The INSERT Statement

The INSERT statement executed by a c-user has the
following general form, where the c is implicitly deter-
mined by the the user's login class.

INSERT
INTO Rc[(Ai[; Aj] : : :)]
VALUES (ai[; aj] : : :)

In this notation the rectangular parenthesis denote op-
tional items and the \: : :" signi�es repetition. If the
list of attributes in omitted, it is assumed that all the
data attributes in Rc are speci�ed. Moreover, note that
only data attributes Ai can be explicitly given values.
The classi�cation attributes Ci are all implicitly given
the value c.
Let t be the tuple such that t[Ak] = ak if Ak is in-

cluded in the attributes list in the insert statement,
t[Ak] = null if Ak is not in the list, and t[Cl] = c for
1 � l � n. The insertion is permitted if and only if:

1. t[A1] does not contain any nulls.

2. For all u 2 Rc : u[A1] 6= t[A1].

If so, the tuple t is inserted into Rc and by side e�ect
into all Rc0>c. This is moreover the only side e�ect
visible in any Rc0>c.
Thus, the insert statement works in a straightforward

manner. A c-user can insert a tuple t in Rc if Rc does
not already have a tuple with the same apparent pri-
mary key value and key class as t. In the inserted tuple,
the access classes of all data attributes as well as the
tuple class are set to c.
To illustrate, suppose a U-user wishes to insert a sec-

ond tuple to the SOD instance given in Figure 5. He
does so by executing the following insert statement.

INSERT
INTO SOD
VALUES (`Voyager', `Exploration', `Mars')

xStrictly speaking in all cases we should be saying c-subject
rather than c-user. It is however easier to intuitively consider
the semantics by visualizing a human being interactively carrying
out these operations. The semantics do apply equally well to
processes operating on behalf of a user, whether interactive or
not.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 5: SODU = SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Voyager U Exploration U Mars U U

Figure 6: SODU

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

Figure 7: SODS

Starship Objective Destination TC

Enterprise S Spying S Rigel S S

Figure 8: SODS

As a result of the above insert statement, the U-instance
of SOD will become as shown in Figure 6. This inser-
tion is straightforward and identical to what happens
in single-level relations.
On the other hand suppose a S-user wishes to insert

the following tuple into the SOD instance of Figure 5.

INSERT
INTO SOD
VALUES (`Enterprise', `Spying', `Rigel')

In this case we can either reject the insert or accept
it and allow two tuples with the same apparent key
Enterprise to coexist as shown in Figure 7. The two
tuples in in Figure 7 are regarded as pertaining to two
distinct entities. We call such situations as optional

polyinstantiations. Insertion of the secret tuple is not
required for closing signaling channels. It is secure to
reject such insertions. We believe that whether or not
optional polyinstantiation occurs is best speci�ed as a
property of the relation by the Database Administrator
or perhaps as part of the INSERT statement. The pro-
hibition of optional polyinstantiation as an integral part
of a data model is in our opinion needlessly restrictive.
Finally, we illustrate the situation where polyinstan-

tiation is required to close signaling channels. Consider



the SODS instance given in Figure 8. U-users see an
empty instance SODS. Suppose a U-user executes the
following INSERT statement.

INSERT
INTO SOD
VALUES (`Enterprise', `Exploration', `Talos')

This insertion cannot be rejected on the grounds that a
tuple with apparent key Enterprise has previously been
inserted by a S-user. Doing so would establish a sig-
naling channel from S to U. Therefore by security con-
siderations we are compelled to allow insertion of this
tuple. In such cases we say we have required polyin-

stantiation. The e�ect of this insertion by a U-user is
to change SODS from Figure 8 to Figure 7.
Note that we have shown two di�erent scenarios for

arriving at the SODS instance of Figure 7, one based
on optional polyinstantiation and the other on required
polyinstantiation. This theme of optional versus re-
quired polyinstantiation occurs repeatedly through our
discussion. As we have demonstrated above the net re-
sult of optional polyinstantiation can be achieved by re-
quired polyinstantiation. We must therefore give a sen-
sible semantics to the net result independent of whether
it was reached by optional or by required polyinstanti-
ation.

3.2 The UPDATE statement

Our interpretation of the semantics of an update com-
mand is close to the one in the standard relational
model: An update command is used to change values
in tuples that are already present in a relation. UP-
DATE is a set level operator; i.e., all tuples in the re-
lation which satisfy the predicate in the update state-
ment are to be updated (provided the resulting relation
satis�es polyinstantiation integrity). Since we are deal-
ing with multilevel relations, we may have to polyin-
stantiate some tuples. However, addition of tuples due
to polyinstantiation is to be minimized to the extent
possible. As we see it, there is one and only one rea-
son why we must polyinstantiate: to prevent signaling
channels or establish cover stories; otherwise, we must
not polyinstantiate!
The UPDATE statement executed by a c-user has

the following general form, where the c is implicitly de-
termined to be the user's login class.

UPDATE Rc

SET Ai = si[; Aj = sj ] : : :
[WHERE p]

Here, sk is a scaler expression, and p is a predicate
expression which identi�es those tuples in Rc that are

to be modi�ed. The predicate p may include condi-
tions involving the classi�cation attributes, in addition
to the usual case of data attributes. The assignments
in the SET clause, however, can only involve the data
attributes. The corresponding classi�cation attributes
are implicitly determined to be c.
The intent of the UPDATE operation is to modify

t[Ak] to sk in those tuples t in Rc that satisfy the
given predicate p. In multilevel relations, however, we
have to implement the intent slightly di�erently in or-
der to prevent illegal information 
ows. In particular
if t[Ck] < c the star-property prevents us from actually
updating t[Ak] in place, since this would amount to a
write down. We must instead keep both values of Ak.

{

This is achieved by creating a new tuple t0 in Rc which
is identical to t except for such attributes Ak in the
UPDATE statement. As discussed earlier the e�ect of
the update must also be propagated up to Rc0>c in a
consistent manner.

3.2.1 Examples of UPDATE Operations

We now illustrate the semantics of UPDATE by giving
several examples. Following this we will give the formal
de�nitions and more examples.
Consider the SOD instances given in Figures 9

and 10. Suppose the U-user makes the following up-
date to SODU shown in Figure 9.

UPDATE SOD
SET Destination = Talos
WHERE Starship = `Enterprise'

The changes to SODU in Figure 9 and SODS in Fig-
ure 10 are shown in Figures 11 and 12 respectively.
Note that in SODS the Destination attribute for the
Enterprise is now polyinstantiated. This is an exam-
ple of required polyinstantiation which cannot be com-
pletely eliminated without introducing signaling chan-
nels or severely limiting the expressive capability of the
database. Also note that the two tuples for the Enter-
prise in Figure 12 refer to the same real-world entity
unlike the two tuples of Figure 7 which refer to two
distinct entities.
Next, suppose starting with the instance SODS

shown in Figure 12 a S-user invokes the following up-
date.

{This is an example of optional polyinstantiation so another
sensible alternative is to reject the update. As argued earlier the
rejection of optional polyinstantiation should not be hard-wired
into the data model. We reiterate and emphasize the point that
even if we insist on always rejecting optional polyinstantiation
we must still cope with required polyinstantiation. For UPDATE
required polyinstantiation arises due to updates by c-users of null
values in tuples with t[A1] = c.



Starship Objective Destination TC

Enterprise U Exploration U null U U

Figure 9: SODU

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

Figure 10: SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 11: SODU

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

Figure 12: SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S

Figure 13: SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S
Enterprise U Spying S Rigel S S

Figure 14: SODS

Starship Objective Destination TC

Enterprise U Spying U Talos U U

Figure 15: SODU

Starship Objective Destination TC

Enterprise U Spying U Talos U U
Enterprise U Spying U Rigel S S

Figure 16: SODS

UPDATE SOD
SET Objective = Spying
WHERE Starship = `Enterprise' AND

Destination = `Rigel'

In this case, the SODS will change to the instance given
in Figure 13, not to the instance given in Figure 14.
This follows from our underlying philosophy: we need
to polyinstantiate to either close a signaling channel or
provide a cover story.

Next, suppose a U-user makes the following update
to the relation shown in Figure 11. (Assume S-users see
the instance given in Figure 12.)

UPDATE SOD
SET Objective = Spying
WHERE Starship = `Enterprise'

As a consequence of the above update, not only SODU

will change from the relation in Figure 11 to the one in
Figure 15, but SODS will also change from the relation
in Figure 12 to the one in Figure 16. Thus, polyinstan-
tiation integrity is preserved in instances at di�erent
security levels. Note in particular how the secret tuple
in Figure 12 has changed to the secret tuple in �gure 16
due to an update by a U-user.

3.2.2 E�ect of UPDATE at the User's Access
Class

We now formalize and further develop the ideas
sketched out above. First consider the e�ect of an up-
date operation by a c-user on Rc. Let

S = ft 2 Rc : t satis�es the predicate pg

We describe the e�ect of the UPDATE operation by
considering each tuple t 2 S in turn. The net e�ect is
obtained as the cumulative e�ect of updating each tuple
in turn. The UPDATE operation will succeed if and
only if at every step in this process polyinstantiation
integrity is maintained. Otherwise the entire UPDATE
operation is rejected and no tuples are changed. In
other words UPDATE has an all-or-nothing integrity
failure semantics.

It remains to consider the e�ect of UPDATE on each
tuple t 2 S. There are two components to this e�ect.
Firstly, tuple t is replaced by tuple t0 which is identi-
cal to t except for those data attributes which are as-
signed new values in the SET clause. This is the famil-
iar replacement semantics of UPDATE in a single-level
world. In terms of our earlier examples the update of
SODU from Figure 9 to Figure 11 and then to Figure 15
illustrates this semantics. The formal de�nition of the



tuple t0 obtained by replacement semantics is straight-
forward as follows.

t0[Ak; Ck] =

�
t[Ak; Ck] Ak 62 SET clause
< sk; c > Ak 2 SET clause

Secondly to avoid signaling channels, we may need
to introduce an additional tuple t00 to hide the e�ects
of the replacement of t by t0 from users at levels below
c (c is the level of the user executing the UPDATE).
This will occur whenever there is some attribute Ak

in the SET clause with t[Ck] < c. The idea is that
the original value of t[Ak] with classi�cation t[Ck] is
preserved in t00. At the same time the core integrity
properties of section 2 must also be preserved. To be
concrete consider our earlier example of the update of
SODS fromFigure 12 to Figure 13. The WHERE clause
of the UPDATE statement picks up the second tuple in
Figure 12 which by replacement semantics gives us the
second tuple in Figure 13. In this case the unclassi�ed
Exploration value of the Objective attribute continues
to be available in the �rst tuple of Figure 13 and we need
not introduce an additional tuple to hide the e�ect of
this update from U-users. On the other hand suppose
the same UPDATE statement, viz.,

UPDATE SOD
SET Objective = Spying
WHERE Starship = `Enterprise' AND

Destination = `Rigel'

was executed by a S-user in context of Figure 10. Prior
to the update U-users see the instance in Figure 9 and
therefore must continue to do so after the update. To
achieve this SODS changes from Figure 10 to Figure 17.
The �rst tuple in Figure 17 is the tuple t0 dictated by
the usual replacement semantics. The second tuple is
the t00 tuple introduced to hide the e�ect of the update
from U-users and maintain inter-instance integrity. It
should be noted that Figure 18 also achieves these two
goals. However it does so at the cost of a spurious asso-
ciation between Rigel and Exploration which is avoided
in Figure 17.
We now give a formal de�nition of the t00 tuple in-

troduced to close the signaling channel. From the pre-
ceding discussion it might appear that in the de�nition
one has to consider tuples other than the tuple t which
is being updated. Fortunately this complication can
be avoided because the t00 tuple will be subsumed by
existing tuples whenever appropriate. The t00 tuple is
de�ned as follows.

t00[Ak; Ck] =

�
t[Ak; Ck] t[Ck] < c

< null; t[A1] > t[Ck] = c

To summarize each tuple t 2 S is replaced by t0 and
possibly in addition by t00 (if t00 exists). The update is

Starship Objective Destination TC

Enterprise U Spying S Rigel S S
Enterprise U Exploration U null U U

Figure 17: SODS

Starship Objective Destination TC

Enterprise U Spying S Rigel S S
Enterprise U Exploration U Rigel S S

Figure 18: SODS

succesful if the resulting relation satis�es polyinstanti-
ation integrity. Otherwise the update is rejected and
the original relation is left unchanged.

3.2.3 E�ect of UPDATE Above the User's Ac-
cess Class

Next consider the e�ect of the update operation on
Rc0>c. This of course assumes that the update oper-
ation on Rc was successful. The e�ect of the update
operation is again best explained by focusing on a par-
ticular tuple t in S.

1. For every Ak 2 SET clause with t[Ak] 6= null let

U = fu 2 Rc0>c : u[A1; C1] = t[A1; C1] ^
u[Ak; Ck] = t[Ak; Ck]g

Polyinstantiation integrity dictates that we replace
every u 2 U by u0 identical to u except for

u0[Ak; Ck] =< sk; c >

This rule applies cumulatively for di�erent Ak's in
the SET clause.

2. To maintain inter-instance integrity we need at the
minimum to insert t0 and t00 (if it exists) in Rc0>c.

The �rst requirement is an absolute one and must be
rigidly enforced by the DBMS. The second requirement
is, however, a weaker one in that inter-instance integrity
only stipulates what minimum action is required. We
can however insert a number of additional tuples v in
Rc0>c with v[A1; C1] = t0[A1; C1] so long as the core
integrity properties are not violated. In particular if t0

subsumes the tuple in �(fvg; c) inter-instance integrity
is still maintained.
In short the core integrity properties do not uniquely

determine how an update by a c-user to Rc should be



re
ected in updates to Rc0>c. There are at least two
reasonable approaches to resolving this issue, both of
which should be available as options.

1. Minimal propagation: introduce only the minimum
necessary to maintain inter-instance integrity, i.e.,
put t0 and t00 (if it exists) in each Rc0>c and nothing
else.

2. Interpreted propagation: introduce exactly those
tuples in Rc0>c dictated by the update statement
in question. For this purpose consider the set

Q = fq 2 Rc0>c : q[A1; C1] = t[A1; C1] ^
q satis�es pg

where p is the predicate in the WHERE clause of
the UPDATE statement. For each q insert the fol-
lowing tuple in Rc0>c

q0[Ak; Ck] =

�
q[Ak; Ck] Ak 62 SET clause
< sk; c > Ak 2 SET clause

To illustrate the di�erence between the minimal and
interpreted propagation rules, assume that SODU and
SODC are identical as shown in Figure 19 while SODS

is as shown in Figure 20. Suppose now that a C-user
makes the following update to SOD.

UPDATE SOD
SET Objective = Spying
WHERE Starship = `Enterprise'

As a consequence of the above update SODC will change
to the relation given in Figure 21. (SODU remains un-
changed as in Figure 19.) The exact change to SODS

depends on the propagation rule. Under the minimal
propagation rule, SODS will change from Figure 20 to
Figure 22, while under the interpreted propagation rule,
the relation in Figure 23 will result. The basic di�er-
ence is that with minimal propagation the newly in-
serted con�dential data element is not associated with
any secret data whereas with interpreted propagation
it is.

3.3 The DELETE statement

The DELETE statement has the following general form:

DELETE
FROM Rc

[WHERE p]

Here, p is a predicate expression which helps identify
those tuples in Rc that are to be deleted. The intent
of the DELETE operation is to delete those tuples t
in Rc that satisfy the given predicate. All tuples t in

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 19: SODU = SODC

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

Figure 20: SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying C Talos U C

Figure 21: Updated SODC

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying C Talos U C
Enterprise U Exploration U Rigel S S

Figure 22: Updated SODS by Minimal Propagation

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying C Talos U C
Enterprise U Exploration U Rigel S S
Enterprise U Spying C Rigel S S

Figure 23: Updated SODS by Interpreted Propagation



Rc that satisfy the predicate p are deleted. If t[C1] = c,
then any polyinstantiated tuples inRc0>c will be deleted
from Rc0>c and the entity will completely disappear
from the multilevel relation. On the other hand with
t[C1] < c the entity will continue to exist in some Rc0<c

and possibly in Rc itself. At the same time to main-
tain inter-instance integrity we may need to delete some
polyinstantiated tuples from Rc0>c. The precise set of
tuples which need to be deleted is open to di�erent in-
terpretations. As for the UPDATE operation we can
do so in a minimal or interpreted manner. The details
are omitted for now.

4 CONCLUSION

In this paper we have examined the semantics of vari-
ous update operations in the context of multilevel rela-
tions. To this end, the familiar INSERT, UPDATE and
DELETE operations were suitably generalized to deal
with polyinstantiation.
In terms of future work, we intend to consider the

issue of implementing these update semantics in a ker-
nelized DBMS. The existing decomposition and recov-
ery algorithms [3, 6, 8, 9, 10] do not exhibit the update
semantics proposed in this paper. Thus, they need to
suitably modi�ed.
It also remains to be shown that our update se-

mantics are consistent (or sound) and complete. Con-
sistency requires that all relations which can be con-
structed will satisfy the basic integrity properties re-
quired of multilevel relations. Completeness requires
that any multilevel relation instance satisfying the four
core integrity properties (given in Section 2) can be re-
alized by some sequence of update operations. We con-
jecture that this is indeed the case, particularly in re-
gard to the interpreted propagation rule. The minimal
propagation rule we know to be incomplete.

Acknowledgement

We are indebted to John Campbell, Joe Giordano and
Howard Stainer for their support and encouragement
making this work possible. The opinions expressed in
this paper are of course our own and should not be
taken to represent the views of these individuals.

References

[1] Denning, D.E., Lunt, T.F., Schell, R.R., Heckman,
M., and Shockley, W.R. \A Multilevel Relational
Data Model." IEEE Symposium on Security and

Privacy, 220-234 (1987).

[2] Denning D.E. \Lessons Learned from Modeling a
Secure Multilevel Relational Database System." In
Landwehr, C.E. (Editor) Database Security: Sta-

tus and Prospects, North-Holland, 35-43 (1988).

[3] Denning, D.E., Lunt, T.F., Schell, R.R., Shockley,
W.R. and Heckman, M. \The SeaView Security
Model." IEEE Symposium on Security and Pri-

vacy, 218-233 (1988).

[4] Department of Defense National Computer Secu-
rity Center. Department of Defense Trusted Com-

puter Systems Evaluation Criteria. DoD 5200.28-
STD, (1985).

[5] Gajnak, G.E. \Some Results from the Entity-
Relationship Multilevel Secure DBMS Project."
Aerospace Computer Security Applications Confer-

ence, 66-71 (1988).

[6] Jajodia, S. and Sandhu, R.S. \Polyinstantiation
Integrity in Multilevel Relations." IEEE Sympo-

sium on Security and Privacy, Oakland, Califor-
nia, 104-115 (1990).

[7] Jajodia, S. and Sandhu, R.S. \A Formal Frame-
work for Single Level Decomposition of Multilevel
Relations." IEEE Workshop on Computer Security

Foundations, Franconia, NH, 152-158 (1990).

[8] Jajodia, S. and Sandhu, R.S. \Polyinstantiation
Integrity in Multilevel Relations Revisited." IFIP

WG11.3 Workshop on Database Security, Halifax,
U.K. (1990).

[9] Lunt, T.F., Denning, D.E., Schell, R.R., Heckman,
M. and Shockley, W.R. \The SeaView Security
Model." IEEE Transactions on Software Engineer-

ing 16(6):593-607 (1990).

[10] Lunt, T. and Hsieh, D. \Update Semantics for
a Multilevel Relational Database." IFIP WG11.3

Workshop on Database Security, Halifax, U.K.
(1990).

[11] Sandhu, R.S., Jajodia, S. and Lunt, T. \A New
Polyinstantiation Integrity Constraint for Multi-
level Relations." IEEE Workshop on Computer

Security Foundations, Franconia, NH, 159-165
(1990).


