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Abstract—The eXtensible Access Control Markup Language (XACML) is the de facto language to specify access control policies for

web services. XACML has an RBAC profile (XACML-RBAC) to support role-based access control policies. We extend this profile with

an administrative RBAC profile, which we refer to as the XACML-ARBAC profile. One of the advantages of doing so is to use policies

based on RBAC model to administrate XACML-RBAC policies. Because using permissions granted by XACML-ARBAC policies alter

XACML-RBAC policies, enforcing XACML-ARBAC polices requires some concurrency control within XACML access controller’s

runtime. In order to solve this concurrency problem, we propose a session-aware administrative model for RBAC, and enhance the

XACML policy evaluation runtime using a locking mechanism. Experimental study shows reconcilable performance characteristics of

our enhancements to Sun’s XACML reference implementation.

Index Terms—RBAC, ARBAC, XACML, concurrency control, security.
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1 INTRODUCTION

THE eXtensible Access Control Markup Language
(XACML) [3] is emerging as the de facto standard to

specify access control policies for web services. Many
policies that conform to traditional access control models
such as discretionary [26], mandatory [10] and role-based
(RBAC) [34], [21] have been specified in XACML syntax
over the years. Recognizing that RBAC models are gaining
popularity, the XACML technical committee has published
an RBAC profile to the original XACML specification [1],
which we refer to as the XACML-RBAC profile. The RBAC
research community has extended RBAC models to use
RBAC itself to administrate the RBAC models, commonly
referred to as administrative role-based access control (ARBAC)
models [33], [17], [18], [15], [31], [30]. Extending the
XACML-RBAC profile to cover ARBAC models is the first
fundamental contribution of this paper.

The RBAC model is based on the tenant that every role is
granted a set of permissions necessary and sufficient to
perform the job functions of any individual playing that role.
Consequently, ARBAC models specify the access permis-
sions required to perform the job function of the access
control administrator such as creating/removing roles,
changing permissions granted to roles, and assigning/
revoking users to/from roles to a so called administrative
role. One of the main issues in enforcing these administrative
permissions is that they require changing access control
policies—and in case of XACML, those that are compliant
with the XACML-RBAC profile. That raises two issues.

First, when an administrator exercises any administrative
privilege (i.e., those given under administrative roles)
granted under an XACML-ARBAC policy, it could result
in altering the permissions of a user. For example, a user
may loose an already granted privilege by an XACML-
RBAC policy. Therefore, enforcing an ARBAC policy would
entail immediately changing the permissions granted to a
user for a resource while the same user may still be
accessing the resource. Second, an administrative operation
usually updates an RBAC policy, which results in read-
write conflicts when the access controller attempts to
evaluate a user’s access request. The underlying reason
for these problems lies in the fact that all existing ARBAC
models focus on defining policies to assign different
administrative permissions to different administrative
roles, while in practice, enforcing these policies affects the
runtime state of the RBAC system that may result in
unexpected change of permissions within ongoing sessions.
Addressing concurrency issues of XACML administration
is the second fundamental contribution of this paper.

Another auxiliary issue that has not been adequately
addressed previously is the birth and death processes of the
access controller itself—in our case, the XACML policy
evaluation runtime. When the access controller is initialized,
there is no default role or mechanism to properly activate
the stored polices. When the access controller is asked to die,
there must be a mechanism to clean up the system to ensure
the safety property of the access controller. Formalizing the
birth process is our third contribution of this paper.

In order to solve these problems, we propose a session-
aware administrative model for RBAC. By this we mean that
the policy enforcement point (PEP) maintains state in-
formation about user sessions. Based on this model, we
propose using locks to handle concurrency control issues
arising in enforcing the XACML-ARBAC profile. In using
locks to enforce concurrency control, we define the concept
of a lock scope for a role, that captures the roles that would be
adversely affected due to enforcing an administrative
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operation. To control such adverse effects, we make some
architectural enhancements to the current design of the
XACML runtime. Specifically, we develop an administra-
tive policy enforcement point (A-PEP) that competes for
read-write locks for RBAC and ARBAC polices along with
the policy decision point (PDP) of the access controller. We
also have a session administrator that terminates all user
sessions that are affected due to a pending administrative
policy change, immediately before its enforcement.

In order to standardize the birth and death processes of
our enhanced XACML runtime, we define a default
XACML-ARBAC profile that contains a persistent Super
Role (SRole) that may be invoked by a so called Super User
(SU). The SU is assigned to the SRole. We then use this SU to
instantiate the stored policies and enforce our XACML-
ARBAC profile. For the planned death of the access
controller, we have a special administrative kill method
that will request active policy enforcement points (PEPs) to
terminate all active user sessions authorized by this access
controller. After obtaining agreement from the PEPs, SU
signals the operating system to shut down the access
controller. Finally, we demonstrate our solutions by ex-
tending Sun’s XACML reference implementation engine [6]
and report performance results of our implementation.

Preliminary results of this paper appeared in [39]. The
current paper extends that work by formally specifying the
administrative operations, enhancing concurrency control
requirements of the session administration, developing the
birth and death processes of the access controller, and
conducting a more elaborate performance evaluation.

The rest of the paper is organized as follows: Section 2
briefly describes XACML and ARBAC essentials. Section 3
introduces our session administrative model for an RBAC
system and concurrency control requirements. Section 4
presents our XACML-ARBAC profile and the architecture
to enforce this profile in XACML. Section 5 describes our
implementation. Section 6 presents some performance
characteristics. Section 7 presents related work. Section 8
concludes this paper.

2 PRELIMINARIES

2.1 XACML Syntax

The eXtensible Access Control Markup Language
(XACML) is an XML-based language which specifies access
control policies, requests, and responses in distributed
computing environments such as web services. A request
originates from a <Subject> (e.g., a user or a process) to
perform an <Action> (e.g., read or write) on a <Resource>
(e.g., a file or a disk block) within an environment (e.g.,
from a secure machine).

Standard XACML uses three basic elements in construct-
ing access control policies: <Rule>, <Policy>, and <Policy-
Set>, and allows hierarchical nesting of them. An XACML
<Rule> has two elements, a <Condition> and a <Target>,
and an Effect attribute. The intuitive reading of an XACML
rule is that, if the condition of the rule evaluates to be true,
then the access control decision to perform <Actions> by
the <Subjects> on the <Resources> are given by the Effect
attribute. A <Policy> can consist of a set of <Rule>s. A

<PolicySet> holds <Policy>s and other <PolicySet>s. The
XACML policy evaluation algorithm uses the so called rule
and policy combining algorithms [3] to recursively compute
the decision of a nested rule/policy. The return value of
such an evaluation must be one of {permit, deny, nonApplic-
able, indeterminate}. The OASIS specification [3] identifies
four standard combining algorithms: deny-override, permit-
override, first-one-applicable, and only-one-applicable. For ex-
ample, the deny-overrides algorithm evaluates to deny if any
applicable rule evaluates to deny.

<Target> specifies a set of predicates are constructed
from <Subject>, <Resource>, and <Action> attributes that
must be met for a <PolicySet>, <Policy>, or <Rule> to apply
to an access request. The attribute values in a request are
compared with those included in the <Target>, and if all the
attributes match then the request is applicable. If the request
and the <Target> attributes do not match, then the request
is notApplicable, and if the evaluation results in an error,
then the request is indeterminate. If a request satisfies the
<Target> of a policy, then the request is further checked
against the rule set of the policy; otherwise, the policy is
skipped without further examination.

The <Condition> element further restricts the applic-
ability of the <Rule> already matching by the <Target> in
the rule. <Condition>s can be nested using Boolean
combinators over other <Condition>s. We can check the
pre-conditions of each administrative operation (so to be
explained shortly) in the <Condition>.

Any <PolicySet> can include one or more <Policy-
IdReference> or <PolicySetIdReference> elements which
are pointers to the referenced <Policy>s or <PolicySet>s.
The intended semantics of including a <PolicySetIdRefer-
ence> in a <PolicySet> is that the content of the referenced
<PolicySet> replaces the <PolicySetIdReference> verbatim
in the referring <PolicySet>. This feature is used in the
XACML-RBAC profile [1] to specify role-to-permission
assignments and role hierarchies.

Fig. 1 shows an example XACML policy that specifies a
permission to add a role. This policy has one <Policy>
element containing two rules, Rule “Permission:to:add:a:role”
(lines 7-35), and Rule2 (line 36). Line 1 of the policy indicates
that the rule combining algorithm to be used is permit-
overrides. Lines 2-6 define the policy’s target, which indicates
that this policy is applicable to any subject requesting
permission to execute any action on any resource. The target
of Rule “Permission:to:add:a:role” (lines 8-28) narrows the
scope of applicable requests to those requesting accesses to
the resource role with the action AddRole. The condition of
Rule “Permission:to:add:a:role” (lines 29-34) indicates that if
the role does not exist (computed using our extended
function role-exist (to be explained shortly)), the request
should be permitted. Otherwise, according to Rule 2 (line 36)
and the rule combining algorithm of the policy (line 1), the
request should be denied.

2.2 Sun’s Reference Implementation

Fig. 2 shows the high-level architecture of Sun’s XACML
reference implementation [6]. In this architecture, the Policy
Administration Point (PAP) is the entity that creates policies
and policy sets; the Policy Decision Point (PDP) is the entity
that evaluates policies and renders one of {permit, deny,
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indeterminate, notApplicable} as the authorization decision;
the Policy Enforcement Point (PEP) is the entity that enforces
the access control decision; and the Context Handler is the
entity that converts native request to one that is in the
XACML format (consisting of three components Subject,
Resource, and Action) and converts authorization decisions
in the XACML format to native formats.

The PAP creates policies at authoring time, e.g., by
security administrators using some text editor. At an access
control request time, a subject sends an access request to the
PEP as shown in flow 2 of Fig. 2. The PEP then forwards this
request to the context handler (flow 3) and obtains all the
values of the attributes passed in the request. The context
handler forms the access control request based on the
attributes of the requester, action, resource, and environ-
ment, and forwards the request to the PDP (flows 4, 5, 6, 7,
8). The PDP uses this information to find the access control
policy applicable to the request, which is defined in terms of
the attributes of the requestor, action, and the resource. The
policy can also include functions defined on these attri-
butes. The PDP uses two steps to evaluate the request: it
first attempts to find all the polices applicable to the request
by using target matching (flow 1) algorithm, and then it
evaluates the rules of the applicable policies and returns its
decision back to the PEP via the context handler (flows 9,
10). Finally, the PEP enforces the authorization decision.

Sun’s reference implementation [6] provides a set of APIs
that understand the XACML syntax, and rules to process
requests and manage attributes. But this implementation
only provides a PDP for policy evaluation that can only
read, but not modify any policies, which we need to

enhance in order to enforce the administrative operations
specified in ARBAC polices.

2.3 RBAC and ARBAC

We use the notation RBAC ¼ ðU;O;A;R; P ;�; U2R;R2P Þ
to model an RBAC system, where the first four entities are
the sets of users, objects, actions, and roles, respectively. P
is a subset of O�A, representing the set of permissions.
The partial ordering �� R�R is the role hierarchy. U2R :
U 7! 2R and R2P : R 7! 2P are relations that are functional
in their first coordinate, modeling user-to-role and role-to-
permission assignments. That is, U2Rðu;MÞ and R2P ðr;NÞ
are true iff user u is allowed to play the set of roles M and
role r can execute the permission set N , respectively. We
use function assignPermsðuÞ ¼ [r2U2RðuÞ;r�r1

R2P ðr1Þ to re-
turn the set of all possible permissions that a given user can
obtain by invoking all roles assigned to him or her.

We base our work partially on ARBAC97 [33] and
SARBAC [17], which suggest having a set of administrative
roles (AR) distinct from user roles, and permit these
administrative roles to create and remove users, roles,
assign and revoke users to (user) roles, and grant and
revoke permissions to (user and administrative) roles.
ARBAC97 has three submodels referred as URA97, PRA97,
and RRA97, which represent controls over user-to-role
assignment (U2R), role-to-permission assignment (R2P),
and the role hierarchy (�), respectively. An ARBAC model
is defined as follows:

Definition 1 (ARBAC). Let ðU;O;A;R; P;�; U2R;R2P Þ be
an RBAC model. An administrative RBAC model is a tuple
ARBAC¼ðU;AO;AA;AR;AP;�A;U2AR;AR2AP Þ, where

. AO ¼ U [R [ U2R [R2P[ � is the set of admin-
istrative objects.

. AA is the set of administrative actions given in Table 1
including þ and � operations.

. AR is a set of administrative roles.

. AP � ðAO�AAÞ [ ðAO�AO�AAÞ is the set of
administrative permissions which is an application of
an administrative action on one or two appropriate
administrative objects.

. �A� AR�AR is the administrative role hierarchy.

. U2AR : U 7! 2AR is the user-to-administrative role
assignment.

. AR2AP : AR 7! 2AP is the administrative role-to-
administrative permission assignment.
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As defined, administrative objects (AO) in ARBAC
include the set of users (U), roles (R), user-to-role (U2R),
role-to-permission (R2P ) mapping, the role inheritance
relation (�) from an RBAC model, and administrative
actions defined in Table 1. For example, the AssignUser and
DeassignUser operations create and remove entries from
the user-to-role mapping (U2R), respectively. Each execu-
tion of an administrative action changes the RBAC system
to a new state. The preconditions and postconditions of
these operations are specified in Section 2.4.

All administrative operations can be classified into “þ”
operations and “�” operations. A “þ” operation adds
elements to existing administrative objects from adminis-
trative objects such as assigning a user or granting a
permission to a role, while a “�” operation deletes elements
such as revoking a user or permission from a role.

2.4 Formal Specification of Administrative
Operations

We formally specify suggested administrative operations
in terms of preconditions and postconditions using the
Z-notation [36]. As per Z-notation, a value of a data item
before the execution of a command (so called prestate of a
data structure) is denoted by a symbol, and its value after
the execution of the operation (i.e., the so called poststate) is
denoted by the same symbol followed by a prime (’).

. AddUser(u): creates an RBAC user u.

- Precondition: u is not already a member of the
user data set.
Formal Specification: u 62 U .

- Postcondition: The user data set is updated.
Initially, u is not assigned to any role.
Formal Specification: U 0 ¼ U [ fug ^ U2R0 ¼ U2R.

. DeleteUser(u): deletes an existing user u from the
user data set.

- Precondition: u is already a member of the user
data set and no roles are assigned to u.
Formal Specification: u 2 U^ 6 9r 2 R;M � R :
U2Rðu;MÞ ^ r 2 U .

- Postcondition: The user data set is updated.
Formal Specification: U 0 ¼ U n fug.

. AddRole(r): creates a new role r.

- Precondition: r is not already a member of roles.
Formal Specification: r 62 R.

- Postcondition: The new role is added to the roles
set R. U2R and R2P remain unchanged.
Formal Specification:RO0 ¼R [ frg ^ U2R0 ¼ U2R
^ R2P 0 ¼R2P .

. DeleteRole(r): deletes an existing role r from the roles
data set.

- Precondition: The role r is a member of the set
roles, no user is assigned to r, and r is not a part
of the role hierarchy.
Formal Specification: r 2 R^ 6 9u 2 U , M � R :

U2Rðu;MÞ ^ r 2M^ 6 9r1 2 Rðr � r _ r1 � rÞ.
- Postcondition: r is removed from the roles data set.

Formal Specification: R0 ¼ R n frg.
. AssignUser(u,r): assigns a user u to a role r.

- Precondition: The user u is a member of the users
data set. The role r is a member of roles data set,
and the role r is not assigned to u and is not a
child of another role r0 assigned to u.
Formal Specification: ½u 2 U ^ r 2 R� ^ 6 9M �
R½r 2M : U2Rðu;MÞ�^ 6 9r1 2R½r1 � r ^ r1 2M ^
U2Rðu;MÞ�.

- Postcondition: U2R is updated.
Formal Specification: ½U2Rðu;MÞ!U2R0 ¼ U2R n
ðu;MÞ [ ðu;M [ frgÞ� ^ ½6 9M � R U2Rðu;MÞ !
U2R0ðu; frgÞ�.

. DeassignUser(u,r): deassigns the user u from the role r.

- Precondition: The user u is a member of the users
data set, the role r is a member of roles data set
and u is assigned to r.
Formal Specification: u 2 U ^ r 2 R; 9M � R : r 2
M ^ U2Rðu;MÞ.

- Postcondition: The U2R is updated.
Formal Specification: 9M � R;U2Rðu;MÞ !
U2R0ðu;M n frgÞ.

. GrantPermssion(r,(a,o)): grants the permission to per-
form an action a on an object o to a role r.

- Precondition: The role r is a member of the roles
data set and (a,o) is a permission.
Formal Specification: r 2 R ^ ða; oÞ 2 P .

- Postcondition: The R2P is updated.
Formal Specification: 9N � P : R2P ðr;NÞ !
R2P ðr;N [ fða; oÞgÞ.

. RevokePermission(r,(a,o)): revokes the permission to
perform action a on an object o from the set of
permissions granted to r.

- Precondition: The role r is a member of the roles
data set and (a,o) is assigned to r.
Formal Specification: r 2 R ^ 9N � P : R2P ðr;
Nfða; oÞgÞ

- Postcondition: The R2P is updated.
Formal Specification: 9N�P : R2P ðr;NÞ!R2P 0 ¼
½R2P n ðr;NÞ� [ fðr;N n fða; oÞgÞg.

. AddEdgeðrc; rpÞ: makes the role rc a child role of rp.

- Precondition: rc and rp are members of the roles
data set, not related yet and adding does not
create cycles in the inheritance hierarchy. SRole
is neither a parent nor a child of any role.
Formal Specification: rc; rp2R ^ rp 6� rc ^ rc 6� rp ^
rp 6¼ SRole ^ rc 6¼ SRole ^ ½:9r; s2Rðrc < r < rP

^ rp < s < rcÞ�.
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- Postcondition: rp is the parent of rc.
Formal Specification: <0¼< [fðrc; rpÞg.

. DeleteEdgeðrc; rpÞ: deletes an existing child-parent
relationship rc < rp.

- Precondition: rc and rp are members of the roles
data set and rp is a parent of rc.
Formal Specification: rc; rp 2 R ^ ½rc < rp�.

- Postcondition: The relationship rc < rp is deleted.
Formal Specification: <0¼< nfðrc; rP Þg.

3 SESSION ADMINISTRATIVE MODEL

3.1 RBAC Session Administration

The RBAC96 [34] and NIST RBAC [21] models include the
concept of a session, which provides a context for a user
to have multiple simultaneous interactions with resources.
Therefore, a user may activate different roles within
different sessions at the same time. Consequently, every
activated role belongs to one session, and a session could
have multiple roles activated, where each session belongs
to a unique user. Some primitive session management
functions are specified in the NIST RBAC model [21].
However, they are not included in existing ARBAC modes
[33], [17], [18], [15], [31], [30]. Our sessions are different
from transactions in database management systems [8]. A
database transaction must be atomic, consistent, isolated
and durable, i.e., satisfy so called ACID properties. We
assume that the session management is handled by the
PEP. When an administrator executes some administrative
operation, the state of the RBAC system, as modeled by
the U2R, R2P and � relations may change. Consequently,
in order to maintain consistency over all sessions, some
permissions and roles granted to users may need to be
terminated, or the enforcement of the administrative
operation may have to be delayed. At any given state,
different instances of the same role should be granted the
same set of permissions. We choose to implement the
former, realizing that this has limitations. For example,
when a user may lose his/her role or permission to an
operation that cannot be preempted. In order to specify
appropriate ARBAC policies for an RBAC system, first we
define an administrative model for session management as
follows:

Definition 2 (Session Administration). Let ðU;O;A;R; P ;
�; U2R;R2P Þ be the model of an RBAC system. A session
administrative model is a tuple SAM ¼ ðS;ACTIV E � S;
S �ACTION;U2S; S2R; actRole; actPermsÞ, where

. S is the set of sessions.

. ACTIV E � S is the set of all active sessions at a
given system state.

. S �ACTION ¼

fCreateSessionðu; sÞ; DeleteSessionðu; sÞ;
ActivateRoleðu; s; rÞ; DeactivateRoleðu; s; rÞg

is the set of session administrative actions, where
u 2 U , r 2 R, and s 2 ACTIV E � S.

. U2S : U 7! 2ACTIV E�S is a function mapping a user
to a set of active sessions at a system state.

. S2R : ACTIV E � S 7! 2R is a function mapping an
active session to a set of activated roles at a system state.

. U2S � S2RðuÞ � U2RðuÞ is the constraint that at a
system state, all activated roles of a user is a subset
of the set of his or her assigned roles, where U2S �
S2RðuÞ ¼ [s2U2SðuÞS2RðsÞ.

. activeRolesðuÞ ¼ [s2U2SðuÞS2RðsÞ is a function map-
ping a user to a set of activated roles in all active
sessions at a system state.

. activePermsðuÞ ¼ [s2U2SðuÞ;r2S2RðsÞ;r�r1
R2P ðr1Þ is a

function mapping a user to a set of activated
permissions at a system state.

Invoking any session administrative action changes the
system to a new state, by creating/deleting a session for a
user, or activating/deactivating a role within a session, etc.
The formal semantics of these actions are defined as
follows:

. CreateSessionðu; sÞ creates a new session s for
user u.

- Precondition: u is already a member of the user
data set and s is not a member of ACTIV E � S.
Formal Specification: u 2 U ^ s 62 ACTIV E � S.

- Postcondition: U2S is updated.
Formal Specification: U2S0 ¼U2Snfu 7!U2SðuÞg [
fu 7! ðU2SðuÞ [ fsgÞg ^ s 2 ACTIV E � S.

. DeleteSessionðu; sÞ deletes a given session s of
user u.

- Precondition: ðu; sÞ is an entry of U2S.
Formal Specification: ðu; sÞ 2 U2S ^ s 2
ACTIV E � S.

- Postcondition: U2S is updated.
Formal Specification: U2S0 ¼U2Snfu 7!U2SðuÞg[
fu 7! ðU2SðuÞ n fsgÞg.

. ActivateRoleðu; s; rÞ activates role r in session s of
user u.

- Precondition: ðu; sÞ is a member of U2S and ðu; rÞ
is a member of U2R.
Formal Specification: ðu; sÞ 2 U2S ^ ðu; rÞ 2 U2R
^ s 2 ACTIV E � S.

- Postcondition: S2R is updated.
Formal Specification: S2R0 ¼S2Rnfs 7!S2RðsÞg[
fs 7! ðS2RðsÞ [ frgÞg.

. DeactivateRoleðu; s; rÞ deactivates role r from ses-
sion s of user u.

- Precondition: ðs; rÞ is a member of S2R.
Formal Specification: ðs; rÞ 2 S2R.

- Postcondition: S2R is updated.
S2R0 ¼S2Rnfs 7!S2RðsÞg[fs 7!ðS2RðsÞnfrgÞg.

3.2 Concurrency Control

Similar to an RBAC model, an ARBAC model defines the
configuration of the administrative functions of an RBAC
system. However, as mentioned, any configuration change
affects the running system state, and may require session
administrative actions. The interaction between session
administrative actions and system administrative opera-
tions (i.e., the ARBAC operations defined in Section 2.3)
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needs to be specified for a safe and complete ARBAC
model. As one of the major contributions of this paper, we
identify the following two concurrency control require-
ments between the session administrative model and the
system administrative model for an RBAC system.

Revoke an activated role or delete an active session
immediately. Suppose, an administrative action aact 2 AA
changes an RBAC model to RBAC0, according to the
semantics specified in Section 2.4. Then, in order to retain
the consistency, we either delete the affected session, or
deassign the user from the affected role. This is formally
stated as follows: If 9u 2 U; p 2 P , p 2 activePermsðuÞ ^
p 62 assignPermsðuÞ0, then ½8s2U2SðuÞ; 9r2R; p2R2P ðrÞ ^
r2S2RðrÞ� 7! DeleteSession0ðu; sÞ _DeactivateRole0ðu; s; rÞ,
where assignPermsðuÞ0 is the set of permissions that user u
can activate under RBAC0, and DeleteSessionðu; sÞ0 and
DeactivateRoleðu; s; rÞ0 are session administrative actions at
system state RBAC0. This requirement specifies that, when
aact removes one or more activated permissions of a user in
a session at a system state, either the user’s active session
should be terminated, or all corresponding roles with the
given permissions should be revoked within their sessions.
Obviously, only “�” administrative operations cause these
changes in a system.

Delay administrative operations. At a given system
state RBAC, when a permission is activated by a user in an
active session, any revocation of this permission from the
user by an administrative operation is delayed until the role
corresponding to the permission is deactivated, or the active
session is terminated. Formally, when aact 2 AA changes
an RBAC model to an RBAC0, if 9u 2 U; p 2 P; s 2 U2SðuÞ,
and p 2 activePermsðuÞ ^ p 62 assignPermsðuÞ0, then aact0

when p 62 activePermsðuÞ0. That is, the administrative
operation aact0 is executed at later stage when the
permission is not activated anymore.

Note that these two requirements can be individually or
jointly specified in a particular system, e.g., some permis-
sions are required to be immediately deactivated in an
active session when they are revoked by an administrative
action, while other permissions may delay the execution of
an administrative operation.

When an administrative operation modifies a role, the
PDP not only needs to manage current active sessions, and
but also any newly created sessions. This is especially
necessary in delayed administrative actions. Specifically,
when an administrative operation is delayed, although the
affected permissions or roles are not deactivated immedi-

ately, the PDP needs to prevent users from activating
them in new sessions. To do this, the PDP will lock the
affected roles to ensure the safety property of the access
controller. The administrative operation places write locks
on the affected roles to prevent the PDP from “reading”
the roles and other administrative operation from “writ-
ing” the roles.

Definition 3 (Lock Scope). Let ðU;O;A;R; P ;�; U2R;R2P Þ
be the model of a RBAC system and r 2 R be a role. We define
the read scope and write scope of r, respectively, as rScopeðrÞ ¼
fr1 2 Rjr1 � rg and wScopeðrÞ ¼ fr1 2 Rjr1 � rg.

As stated in Definition 3, the read scope of a role r
includes all its junior roles and itself, and the write scope
of r includes all its senior roles and itself. This is because, a
role r may lose permissions if any junior role r1 loses its
permissions because of inheritance, and therefore needs to
ensure that if r1 is to lose permissions, then r needs to be
deactivated to ensure consistency. Conversely, if role r is
to lose permissions due to an administrative operation,
then all roles senior to r, that is the write scope of r must
not be allowed to be active. For example in Fig. 3, the read
lock scope for R3 is {R6, R5, R3}. The write lock scope for
R3 is {R0, R1, R2, R3}. Note that the lock scopes of a role
could be changed because of an administrative operation.
For example, the write lock scope for R4 is {R0, R1, R4}. If
an administrative role executes the administrative opera-
tion AddEdge(R4, R2), the write lock scope for R4 becomes
{R0, R1, R2, R4}.

We can define the affected entities because of invoking
an administrative operation using lock scope. Algorithm 1
in Fig. 4 shows this information for every administrative
operation list in Table 1.

DeleteUser(u) deletes user u which affects all the sessions
u has activated. Consequently, the affected entity is u as
computed in lines 2-3. DeleteRole(r) deletes role r which
affects all the roles senior to r and r itself, and that is
wScope(r) as computed in lines 4-5. DeassignUser(u,r)
prevents user u from activating role r which affects all the
roles subordinate to r, computed as rScope(r) in lines 6-7.
RevokePermission(U,P) revokes the permission set P from
the role r which affects all the roles senior to r and r itself.
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Consequently, the affected entities are computed as
wScope(r) in lines 8-9. DeleteEdgeðrc; rpÞÞ deletes the relation
rc < rp, which makes all the roles senior to (rp) and (rp) lose
the permissions granted to (rc). Therefore, the affected
entities are wScope(rp), as computed in lines 10-11. For
example, deleting the role R3 from the role hierarchy in
Fig. 3 affects all the sessions where R0, R1, R2 and/or R3
are activated. The affected entities are those in wScope(R3).

4 XACML-ARBAC PROFILE AND THE

ENFORCEMENT ARCHITECTURE

In this section, we present an XACML profile for ARBAC
and the architecture to enforce this profile. Because ARBAC
is an RBAC model with administrative roles having
specialized permissions to administrate an underlying
RBAC system, our XACML-ARBAC profile is also an
XACML-RBAC profile. We first describe the XACML-
RBAC profile and then present our extensions for ARBAC.
We then show how the XACML-ARBAC compliant policies
can be used to administrate the XACML-RBAC policies by
executing administrative operations. Finally, we present the
architecture to enforce the XACML-ARBAC profile.

4.1 XACML-RBAC Profile

The XACML-RBAC profile 2.0 has been approved as an
OASIS standard [1] to specify core and hierarchical
components of RBAC models. In this profile, objects,
actions, and users are expressed as XACML <Resource>s,
<Action>s and <Subject>s. But roles are expressed as
<Subject> attributes or <Resource> attributes. This profile
also defines three generic XACML policies: a Permission
<PolicySet>, a Role <PolicySet>, and a Role Assignment
<Policy> or <PolicySet>. These are used to express the
remaining entities of an RBAC model (i.e., permissions,
U2R and R2P mappings, and role hierarchy �), and are
briefly explained as follows:

A Permission <PolicySet> is a <PolicySet> used to define a
set of permissions associated with a role. It may contain
<PolicySetIdReference> to other Permission <PolicySet>s.
Stated <PolicySetIdReference>s can be used to inherit
permissions of a junior role. Currently, this is the only way
to specify the role inheritance in the XACML-RBAC profile.

A Role <PolicySet> binds a set of attributes defining a role
in a <Target> to a <PolicySetIdReference> outside of that
<Target>. The latter points to the Permission <PolicySet>
of the role.

A Role Assignment <Policy> or <PolicySet> does not
have a standard specification. The objective of the role
assignment <Policy> or <PolicySet> is to specify the user-
to-role (U2R) assignment. This part of an RBAC policy is
supposed to be specified by an entity external to the
XACML policy framework, referred to as the Role Enabling
Authority (REA). The XACML-RBAC profile does not
specify any more requirements of the REA.

4.2 XACML-ARBAC Profile

In the OASIS XACML-RBAC profile, roles are defined as
attributes of subjects and resources. We enhance the
XACML syntax by introducing a new data type Role. As
our implementation needs to distinguish administrative roles

from user roles, we introduce a roleType attribute that can
take value from {userRole, adminRole}. We use all other
primitive entities from the XACML-RBAC profile. In
particular, the role hierarchy and role-to-permission assign-
ments are expressed in the same way as in the XACML-
RBAC profile. We use an XML file to maintain all user-to-
role assignments in the policy repository as the follows:

<Subjects>

<Subject SubjectId=“Alice”>

<Roles> <Role>SSO </Role></Roles>

</Subject>

<Subject SubjectId=“Bob”>

<Roles> <Role>ManagerABC</Role>

</Roles>

</Subject>

</Subjects>

The PDP gets all the roles that a user can invoke by
querying this XML file. Although we could have main-
tained the user-to-role assignment as a Role Assignment
<PolicySet>, the reason we do not do so is that the current
XACML reference implementation does not answer a
query, such as What are the roles assigned to Alice?. Using
this extra XML file, we specify administrative policies using
the same machinery as the XACML-RBAC profile, but with
the following constraints:

Constraining the Permission <PolicySet>: All permissions
listed in a <PolicySet> of an administrative role must be
administrative permissions. By enforcing the following
constraints on the syntax used in a permission <PolicySet>,
we ensure that it is an administrative Permission <PolicySet>.

1. The <Condition>s are created from applying Boo-
lean operations to existing XACML condition func-
tions and an enlarged set of condition functions
listed in Table 2 (explained shortly).

2. The (<Action>, <Resource>) pair listed in <Rule>
must be an AP . That is, the actions must be chosen
from operations listed in Table 1.

Constraining the Role <PolicySet>: The Role <PolicySet> of an
administrative role must be an administrative <PolicySet>
with the following additional constraints:

1. All role names that appear in the <Target> of the
Role <PolicySet> should be administrative roles.

2. The <PolicySetIdReference> contained in the Role
<PolicySet> should point to an administrative
Permission <PolicySet> where all permissions must
be chosen from the administrative permissions listed
in Table 1.

Sun’s reference implementation uses a set of methods,
referred as condition functions, to compare retrieved attri-
butes values with expected values in order to make access
decisions. An example condition function provided by the
reference implementation is the form “[type]-one-and-
only,” that accepts a bag of values of the specified type
and returns the single value if there is exactly one item in
the bag, or an error if there are zero or multiple values in the
bag. The condition functions provided by Sun’s implemen-
tation [6] are not capable of checking the conditions for
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most administrative operations. For example, to add a role r
into the system, the access controller needs to check if r is
already defined. Consequently, we add a new set of
condition functions listed in Table 2 to support all possible
conditional checks for administrative operations. These
condition functions are internal auxiliary functions which
do not affect the system state.

4.3 Enforcing the XACML-ARBAC Profile

In order to enforce our XACML-ARBAC profile, we
enhance the existing XACML reference implementation
with the two entities shown with bold borders in Fig. 5 and
explained as follows:

The Administrative PEP (A-PEP) receives an adminis-
trative access control request, returns a response to the
administrator, and if needed, updates relevant polices as a
consequence of enforcing the requested administrative
operation. The A-PEP functions as a Role Enabling Authority.
Consequently, when a subject is assigned to a role and
revoked from a role, the A-PEP acts as an enabler/disabler
by invoking the appropriate administrative operation and
updates the U2R mapping in an XML file. When needed by
the PDP or the context handler, A-PEP provides appro-
priate instances of the U2R mapping.

The Lock Manager provides the concurrency control
necessary to maintain the transactional consistency between
simultaneous operations that the PDP requires to read

policies in order to evaluate them and the A-PEP needs to
modify polices to enforce administrative operations.

4.4 Birth and Death Processes

In our new design, when the access controller becomes
alive, it follows the initialization sequence of creating a super
user (SU) and a super role (SRole), where the SRole is the
administrative role. Here we simplify the administrative
RBAC system with only a single administrative role.
Consequently, the resulting U2R and R2P updates are
precisely specified in the following preconditions and
postconditions.

. Precondition: U, R, AR, U2R, and R2P are empty.
Formal Specification: U ¼ ; ^R¼ ; ^AR ¼ ; ^U2R¼
; ^R2P ¼ ;.

. Postcondition: SU is the only member of the users
data set and SROLE is the only member of the AR
data set. These and the appropriate permissions are
created during the bootstrapping procedure of the
access controller from a file which contains the
default administrative policy loaded into the system
data structures.
Formal Specification: U 0 ¼ fSUg ^AR0 ¼ fSRoleg ^
U2R0 ¼ fðSU; SRoleÞg ^R2P 0 ¼ fðSRole; pÞg ^ p 6¼
ðdeleteRole; SRoleÞ ^ p 6¼ ðdeleteUser; SUÞ ^ u 6¼ SU ,
where p is any administrative operation described in
Table 1.

As seen from the postconditions, after the initialization
phase finishes, the super user SU—the only user in the
system endowed with SRole’s permissions—the adminis-
trative permissions described in Table 1. Also as specified,
the SRole does not have permissions to delete SU , nor
deassign SU from the SRole. Consequently, permissions
granted to the SRole remain unalterable and the SRole has
no relation with other roles through �, as formally
specified in the AddEdge administrative operation in
Section 2.4.

The access controller does not entertain any user requests
during the initialization phase. After the RBAC system
boots up, the SRole may perform other administrative
operations such as creating user roles, creating users, and
assigning users to roles, etc.

When the access controller is ready to die, the SU notifies
all the active PEPs that the access controller is going to stop
services and requests the PEPs to terminate any user
sessions authorized by this access controller. After getting
the acknowledgement messages from the PEPs or the timer
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expires, SU signals the operating system to shutdown the
access controller. Here we assume that all PEPs are
cooperative. The access controller does not entertain any
user requests after sending messages to all PEPs. Conse-
quently, the resulting ACTIV E � S, U2S, S2R, actRole, and
actPerms are specified in the following postconditions.

Postcondition: ACTIV E � S, U2S, S2R, actRole, and
actPerms are empty. Formal Specification: ACTIV E � S ¼
; ^ U2S ¼ ; ^ S2R ¼ ; ^ actRole ¼ ; ^ actPerms ¼ ;.

4.5 Concurrency Control

When a nonadministrative request arrives at the PDP, the
PDP requests a read lock on the policy that is found using
the target matching algorithm. In case of an administrative
request, the policy evaluation part is similar to the
nonadministrative request, where the PDP acquires a read
lock on the policy for evaluation. If the administrative
request is granted, the PDP sends a permit decision to the
A-PEP. After receiving a permit decision from the PDP, the
A-PEP acquires a write lock on the policy (recall that
administrative requests update XACML policies) that is to
be updated. We now describe the details of these steps.

4.5.1 Evaluating Authorization Requests

Sun’s reference implementation does not alter any XACML

policies, and it uses the policy evaluation algorithm

explained in [3]. As our enhancements update policies, this

evaluation algorithm needs to be protected by a semaphore.

Consequently, when a nonadministrative request arrives at

the PDP, the PDP first requests a read lock (from the Lock

Manager) on the policy that is found using the target

matching algorithm, evaluates the request using the existing

XACML policy evaluation algorithm, updates the runtime

PEP-List (the list of PEPs), and finally releases the read lock

on the policy and sends the response back through the

requesting PEP, which, in turn, returns the response back to

the user and invokes application dependent activity to

enforce the decision. If the PDP fails to acquire the read

lock, it returns indeterminate as a response to the requesting

PEP. The PDP goes through the steps outlined in Fig. 6.

4.5.2 Enforcing Administrative Operations

When an administrative request is submitted to the A-PEP,
the A-PEP forwards the request to the PDP for evaluation.

The PDP uses the same evaluation algorithm used to
evaluate the nonadministrative request (see Fig. 6) and
returns its decision to the A-PEP. If the returned value
received at the A-PEP is not a permit, the A-PEP conveys
the decision to the administrator. Otherwise (i.e., the return
value is permit), the A-PEP uses the algorithm shown in
Fig. 7 to enforce that decision. As the algorithm states, if
the decision is not a permit, the A-PEP returns that decision
to the administrator (line 19). Otherwise, it acquires a write
lock on the policy to be updated (line 3), and calls the
method getAffected(adminOp) using the algorithm
shown in Fig. 4 to determine the parameters that are
affected by the administrative operation (line 5). Then, the
A-PEP sends a request to all PEPs to terminate user
sessions that may be affected by enforcing the adminis-
trative operation (lines 6-8). Because the access controller
cannot wait forever for those PEPs to confirm that the
requested sessions have been terminated, the A-PEP sets
up a timer (line 7). If all PEPs returned successful answers
(lines 12-14), then the A-PEP will update the policy to
reflect the administrative operation, release the write lock
on the policy (line 16), and finally inform the administrator
that the administrative operation is enforced (the permit
decision). Conversely, if any PEP fails to return a positive
answer when the timer expires, the administrative request
is denied.

4.6 Lock Manager

Multiple requests from the PDP to read a policy simulta-
neously for policy evaluation maybe be allowed but the
A-PEP must have exclusive access to modify a policy. The
Lock Manager maintains read/write locks on policies.
Because the polices are role-based, the locks are placed on
the roles. We implement locking with two atomic operations
AcquireLock(role, read/write), ReleaseLock

(role, read/write) and an Attempt-Lock(role,

ReadLock, WriteLock) operation. The method prevents
dead-locks and circular locks because all roles that we
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maintain are in an ordered list and locks are acquired in the
same (increasing) order [28].

5 PROTOTYPE IMPLEMENTATION

To show the feasibility and performance of our framework,
we have implemented a prototype to enforce the extended
XACML profile for ARBAC and concurrency control by
augmenting Sun’s XACML reference implementation [6]. In
this prototype, we revoke the all ongoing user sessions that
conflict with administrative operations immediately prior to
enforcing them.

5.1 Implementing the Birth and Death Process

Our prototype boots up the access controller with a default
administrative XACML policy, which permits the creation
of SUand SRole, assigns SUto SRole, and grants the
administrative permissions, as shown in Table 1 to SRole.
The access controller does not entertain any user requests
during this initialization phase.

Immediately prior to the access controller’s planned
death, the SU sends a message to all active PEPs from the
PEP-List maintained by the PDP (see Section 4) to notify
that the access controller will stop services and request the
PEPs to terminate all user sessions authorized by this access
controller. After sending the messages, the access controller
will not process any more requests on behalf of any PEP
including the A-PEP. After receiving the acknowledgement
from all PEPs or the timer expires, the access controller
signals the operating system to stop its services. In this
prototype, we simulate the PEPs actions to terminate user
sessions using method calls.

5.2 Implementing Condition Functions and
Administrative Operations

As stated, the condition functions in Sun’s reference
implementation are not sufficient for enforcing the
XACML-ARBAC profile. We have made two enhancements
in our implementation. In order to check for preconditions
of every administrative operation, condition functions
given in Table 2 are implemented by extending the function
base provided by the existing reference implementation. In
each function, we implement the evaluate method that is
used to evaluate the condition. The input to the condition is
provided using attribute designators that read
information from the request context. In addition, the
condition evaluation also requires access to policies, which
is provided by initializing each function with a reference to
the policy finder module of the PDP.

The second is a module used by the A-PEP to modify
XACML policies when the PDP permits an administrative
operation. This is achieved by using a PolicyManager

that initializes and calls accessor and mutator methods to
update the policies. The AbstractPolicy class in Sun’s
reference implementation has been extended with mutator
methods as described in Table 3. To obtain and update user-
to-role assignment, we use standard DOM APIs [7] to parse
the XML file containing user-to-role assignments.

5.3 Implementing the Lock Manager

The Lock Manager implements a waiting queue with a
vector, where index i indicates the ith access request, and
serves all requests in the order of submitted requests. The
vector of a waiting process hold semaphores. When a
process calls AcquireLock(), the semaphore has “mem-
ory” if a previous ReleaseLock() has been made. Our
implementation uses a waiting thread that is awaken when
its turn arises in the waiting queue.

6 PERFORMANCE EVALUATION

The concurrency controller’s waiting queue implementation
slows down the access controller. If the number of
administrative operations are few and far between, then
there is a minimal waiting time for the PDP to request and
obtain read locks. However, when an administrative
operation is submitted, the total service time becomes the
sum of request generation time to the PDP, PDP evaluation
time, response building time, lock acquisition time, time to
communicate with affected PEPs, time to terminate sessions
(optional), time to update a policy, and the time taken to
release the locks. Thus, when an administrative request is
submitted, it delays other user requests that have been
submitted after that request. Hence, our objective is to
evaluate this overall effect on the access controller due to
administrative requests.

In order to determine the timing overheads, we build the
role hierarchy given in Fig. 3. As seen from Fig. 3, our role
hierarchy has eight roles. We grant 10 permissions per each
of these eight roles. We assign 50 users per role, and assume
that there are 10 active user sessions per each role. After
building this RBAC policy, the sizes of our disk resident
Role <PolicySet>, Permission <PolicySet> and user-to-role
assignment file became 12k, 122k, and 41k, respectively.

Our current implementation does not have an elaborate
PEP (although we have an A-PEP). Therefore, we simulate
the PEP action using method calls where the PEP takes an
equal time to terminate a session. We also place the PDP,
A-PEP, and all other (user) PEPs on the same machine—a
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3.4 GHz Dual Core Windows XP machine with 1.5 GB
memory. We measure the elapse time of administrative
operations by calling the Java method System.nanoTime()
[5]. Under the given conditions, we have experimented
with executing the administrative operations. We have
executed eight out of the 10 administrative operations and
measured their execution delays, of which we report one in
Section 6.1. In addition, we have executed two other
operations of removing some permissions from a role and
removing a role from the role hierarchy, which requires
executing a series of administrative operations. They are
described in Section 6.2.

6.1 Simple Administrative Operations

We built the role hierarchy shown in Fig. 3, using our
administrative operations. That activity took about
959 msecs to add eight roles, 844 msecs to add nine edges,
and 711 msecs to grant 10 permissions per each of the eight
roles, and about 3,384 msecs to assign 50 users to each role.
The average time taken for each simple operation is between
68 to 120 msecs. Out of all these operations, Fig. 8 shows
the individual time taken for assigning 50 users to each of
the 10 roles. We notice that the time grows due to the
growth of the U2R mapping. Further analysis shows that
this is due to the fact that time taken to parse the XML policy

is proportional to the file size. This is a limitation because
the DOM parser used by Sun’s reference implementation
acquires stack space as the XML file gets larger. We are
looking for a better parser to improve the performance.

6.2 Complex Administrative Operations

We further show the performance characteristics of remov-
ing some permissions from a role that has been activated by
some users. We also study the performance by removing a
role from the role hierarchy while some subjects actively

use that role, which invokes a series of administrative
operations.

Recall that our definition of RevokePermission(r,(a,o))
removes the permission (a,o) from the role r, provided that
no user actively uses r. Consequently, removing any
permission, say (a,o) must be preceded by terminating all
sessions that have activated any role in wScope(r), locking all
roles in wScope(r) so that no other session activates any of
them, and then finally revoking the permissions using the
administrative operation RevokePermission(r,(a,o)).

As Fig. 9 shows, the time to remove a permission is
proportional to the number of sessions that need to be
terminated in order to lock all roles in wScope(r). For

example, revoking a permission from R1 requires terminat-

ing 20 sessions, taking a total of 955 msecs. Revoking a

permission from R5 requires terminating 60 sessions, taking

1,775 msecs. Our observation is that revoking a permission

from a role at the bottom of the hierarchy takes more time

than at the top of the hierarchy.
Recall that our definition of the DeleteRole(r) assumes that

for r 2 R, no user has activated r in any session and the r is

not related to any other roles in the role hierarchy.

Therefore, before removing a role, we need to ensure that

these prerequisites are satisfied by:

1. terminating all sessions that have activated r,
2. removing all ðu; rÞ 2 U2R for all u 2 U ,
3. removing all edges ðr; rpÞ or ðrc; rÞ 2 �, and then
4. calling the administrative operation DeleteRole(r).

Consequently, the time to remove a role from the role

hierarchy is the sum of time taken to do these individual

operation. Accordingly, in order to determine the effect of

time taken to delete a role on the number of users permitted

to use the role, the number of sessions activating the role

and the number of edges connecting the role, we conducted

three experiments.
In the first experiment, we fixed the number of users

assigned to each role and the number of active sessions of

each role. Fig. 10 shows the total time taken to delete a role

with a fixed number (50) of users permitted to use that role

and fixed number of sessions (three) that activated the role

given in Fig. 3, with various number of edges to be deleted.

Starting with Fig. 3, deleting roles R6 and R7 requires

deleting one edge, deleting roles R0 and R4 requires

deleting two edges, deleting R1, R2, R3, and R5 requires

deleting three edges. Fig. 10 shows that the time taken to

delete edges is proportional to the number of edges that

need to be deleted.
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In the second experiment, we fixed the number of

sessions activated by each user at three, with various

number of users permitted to activate the role. Fig. 11 shows

the total amount of time taken to delete each role in Fig. 3.

Here we assigned 10, 20, 30, 40, 50, 60, 70, and 80 users to

R0, R1, R2, R3, R4, R5, R6, and R7, respectively. Fig. 11

shows that the total time taken to delete a role is

proportional to the number of users that need to be revoked

from the role.
In the last experiment, we fixed the number of users

assigned to each role at 50, with various number of sessions

where the role is activated. We activated 10, 20, 30, 40, 50,

60, 70, and 80 sessions by R0, R1, R2, R3, R4, R5, R6, and R7,

respectively. As Fig. 12 shows, the total time taken to

remove a role increases with the number of sessions where

the role is activated.
Our performance study indicates several facts. First,

simple administrative operations execute very fast because

they do not affect users’ activities. Second, the complex

operation, especially DeleteRole operation, takes more time

because it requires executing a series of administrative

operations. For example, in the last experiment, DeleteRo-

le(R3) requires executing 50 DeassignUser operations, three

DeleteEdge operations, one DeleteRole operation, and killing

40 sessions. The amortized time for each operation is about

83 msecs which is reasonable. Fortunately, deleting a role in

a system or organization does not happen often.

7 RELATED WORK

There have been many works in the area of access control

for web services [19], [37], [38], [11]. Most of the work in the

area forces on how to express access control polices and the

architectures to implement the model. But these solutions

have not addressed the concurrency issues between enfor-

cing the access control decisions and administrating the

access control polices.
UARBAC [30] proposes a principled approach in

designing and analyzing administrative models for RBAC

motivated by scalability, flexibility, psychological accept-

ability, and economy of mechanisms. UARBAC consists of a

basic model and one extension: UARBACP . The basic

model adopts the approach of administrating RBAC using

RBAC. UARBACP adds parameterized objects and con-

straint-based administrative domains. To the best of our

knowledge, UARBAC has not been implemented and

concurrency control has not been addressed.

SARBAC [17], [18] extends RBAC administration by
adding the concept of administration scopes. Administrative
scope is defined using the role hierarchy, and is used for
defining administrative domains. The administrative scope
of a role (r) consists of all roles that are descendants of r and
are not descendants of any role that is incomparable with r.
This definition of scopes works best when the role hierarchy
is a tree with an all-powerful root role. In this case, each
role’s administrative scope is the subtree rooted at that role.
When an operation may affect existing administrative
domains, ARBAC97 forbids these operations, while SAR-
BAC allows them and handles them by changing existing
administrative domains. One feature of SARBAC is that one
simple operation may affect administrative domains of
many roles. To the best of our knowledge, SARBAC has not
been implemented yet and concurrency control has not
been addressed.

NIST [9], [20], [22] has implemented RBAC with an
Administrative Tool and an RBAC database to store instances
of U2R, R2P, and � relationships. The administrative tool
determines if an update to the three relations stored in the
database is permitted by checking the consistency rules,
and if so, updates the relationships in the database. This
implementation is built for Intranet web servers, which is
not suitable for distributed applications such as web
services on the Internet.

PERMIS [12], [13] has developed a role-based access
control infrastructure using X.509 [2] attribute certificates
(ACs) to store the U2R relation. The PERMIS architecture
includes a Privilege Allocator GUI tool, and a bulk loader
tool, that allows administrators to construct and sign ACs
and store them in an LDAP directory to be used by the
PERMIS decision engine. All access control decisions are
driven by an authorization policy, which itself is stored in
an X.509 attribute certificate. Authorization policies are
written in DTDs. A later version of PERMIS uses an XML
interface using Sun’s reference implementation [6] and adds
dynamic delegation of authority [14]. Concurrency control
has not been addressed in PERMIS.

Crampton and Chen [16] have proposed an approach to
implement the RBAC model using XACML. They attempt
to implement the ANSI RBAC standard [21] using a suit of
XACML polices. They use attribute-based role assignment
for the U2R assignment, define an XML-based language for
specifying separation of duty constraints and propose an
extension to the XACML reference architecture in order to
enforce these constraints. To the best of our knowledge,
these have not been fully implemented.
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Fig. 11. Effect of # users on time to remove a role. Fig. 12. Effect of # sessions on time to remove a role.



Seitz et al. [35] present a system permitting controlled
policy administration and delegation using the XACML
access control system. They use a second access control
system Delegent, which has delegation capabilities to super-
vise modifications of the XML-encoded XACML policies.
Concurrent administration with authorization is not ad-
dressed in their system.

Recently, OASIS XACML v3.0 Administration Standard
has been approved as an OASIS committee working draft
[4]. It describes a profile to express administrative metapo-
licies which can control different types of polices that
individuals can create and modify, but does not use role-
based administrative model to manage these XACML
policies which is not scalable and flexible.

Concurrency control on XML data has been an active
research recently. Haustein et al. [25] introduce a data model
called taDOM tree to allow fine-grained locking using a
combination of node locks, navigation locks, and logical
locks, which we intend to use for our future research.

Janicke et al. [27] propose a concurrent enforcement
model for usage control (UCON) [32] policies. Their model
separates user, access controller, and system. While their
technique enforces concurrency control based on static
analysis of dependencies between polices, we resolve
concurrency issues during the runtime of a system.

8 CONCLUSION AND FUTURE WORK

An enforcement framework is proposed in this paper to
enforce ARBAC policies with XACML in web services
environment. To address concurrency issues that arise
between enforcing administrative polices and policy
evaluation, a session-aware administrative model for
RBAC is used to manage the interactions and conflicts
between session management and administrative opera-
tions. We specify concurrency requirements of an ARBAC
model and introduce the concept of lock scope for a role,
which captures the affected roles when the permissions
granted to this role are updated due to administrative
operations. We have developed an XACML-ARBAC
profile to specify ARBAC polices and extended the Sun’s
XACML enforcement architecture by introducing an
administrative policy enforcement point (A-PEP) and aLock
Manger to ensure the safety and integrity of policy
management. We have developed the birth and death
process of the access controller. We have implemented a
prototype to enforce the extended XACML-ARBAC profile
and demonstrated the feasibility of our framework. Our
experimental study shows that our solution encounters a
small performance overhead and can be used for general
policy management systems.

One of our ongoing work is to refine the locking
granularity for policies. We are also working toward
enhancing the A-PEP functionality and creating a richer
interface between the PEPs and A-PEP for session manage-
ment in distributed environments.
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