
Remote Attestation of Attribute Updates and

Information Flows in a UCON System

Mohammad Nauman1, Masoom Alam1, Xinwen Zhang2, and Tamleek Ali1

1 Security Engineering Research Group,
Institute of Management Sciences, Peshawar, Pakistan

{nauman,masoom,tamleek}@imsciences.edu.pk
2 Samsung Information Systems America, San José, USA

xinwen.z@samsung.com

Abstract. UCON is a highly flexible and expressive usage control model
which allows an object owner to specify detailed usage control policies to
be evaluated on a remote platform. Assurance of correct enforcement is
mandatory for the establishment of trust on the remote platform claim-
ing to implement UCON. Without such an assurance, there is no way
of knowing whether the policies attached to the objects will be enforced
as expected. Remote attestation, an important component of Trusted
Computing, is highly suitable for establishing such an assurance. Exist-
ing approaches towards remote attestation work at a very coarse-grained
level and mostly only measure binary hashes of the applications on the
remote platform. Solutions at this level of abstraction cannot provide
assurance to a challenger regarding behavior of a remote platform con-
cerning enforcement of the owner’s policies. In this paper, we provide a
new remote attestation technique which allows a challenger to verify two
important behaviors of a UCON system enforcing its policies. These two
behaviors are the attribute update behavior and information flow behav-
ior. Measuring, storing and reporting these behaviors in a trusted manner
is described in detail and a mechanism for the verification of these be-
haviors against the original UCON policies is provided. The end result
is a flexible and scalable technique for establishing trust on attribute
updates and information flow behaviors of a remote UCON system.

Keywords: Information flow, remote attestation, usage control,
security.

1 Introduction

Usage control deals with issues concerning usage of protected objects based on
the policies of the object owner. While traditional access control models deal
with authorization issues such as who may access an object, usage control models
address issues concerning use of objects such as duration of each use, the number
of usages and ability to re-distribute etc.

UCON [1] is a highly expressive usage control model which adds continuity
of access decisions and mutability of attributes at the model level. Its major

L. Chen, C.J. Mitchell, and A. Martin (Eds.): Trust 2009, LNCS 5471, pp. 63–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

64 M. Nauman et al.

strength lies in the ability to specify elaborate usage control policies to be eval-
uated on a remote platform. This strength of UCON to operate on a remote
platform is also a source of concern. Since the owner of the object releases it to a
remote platform, she has no way of ensuring that the policies attached to it will
be enforced as specified. Trusted computing [2] proposes an innovative approach
for establishing trust on a remote platform in such a scenario. This approach,
called Remote Attestation, allows a challenger to verify that the behavior of
a target platform is trustworthy. Existing approaches towards remote attesta-
tion include low-level techniques of presenting binary hashes of executables to
the challenger [3,4], middle-level approaches of mapping system configurations
to generic properties by a trusted third party [5] and a high level mechanism
of measuring individual components of a policy model for the establishment of
trust [6]. The low- and middle-level techniques allow a challenger to statically
determine the identity of the applications running on the client and properties
of the system in general. They do not enable measurement of dynamic behavior
of a target application on the client. Moreover, it has been widely accepted that
binary hashes of executables alone are insufficient for reasoning about trustwor-
thiness of a platform [4,7]. Low-level binary hash based techniques are, therefore,
not suitable for remote attestation of a UCON system.

Consider for example, a UCON policy, which specifies that, “a media file can
only be played once by an individual in the public relations office for two minutes
only and that each usage has to be logged”. Clearly, it is impossible to deduce,
from the hash of an executable alone, that this policy will be enforced correctly
by the application.

For deducing such intricate details of an application’s behavior, Alam et al.
have proposed Model-based Behavioral Attestation [6] i.e. attestation of a pol-
icy model being followed by the target application for a specific purpose. This
technique proposes the decomposition of the behavior of a policy model into its
individual components and measuring these individual behaviors. If the behavior
of each of the components can be attested by the challenger, the whole system
can be deemed as trustworthy. Model-based Behavioral Attestation has speci-
fied three behaviors of a UCON policy model – active subject/object behavior,
attribute update behavior and state transition behavior. We note that the pro-
cedure for the measurement of these behaviors is not a part of the Model-based
Behavioral Attestation framework.

In this paper, we specify a technique for measurement, storage and report-
ing of the attribute update behavior and its verification against the challenger’s
policies. Attribute updates are an integral part of the UCON model and heavily
influence usage decisions [8]. Successful remote attestation of attribute update
behavior would provide confidence to the challenger regarding the trustworthi-
ness of a target platform.

We also identify another UCON model behavior – information flow behavior
– which captures the possible information flows between objects in a UCON
system. Attesting the trustworthiness of information flow behavior would provide
assurance that no illegal information flows occurred on the client end during

Remote Attestation of Attribute Updates and Information Flows 65

the usage of the owner’s resources. Such assurance is critical in systems of a
distributed nature [9]. Similar to the attribute update behavior, we provide a
detailed mechanism for the measurement, storage, reporting and verification of
the information flow behavior.

Contributions: Our contributions in this paper are as follows: 1) We describe
a mechanism for recording arbitrary data structures in the TPM as opposed
to binary hashes of executables only. 2) We detail a procedure for measuring
the behaviors of attribute updates and information flows in a UCON system.
3) We provide a means of verifying the behavior tokens returned by the target
application on the challenger side against the original UCON policies.

Outline: The rest of the paper is organized as follows: In Section 2, we pro-
vide background about the UCON model and describe the formal model used
for our attestation purposes. Behavioral Attestation is introduced in Section 3.
Our UCON system attestation is described at length in Section 4 with attribute
updates and information flows covered in Sections 4.1 and 4.2 respectively. Pre-
vious work related to this paper is mentioned in Section 5. Finally, we conclude
our work and present future directions in Section 6.

2 UCON

UCON [1] is a Usage CONtrol model, which builds heavily on traditional access
control models. It incorporates dynamic usage of protected objects and changes
in decisions to allow further access to these objects as a result of usage. This ex-
tension is achieved through the introduction of two novel features: access decision
continuity and attribute mutability.

In a UCON system, the user initiates a request for an object protected by the
UCON system. The access decision depends on the policies and constraints for
the particular subject, object and right combination, identified by (s, o, r). The
request can either be granted or denied. Even if the request is initially granted,
the usage session does not end. The coupling of attribute mutability and access
decision continuity means that due to the usage of the protected object, the
attributes of the subject and/or object may change. As a result of this change,
the decision to allow access might also be reversed. The usage session remains at
state accessing as long as the constraints allow the continued use of the object.
If the user ends the usage, the usage session moves to state end. If, however, the
constraints lead to a denial of access after some time, the state moves to revoked
and the user is no longer allowed access to the object. Figure 1 shows the states
in the UCON usage session [1].

Zhang et al. [10] have formally specified the UCON model at a very abstract
level. However, this formalization is not suitable for the purpose of information
flow analysis and attestation of attribute updates. Instead, we use another for-
malization of UCON by Zhang et al. [11] which has been formulated for safety
analysis of the UCON model. Safety analysis of UCON is essential for our be-
havior verification step. For the verification of behaviors collected on the target

66 M. Nauman et al.

platform, we create a benchmark on the challenger side, which requires the safety
problem of UCON to be decidable. However, Zhang et al. [11] have shown that
the safety problem in general UCON is undecidable. They have defined the safety
problem of a subset of UCON which includes only authorization predicates. This
subset is termed as UCONA. A formal model of UCONA is defined in which a
UCON system is composed of subjects, objects, rights, permissions primitive ac-
tions and policies. Sets of subjects, objects and rights are denoted by S, O and
R respectively and S ⊆ O. A permission is a triple of (s, o, r) where s ∈ S, o ∈ O
and r ∈ R. An attribute a of an object o is denoted by o.a. The set of attributes
is shared by all objects and is denoted by ATT . Attributes are mapped to their
values using an assignment: o.a = v, where v ∈ dom(a) ∪ {null}.

A UCON system state is a pair (O, σ) where O is the set of objects and
σ : O ×ATT → dom(ATT)∪ {null} is a function which maps each attribute of
each object to a value or null. The initial UCON state is denoted by (O0, σ0).

A primitive action changes the system state. The three primitive actions in
UCONA are createObject, destroyObject and updateAttribute. On the applica-
tion of any of these actions, the state of a system is said to change from t to t′

where t is the state before the application of the action and t′ is the state after
the action has been performed. In any given state t, the permission function ρt

maps a pair (subject, object) to a set of rights according to their attribute values
in state t.

A UCON policy consists of a name, two parameter objects (usually a subject
and an object), an authorization rule and a sequence of primitive actions.

policy name(s, o) :
p1 ∧ p2 ∧ . . . ∧ pn → permit(s, o, r)
act1; act2; . . . ; actk

If one of the primitive actions in a policy is a createObject action, the policy is
called a creating policy. The set of policies in a system is denoted by C. Changes
to a system state occur as a result of application of a policy. For two UCON
system states, (Ot, σt) and (Ot′ , σt′), t �c t′ denotes that there exists a pair of
objects (o1, o2) where o1 ∈ Ot such that policy c(o1, o2) can be applied to t and
changes the state to t′. Moreover, t �C t′ if ∃c ∈ C.t �c t′ and t �C t′ if there

Initial requesting accessing end

revokeddenied

tryAccess permitAccess endAccess

re
vo
ke
A
cc
es
s

de
ny
A
cc
es
s

preupdate onupdate postupdate

postupdatepreupdate

Fig. 1. The UCON Model States

Remote Attestation of Attribute Updates and Information Flows 67

exists a sequence of states t1, t2, . . . , tn such that t �C t1 �C t2 . . . �C tn �C

t′. t �C t′ or simply t � t′ is called the transition history from t to t′.
Zhang et al. have proven that the safety problem in this general model of

UCONA is undecidable [11]. In order to render the safety problem decidable,
Zhang et al. propose some restrictions on the system. Different structures have
been defined in the form of ground policies, attribute update graph and attribute
creation graph to formalize these restrictions.

A set of ground policies generated from a UCON policy ‘c’ denotes all the
evaluations of the policy c with possible attribute tuples of the object parameters
which satisfy the predicates in the authorization rule of c. Assume ATT = {a}
and dom(a) = {1, 2, 3} and the following UCON policy:

c(s, o) :
s.a > o.a → permit(s, o, r)
updateAttribute o : o.a = o.a + 1

Grounding this policy generates the following three ground policies:

c(s : (a = 3), o : (a = 2) :
true → permit(s, o, r)
updateAttributeTuple o : (a = 2) → (a = 3)

c(s : (a = 3), o : (a = 1) :
true → permit(s, o, r)
updateAttributeTuple o : (a = 1) → (a = 2)

c(s : (a = 2), o : (a = 1) :
true → permit(s, o, r)
updateAttributeTuple o : (a = 1) → (a = 2)

Note that for attribute tuples for which the predicate is not true (e.g. s : (a =
1), o : (a = 1)), no ground policy is generated.

A create ground policy is a ground policy, which contains a createObject
action in its body. In such a policy, the attribute tuple of the first parameter
object is termed as create-parent attribute tuple and that of the second is termed
as create-child attribute tuple. An Attribute Creation Graph (ACG) is a directed
graph with nodes all possible attribute tuples and an edge from create-parent
attribute tuple to a create-child attribute tuple if there exists a corresponding
ground policy for these tuples.

Similarly, in a ground policy which updates an attribute tuple, the old at-
tribute tuple is called the update-parent attribute tuple and the updated tuple is
called the update-child attribute tuple. An Attribute Update Graph (AUG) is a
directed graph with nodes all possible attribute tuples and edges from update-
parent attribute tuple to update-child attribute tuple if there exists a corre-
sponding ground policy for these tuples.

68 M. Nauman et al.

Using these structures, Zhang et al. [11] have shown that a UCONA system
with finite attribute domains is decidable if the ACG is acyclic, the AUG has
no cycles containing a create-parent attribute tuple and in each creating ground
policy, the attribute tuples of both the parent and child are updated. Useful-
ness of UCONA systems with these restrictions has been shown. For a detailed
discussion and proofs of these statements, we refer the reader to [11].

In the next sections, we describe how a UCONA system with these restrictions
can be remotely attested using dynamic behaviors of the system recorded during
enforcement of policies.

3 Behavioral Attestation

Traditional attestation techniques [3,4,5] rely solely on the binary hashes of ap-
plications running on the client. A chain of trust is established from the core
root of trust (i.e. the Trusted Platform Module) to the application. However, all
of these techniques measure the target application statically without considering
its inner working [6]. A recent technique, Model-based Behavioral Attestation
(MBA) [6], proposes a high-level framework for measuring the internal work-
ing of the target application based on the dynamic behaviors of the different
components of the application. We note that the MBA framework relies on the
existence of a small monitor module in the target application as part of the
Trusted Computing Base (TCB)1.

The monitor, being a part of the TCB, can measure the dynamic behavior of
the rest of the application in a trusted manner. During an attestation request, the
monitor sends these measurements to the challenger where they can be verified.
If the behavior depicted by these measurements is compliant with the object
owner’s policy, the challenger can be assured that the security policy is indeed
being enforced as expected. For the dynamic behaviors reported by the monitor
to be trusted, there are two requirements.

1. The monitor module has to be verified for correctness using formal methods.
While formal verification of large systems is a complex procedure and quickly
becomes infeasible [13], verification of small components is easier and can
yield many benefits. The monitor is a relatively small component and its
formal verification adds significantly to the confidence in the correctness of
the functionality and subsequently to its reported measurements.

2. Its hash has to attested using traditional attestation techniques such as
IMA [3] or PRIMA [4]. In other words, this dynamic attestation technique
is not exclusive of traditional attestation mechanisms but supports them
by providing an added level of confidence through attestation of internal
working of the application and its dynamic behavior.

The rest of the paper describes details of implementation of this monitor in
a target application enforcing UCON policies. We discuss the measurements to
1 TCB is the collection of software and hardware components which are responsible

for enforcing security policies on a platform [12].

Remote Attestation of Attribute Updates and Information Flows 69

be made for the dynamic behavior of attribute updates and information flows in
the application and the mechanism for reporting these changes to the challenger
in a trusted manner. We also describe how the reported behavior can be verified
against the challenger’s policy to ensure that the information flows and attribute
updates in the target UCON application are occurring as expected.

4 UCON System Attestation

UCON is primarily concerned with usage of an object after it is released to a
remote platform. The owner of the object may not have control over the usage
of the object. It is therefore imperative that she be able to establish trust on
the remote platform. Without the assurance of trustworthiness of the UCON
system on the remote platform, there is no way of ensuring that the UCON
policy attached to the object will indeed be enforced as expected [6].

We focus on two aspects of a UCONsystem implementation in this contribution:

1. Attributes play an important role in a UCON system. Attribute mutability is
a core feature of UCON which lends the model its flexibility and expressive
power. The challenger needs to be able to verify remotely that attribute
updates occurring on the client are compliant with the policies.

2. To ensure that no information leakage can occur, the challenger needs a
mechanism for remotely attesting possible information flows on the target.
Information flows not allowed by the policies of the challenger may lead to a
leakage of information to unauthorized parties. By having the client report all
possible information flow to the challenger in a trustworthy manner, possible
information leakage can be successfully detected.2

To formulate a framework for these two requirements, we define two behav-
iors. The first requirement is captured by the attribute update behavior (AU)
and the second is captured by the information flow behavior (IF). Each of
these behaviors is monitored by the Behavior Manager (BM) which is a part of
the UCON engine on the client end (cf. Section 3). The BM captures dynamic
behavior of attribute updates and possible information flows and is capable of
communicating these behaviors to the challenger in a trustworthy manner.

Figure 2 depicts the architecture of remote attestation of a UCON system.
When a target application on the client requests an object, the server, upon
successful authorization of the client, attaches a UCON policy to the object and
releases the protected object to the client. The object is registered with the UCON
decision engine on the client. During the usage of the object, usage authoriza-
tion decisions and any updates which need to be performed are communicated
to the Behavior Manager. The Attribute Update Manager records proofs for
the attribute update behavior AU and the Information Flow Manager records
proofs for the information flow behavior IF . During an attestation challenge,
2 In this contribution, we focus on explicit information flows. Implicit information

flows, such as those through covert channels, are not addressed.

70 M. Nauman et al.

Fig. 2. Remote Attestation of a UCON System

the Behavior Manager collects these behavior proofs and reports them to the
challenger.

Upon receipt of these two behaviors, the challenger performs two behavior
verification procedures. The attribute update verification module utilizes the
original UCON policies to generate ground policies (cf. Section 2) which are used
to verify the trustworthiness of the attribute update behavior (cf. Section 4.1).
The same set of UCON policies are utilized by the information flow attestation
mechanism to verify the information flow behavior using an information flow
check algorithm (cf. Section 4.2).

The details of storing and reporting the two behaviors in a trusted manner on
the target platform and the verification mechanisms utilized on the challenger
side are described below.

4.1 Attribute Update Behavior

For capturing the attribute update behavior, the BM implements one or more At-
tribute Update Procedures (AUPs) which are responsible for updating attributes
on the client end. The procedures take two inputs, either of which can be an
attribute of an object or a constant.

Individual calls to an attribute update procedure and subsequent attribute
updates are recorded through a graph structure called the attribute flow graph.
This structure stores the relationship between updated attributes and the at-
tributes used as inputs for this updation. Formally:

Remote Attestation of Attribute Updates and Information Flows 71

s1.a o1.a

(s1.a = 3) (o1.a = 1)

(s1.a = 2) (o1.a = 1)

(s1.a = 3) (o1.a = 2)

o2.b

(s1.a = 1) (o2.b = 0)

s2.a
(s2.a = 2) (o1.a = 2)

(s2.a = 2) (o2.b = 0)

CONST

(s2.a = 5)

Fig. 3. Attribute Flow Graph Example

Definition 1 (Attribute Flow Graph). The Attribute Flow Graph (AFG)
is a directed multi-graph (G,V) where G is a set of nodes representing object
attributes or a constant and V is a set of edges representing attribute updates.
An edge directed from oi.a to oj .b denotes an update of oi.a and is labeled with
(oi.a = dom(ATT)), (oj .b = dom(ATT)). The label captures the values of oi.a
and oj .b before the update takes place. The special node called CONST is used
to denote all constants.

Figure 3 shows a graphical representation of the AFG. Note that there may be
more than one attribute updates involving the same set of object attributes but
with different values. An attribute update involving a constant is represented by
an edge from the target attribute to the CONST node.

To capture the AFG in a trustworthy manner, we employ the constructs of
Trusted Computing. The initial value of the the AFG (i.e. null) and any subse-
quent changes to it are stored in an Attribute Update Log (AUL). At startup, the
BM initializes the AUL with an initialization token INIT . It monitors all calls
to the AUPs and whenever a call is received, it creates an entry in the AUL. Any
change to the AUL is stored in a Platform Configuration Register (PCR) of the
TPM by taking a hash of the entry and extending the PCR through pcr extend
(cf. Figure 4). The hash of the update procedure (AUPx) responsible for per-
forming the specific update is also recorded in the PCR through pcr extend. The
new value of the PCR after an update is calculated as:

PCRAULε = SHA-1(SHA-1(PCRAULε−1 || SHA-1(AULε)) ||SHA-1(AUPx))

During an attestation challenge, the BM receives a nonce from the chal-
lenger and submits the nonce to the TPM through a Trusted Software Stack
(TSS) [14,15,16]. It requests the TPM to perform a quote over the given PCR
and nonce. The quoted value of the PCR is sent to the challenger along with the
AUL for verification.3

3 The interested reader may refer to [17] for a detailed description of the quote oper-
ation over a PCR.

72 M. Nauman et al.

INIT
s1.a:o1.a:s1.a=2:o1.a=1::AUP1
s1.a:o2.b:s1.a=1:o2.b=0::AUP2
s1.a:o1.a:s1.a=3:o1.a=1::AUP1
s2.a:CONST:s2.a=5::AUPY
s1.a:o1.a:s1.a=2:o1.a=2::AUPX
s2.a:o1.a:s2.a=2:o1.a=2::AUP2
s2.a:o2.b:s2.a=2:o2.b=0::AUP1

// initialize the AUL
// update by AUP1 involving s1.a and o1.a
// update by AUP2 involving s1.a and o2.b
// ...
// update by AUPY involving s2.a and a constant
// ...
// ...
// ...

Fig. 4. Sample Attribute Update Log

Capturing the dynamic behavior of updates is a relatively simple task. Once
the attribute update log is received by the challenger, it has to be verified against
the policy to ensure that all attribute updates occurring on the client comply
with the policies of the challenger. The challenger utilizes the grounding proce-
dure, defined in Section 2, for this compliance checking.

In order for the attribute updates occurring on the client to be considered
as trustworthy, the challenger needs to be able to verify that, for each update,
there exists a ground policy (generated as a result of grounding of the policies
sent to the client), which requires the update performed at the client end. It
also requires the hash of the update procedure responsible for performing the
update to be trusted. The first step for the verification of attribute update
behavior is the verification of the signature performed by the client’s TPM on
the PCR value. This ensures that the PCR values can be trusted to be signed by
a genuine TPM and not by a software masquerading as a TPM. The second step
is to verify the Attribute Update Log (AUL) against the PCR value returned.
This is a similar operation to the verification procedure used by the Integrity
Measurement Architecture [3]. Hashes of entries in the AUL and those of the
update procedures are concatenated in sequence to give the final value of the
PCR. For each entry AULε in the AUL, the PCR value at AULε is given by:

PCRAULε = SHA-1(SHA-1(PCRAULε−1 || SHA-1(AULε)) ||SHA-1(AUPx))

where AUPx is the procedure performing the update recorded in AULε. If the
final value of the computation matches the value of the PCR returned by the
target’s TPM, the challenger can be assured that the AUL has not been tampered
with and can be used for verification of the target’s behavior.

The next step in the attribute update behavior verification is to verify each
attribute update operation against the ground policies to ensure that no illegal
attribute updates have occurred on the target platform and that the hash of the
update procedure responsible for performing the updates is a known good one.
For each attribute update, represented by edges in the AFG, there must exist a
ground policy which updates the target (object, attribute) pair using the source
(object, attribute) pair in the AFG. Attribute updates involving constants must
be verified against the CONST node against the values required by the ground
policies. Formally:

∀v ∈ V.∃cn ∈ Cn.∃uo ∈ cn.target(uo) = target(v)
∧∃s ∈ sources(uo).s = source(v)
∧∀o.a ∈ v.value(o.a) = avalue(o.a, uo)

Remote Attestation of Attribute Updates and Information Flows 73

where uo is an update operation in a ground policy cn, target(uo) is the output
of the update operation, sources(uo) are the inputs to the update operation uo,
value(o.a) returns the value of the attribute a of object o during the update pro-
cedure and avalue(o.a, uo) returns the attribute value of o.a from the attribute
tuple of uo.

If the above condition is satisfied by the complete AFG, the challenger can
be assured that all attribute update operations performed on the client have
been in compliance with the UCON policies. We define the trustworthiness of
the attribute update behavior AU as:

AU .behavior = trusted iff
∀v ∈ V.∃cn ∈ Cn.∃uo ∈ cn.target(uo) = target(v)

∧∃s ∈ sources(uo).s = source(v)
∧∀o.a ∈ v.value(o.a) = avalue(o.a, uo)

∧∀a ∈AUPx. a.behavior = trusted

In essence, attribute update behavior is trusted if and only if 1) all attribute
updates taking place on the target machine are allowed by some ground poli-
cies generated from the original usage policies of the challenger and 2) all the
procedures responsible for performing attribute updates on the target are also
trusted.

4.2 Information Flow Behavior

For the measurement of the information flow behavior, the Behavior Manager
utilizes an Information Flow Manager. This component of the UCON implemen-
tation is responsible for maintaining a structure called the Access Rights Graph
(ARG). The ARG records information about which objects have been granted
access rights to other objects. Formally:

Definition 2 (Access Rights Graph). An Access Rights Graph (ARG) is a
directed graph (H, W) where H is a set of nodes representing the objects and W
is a set of edges representing rights. An edge from h1 to h2 labeled r denotes the
rights r assigned to h1 on h2 at some point in the usage history where h1, h2 ∈ H,
r ∈ 2R and R is the set of rights.

Figure 5 shows a graphical depiction of the ARG. To store and later report this
structure in a trusted manner, the BM utilizes a technique similar to that used
for capturing the AFG. The initial (empty) value of the ARG is stored in a
Access Rights Log (ARL). The ARL is initialized as empty by setting it to the
value INIT . Any decisions by the UCON decision module are captured by the
ARL. If an access is granted to a subject s on an object o for right r, nodes s
and o are added to the ARG, if they are not already present. An entry is made
in the ARL for recording the addition of the nodes. An edge, directed from s

74 M. Nauman et al.

o1

s3

{ read, write, copy }

s2

{ write }

o2

{ read }

{ read, print }

s1

{ copy, delete, append }

{ read, write }

o3{ delete }
{ print }

Fig. 5. Access Rights Graph Example

to o is added to the ARG and labeled {r} if such an edge doesn’t already exist.
If the edge already exists, right r is added to the set of rights on the edge. An
entry is made in the ARL corresponding to the addition of the right for s on o.
Figure 6 shows an example ARL created as a result of different usage decisions.

Whenever an entry is appended to the ARL, its hash is calculated by the
Information Flow Manager and stored in the PCR through pcr extend. Dur-
ing an attestation challenge, the ARL and this PCR value is returned to the
challenger where verification of these structures against the challenger’s UCON
policies takes place.

For the verification of the ARL on the challenger side, we utilize an infor-
mation flow check algorithm which utilizes the same semantics as the UCON
safety check algorithm presented by Zhang et al. [10]. The first step, as in the
verification of the ARL, is to verify the signature by the TPM to ensure that
the PCR values returned are from a genuine TPM and that the ARL is trusted.
Every entry ARLε in the ARL is concatenated in sequence to give the final value
of the PCR as:

PCRARLε = SHA-1(PCRARLε−1 || SHA-1(ARLε))

Verification of the entries in the ARL provides assurance to the challenger that
the ARL has not been tampered with. The individual entries in the ARL are

INIT
ADD|s1
ADD|o3
ASSIGN|s1:o3:delete
ADD|o1
ASSIGN|s1:o1:read
ADD|o2
ASSIGN|s1:o2:append
...

// initialize the ARL
// add a new subject s1
// add a new object o3
// assign right delete to s1 on o3
// ...
// ...
// ...
// ...

Fig. 6. Sample Access Rights Log

Remote Attestation of Attribute Updates and Information Flows 75

o1 o2o3
Discarded: No

information Flow

Fig. 7. Information Flow Graph corresponding to ARG in Figure 5

used to re-generate the ARG on the challenger side. After this re-generation, the
challenger creates an Information Flow Graph (IFG). The IFG depicts possible
information flows implied by the Access Rights Graph. Formally:

Definition 3 (Information Flow Graph). An Information Flow Graph
(IFG) is a directed graph (I, U) where I is a set of nodes representing the objects
and U is a set of edges representing possible information flow in the direction of
the edge. An edge from i1 to i2 denotes that information may have flown from
i1 to i2 where i1, i2 ∈ I.

To construct the IFG from the ARG, we first define all rights as read-like, write-
like, read-write-like or no-impact [18]. No-impact operations are those which
cannot play a part in information flow (such as print) and are discarded imme-
diately. Afterwards, all objects in the ARG are represented in the IFG. For each
subject s in the ARG, an edge is created from o1 to o2 if a read-like (or read-
write-like) operation is granted to s on o1 and a write-like (or read-write-like)
operation is granted to s on o2. Afterwards, orphan nodes are removed from the
IFG. Figure 7 shows an IFG corresponding to the ARG of Figure 5.

For the verification of possible information flows as depicted by the IFG the
following procedure is adopted. For each edge on the IFG, Algorithm 1 is applied
to ensure that the information flow is compliant with the policies of the chal-
lenger. The algorithm takes an initial UCON state and a set of ground policies
as inputs. A finite automaton (FA) is created which maps changes to the UCON
state as a result of applying non-creating ground polices (line 2). For each state
in the resulting FA, a few operations are performed. First, all subjects which
have been assigned a read-like (or read-write-like) right on o1 are added to the
set reading (lines 4,6). If one of the subjects was previously granted a write-like
operation on o2, the algorithm immediately returns true (line 7) as the subject
would have been able to cause information to flow from o1 to o2.

A similar procedure is followed for write-like operations (line 9). All subjects
which have been assigned a write-like operation (or read-write-like operation)
on o2 are added to the set writing (lines 9,11) and if one of them was previously
assigned a read-like operation on o1, the algorithm returns true immediately
(line 12).4

Finally, creating ground policies are applied (line 15) to extend the UCON
system with new objects and InfoFlowCheck() algorithm is called recursively
(line 20) to check for possible information flows in this expanded space.

4 Note that the algorithm only checks for information flow from o1 to o2 and not in
the other direction.

76 M. Nauman et al.

Algorithm 1. Information Flow Check Algorithm
Input: UCONA system with initial state t0 = (O0, σ0), a finite set of ground policies

and two objects, o1 and o2

Output: A boolean value which is true only if information can flow from o1 to o2

1) InfoFlowCheck(O0, t0)
2) Construct a finite state automaton FA with objects O0 and the set of non-creating

ground policies as in [11]
3) foreach t0 � t ∈ FA do
4) collect ς = {x|r ∈ ρt(x, o1) ∧ r = ‘read’ }
5) foreach s ∈ ς do
6) reading := reading ∪ {s}

// maintain a set of subjects which have been allowed to read from o1

7) if s ∈ writing return true;
8) end for
9) collect ς = {x|r ∈ ρt(x, o2) ∧ r = ‘write’ }
10) foreach s ∈ ς do
11) writing := writing ∪ {s}

// maintain a set of subjects which have been allowed to write to o2

12) if s ∈ reading return true;
13) end for
14) foreach subject s in t do
15) foreach creating ground policy c(s : τs, o : τo), where τs(a) = σs(o.a) do
16) enforce c(s : τs, o : τo);
17) create object o and update its attribute tuple to τ ′

o;
18) update s’s attribute tuple to τ ′

s;
19) the system state changes to t′ with new object o and update attributes of

s and o ;
20) InfoFlowCheck(O0 ∪ {o}, t′)
21) end for
22) end for
23) end for

The trustworthiness of the information flow behavior IF is defined as:

IF .behavior = trusted iff ∀u ∈ U. InfoF lowCheck(u) =true
where U is the set of edges in the IFG.

Concisely, information flow behavior is trusted if and only if all possible paths
of information flow on the client comply with the challenger’s usage policies.

5 Related Work

One of the earliest and most significant works analyzing information flow mod-
els is by Denning [19] in which mechanisms for information flow are formalized
using a lattice structure of labels and classes of objects. JFlow [20] is a security-
typed language providing “mostly-static” information flow control by assigning
labels to objects within the source code and ensuring that information flows

Remote Attestation of Attribute Updates and Information Flows 77

comply with the security policy of the programmer. JFlow relies on a special-
ized compiler and information flow controlling virtual machine for enforcement
of information flow control. Haldar et al. [21] have devised a mechanism for im-
plementing mandatory access control (MAC) mechanisms in virtual machines
for controlling information flows. They propose the use of run-time policy en-
forcement as opposed to the mostly-static compile time checks [20] for enforcing
MAC policies. Nair et al. [22] have presented an information flow control system
which addresses the issue of implicit information flows. The resulting framework
is capable of dynamically assigning labels to objects and propagating these labels
based on information and control flow.

All of these models and mechanisms address either information flow control
or audit but do not deal with remote attestation of information flows, the un-
derlying environment or the target application. However, as can be seen, some
of them deal with implicit information flows as well as explicit ones and can,
therefore, help in future extensions of this work.

From the aspect of remote attestation, several works have been proposed.
These include the Integrity Measurement Architecture [3], which allows a remote
party to verify the trustworthiness of a target platform based on the load-time
integrity of binaries on the target platform. Policy Reduced Integrity Measure-
ment Architecture (PRIMA) [4] targets a specific application by analyzing the
information flow to and from the target application but still does not address
internal structures and semantics of the application. LKIM [7] is one of the
few approaches, which target the dynamic behavior of a system. It verifies the
integrity of a Linux kernel by measuring and reporting the target’s dynamic
state [23]. It has been shown to detect malicious code, which could not be de-
tected using hashes of static code.

Gu et al. [24] have described a new approach for measuring the behavior of an
application using static analysis of the source code and verification of program
execution against this benchmark.

The attestation technique described in our contribution is significantly dif-
ferent from both these approaches in two respects. Firstly, we utilize the TPM
hardware for trusted storage and reporting of measurements. Secondly, our ap-
proach utilizes the owner’s policies for the creation of a baseline. This allows for
the integrity verification of a specific application for a particular purpose, thus
greatly reducing the complexity of attestation.

Semantic Remote Attestation [25] is closest to the approach described in this
paper. It proposes the use of a Trusted Virtual Machine, which is established as
trusted and is then expected to enforce the policies at the VM level. However,
trust on the correct enforcement of the policies is implied and no mechanism
for measuring the correctness of the enforcement is provided. Our technique
builds on this approach and describes a detailed architecture for using run-
time measurements of the behavior in a trusted manner for dynamic behavioral
attestation of a target application. To the best of our knowledge, no work has
been done for the attestation of attribute updates and information flows in a
UCON system at this level of detail.

78 M. Nauman et al.

6 Conclusion and Future Work

Remote attestation is an integral part of Trusted Computing. It allows a chal-
lenger to establish the trustworthiness of a remote platform depending on its
behavior. Recent advances in remote attestation have led us to believe that
measuring the hashes of executables on the remote platform is insufficient for
the establishment of trust. It is necessary to verify the dynamic behavior and
internal functioning of a target application. In this paper, we have proposed a
mechanism for attesting the dynamic behavior of UCON – a highly expressive
usage control model. Two important aspects of UCON, attribute updates and
information flow, have been described. We have presented details regarding mea-
surement, storage and verification of these behaviors in a trustworthy manner.
The model of UCON under consideration is UCONA with certain restrictions,
which has previously been shown to be useful in practical scenarios. Establish-
ment of trust on a remote party implementing this model will provide confidence
to the challenger that her policies will indeed be enforced on the remote end as
dictated.

This paper has introduced the novel concept and semantics of using a small
‘behavior manager’ component on the remote platform for collecting trust tokens
used during attestation. This concept has been applied to collect and verify
attribute update behavior and information flow behavior. The same technique
can, with slight modifications, be applied for collecting various other types of
trust tokens, such as information flows to and from other applications, system
calls and input/output to storage devices, for an even more detailed inspection
of the dynamic behavior of the target application. These and other behaviors
are being considered for attestation of UCON and even generalized applications
not following the UCON model. These form the basis of ongoing work in this
research.

Acknowledgements

This research work has been supported by Grant No. ICTRDF/TR&D/2008/45
from the National ICT R&D Fund, Pakistan to Security Engineering Research Group,
Institute of Management Sciences, Peshawar.

References

1. Park, J., Sandhu, R.: Towards Usage Control Models: Beyond Traditional Access
Control. In: SACMAT 2002: Proceedings of the seventh ACM Symposium on Ac-
cess Control Models and Technologies, pp. 57–64. ACM Press, New York (2002)

2. Trusted Computing Group, http://www.trustedcomputinggroup.org/
3. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of

a TCG-based Integrity Measurement Architecture. In: SSYM 2004: Proceedings
of the 13th conference on USENIX Security Symposium, Berkeley, CA, USA,
USENIX Association (2004)

http://www.trustedcomputinggroup.org/

Remote Attestation of Attribute Updates and Information Flows 79

4. Jaeger, T., Sailer, R., Shankar, U.: PRIMA: Policy-Reduced Integrity Measurement
Architecture. In: SACMAT 2006: Proceedings of the eleventh ACM Symposium on
Access Control Models and Technologies, pp. 19–28. ACM Press, New York (2006)

5. Sadeghi, A.R., Stüble, C.: Property-based Attestation for Computing Platforms:
Caring about Properties, not Mechanisms. In: NSPW 2004: Proceedings of the
2004 Workshop on New Security Paradigms, pp. 67–77. ACM Press, New York
(2004)

6. Alam, M., Zhang, X., Nauman, M., Ali, T., Seifert, J.P.: Model-based Behavioral
Attestation. In: SACMAT 2008: Proceedings of the thirteenth ACM symposium
on Access control models and technologies. ACM Press, New York (2008)

7. Loscocco, P.A., Wilson, P.W., Pendergrass, J.A., McDonell, C.D.: Linux Kernel
Integrity Measurement Using Contextual Inspection. In: STC 2007: Proceedings of
the 2007 ACM Workshop on Scalable Trusted Computing, pp. 21–29. ACM, New
York (2007)

8. Zhang, X., Nakae, M., Covington, M.J., Sandhu, R.S.: Toward a Usage-Based Se-
curity Framework for Collaborative Computing Systems. ACM Trans. Inf. Syst.
Secur. 11(1) (2008)

9. Srivatsa, M., Balfe, S.: Trust Management For Secure Information Flows. In: CCS
2008: Proceedings of the 15th ACM Conference on Computer and Communications
Security, pp. 175–187. ACM, New York (2008)

10. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal Model and Policy
Specification of Usage Control. ACM Trans. Inf. Syst. Secur. 8(4), 351–387 (2005)

11. Zhang, X., Sandhu, R., Parisi-Presicce, F.: Safety Analysis of Usage Control Au-
thorization Models. In: ASIACCS 2006: Proceedings of the 2006 ACM Symposium
on Information, computer and communications security, pp. 243–254. ACM, New
York (2006)

12. Kanerva, P.: Anonymous Authorization in Networked Systems: An Implementa-
tion of Physical Access Control System. Masters Thesis. Helsinki University of
Technology (March 2001)

13. Bella, G., Paulson, L.C., Massacci, F.: The Verification of an Industrial Payment
Protocol: the SET Purchase Phase. In: CCS 2002: Proceedings of the 9th ACM
Conference on Computer and Communications Security, pp. 12–20. ACM, New
York (2002)

14. TCG Software Stack (TSS) Specifications,
https://www.trustedcomputinggroup.org/specs/TSS/

15. Trusted Computing for the Java(tm) Platform,
http://trustedjava.sourceforge.net/

16. Java Community Process. JSR321: Trusted Computing API for Java,
http://jcp.org/en/jsr/detail?id=321

17. Alam, M., Zhang, X., Nauman, M., Ali, T.: Behavioral Attestation for Web Services
(BA4WS). In: SWS 2008: Proceedings of the ACM Workshop on Secure Web Ser-
vices (SWS) located at 15th ACM Conference on Computer and Communications
Security (CCS-15). ACM Press, New York (2008)

18. Guttman, J.: Verifying Information Flow Goals in Security-Enhanced Linux. Jour-
nal of Computer Security 13(1), 115–134 (2005)

19. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977)

20. Myers, A.C.: JFlow: Practical Mostly-static Information Flow Control. In: POPL
1999: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 228–241. ACM, New York (1999)

https://www.trustedcomputinggroup.org/specs/TSS/
http://trustedjava.sourceforge.net/
http://jcp.org/en/jsr/detail?id=321

80 M. Nauman et al.

21. Haldar, V., Chandra, D., Franz, M.: Practical, Dynamic Information-flow for Vir-
tual Machines, www.vivekhaldar.com/pubs/plid2005.pdf

22. Nair, S., Simpson, P., Crispo, B., Tanenbaum, A.: A Virtual Machine Based Infor-
mation Flow Control System for Policy Enforcement. Electronic Notes in Theoret-
ical Computer Science 197(1), 3–16 (2008)

23. Thober, M., Pendergrass, J.A., McDonell, C.D.: Improving Coherency of Runtime
Integrity Measurement. In: STC 2008: Proceedings of the 2008 ACM Workshop on
Scalable Trusted Computing. ACM, New York (2008)

24. Gu, L., Ding, X., Deng, R., Xie, B., Mei, H.: Remote Attestation on Program
Execution. In: STC 2008: Proceedings of the 2008 ACM Workshop on Scalable
Trusted Computing. ACM, New York (2008)

25. Haldar, V., Chandra, D., Franz, M.: Semantic Remote Attestation – A Virtual
Machine directed approach to Trusted Computing In. Proc. of the Third Virtual
Macine Research and Technology Symposium USENIX (2004)

www.vivekhaldar.com/pubs/plid2005.pdf

	Remote Attestation of Attribute Updates and Information Flows in a UCON System
	Introduction
	UCON
	Behavioral Attestation
	UCON System Attestation
	Attribute Update Behavior
	Information Flow Behavior

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

