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Abstract—Monitoring virtual machine (VM) is an essential
function for virtualized platforms. Existing solutions are either
coarse-grained–monitoring in granularity of VM level, or
not general–only support specific monitoring functions for
particular guest operating system (OS). Thus they do not satisfy
the monitoring requirement in large-scale server cluster such
as data center and public cloud platform, where each physical
platform runs hundreds of VMs with different guest OSes.
As a result of this reason, we propose VMDriver, a general
and fine-grained approach for virtualization monitoring. The
novel design of VMDriver is the separation of event interception
point in VMM level and rich guest OS semantic reconstruction
in management domain. With this design, variant monitoring
drivers in management domain can mask the differences of
guest OSes. We implement VMDriver on Xen and our experi-
mental study shows that it introduces very small performance
overhead. We demonstrate its generality by inspecting four
aspects information about the target virtual machines with
different guest OSes. The unified interface of VMDriver brings
convenience to develop complex monitoring tools for distributed
virtualization environment.

Keywords-Virtualization, VM Monitoring; Generality; Driver-
based Monitroing; Event Interception; Semantic Reconstruction

I. INTRODUCTION

Virtualization has been widely used in server cluster and
data center to consolidate diverse services on a few servers
and multiplex underlying hardware resource [1][2][3]. Mon-
itoring is an intrinsic function for reliability and security
of virtualized computing environment. Many management
functions and tools are built on accurate and efficient mon-
itoring mechanism to check system state and schedule re-
source allocation into VM in real time manner. For example,
more memory can be allocated to one VM when a service
running inside it receives more requests than usual. For
another example, when one VM is corrupted by attacker,
security mechanism based on monitoring technology may
decide to terminate this VM in order to prevent the corrup-
tion of others.

Typical virtualized platform has one management VM
(MVM) (e.g., Dom0 on Xen) which is engaged in monitoring
one or more target VMs (TVMs 1) (e.g., DomU on Xen).
From a high level view, existing monitoring mechanism
can be classified into two types: performance monitoring

1TVM, guest VM, and VM are interchangeable terms in this paper.

and security monitoring. Performance monitoring usually
takes a complete TVM as monitoring granularity without
considering guest OS in it. Furthermore, it focuses on
performance aspect such as CPU usage, memory size, and
network bandwidth. Take Xen platform [4][5][6] as example,
tools like xentop, xentrace, xenperf inspect the
running state and resource consumption of all TVMs. The
platform administrator can adjust resource allocation for
individual TVMs according to information obtained from
these monitoring tools.

However, performance monitoring on VM level does not
give detailed information of internal status for guest OS,
and fine-grained monitoring is critical for some monitoring
purposes such as security. Therefore many fine-grained mon-
itoring tools have been proposed for virtualized platform, for
example intrusion detection [7], honeypot [8], malware de-
tection [9][10], malware analysis [11][12][13], and security
monitoring architecture [14]. All kinds of these monitoring
functions are in the virtual machine monitor (VMM), and
thus do not affect the runtime behavior of the TVM. As they
focus on specific security purposes, these tools usually do
not satisfy the monitoring task in distributed and large-scale
virtual computing environment such as data center and cloud
computing platform (e.g., Amazon EC2), where variant
OSes (different types or versions) may run in individual
TVMs. For example, OS-dependent semantic reconstruction
is used in many existing security monitoring mechanisms.
When a new VM with different OS starts locally or migrates
from another computing node, the monitoring tool may
become invalid.

Aiming to build fine-grained and at the same time general
monitoring mechanism for virtualized platform, we propose
VMDriver, a driver-based monitoring architecture which
adopts the mechanism analogous to the device driver concept
in Linux. VMDriver achieves these objectives with two novel
design strategies. First, guest OS event interception and
semantic reconstruction are separated into two parts in VMM
and MVM respectively. Event interception captures the
variation of system state underneath the TVM, and semantic
reconstruction shields the diversity of guest OSes in these
TVMs. Secondly, semantic reconstruction in VMDriver is
handled by a set of monitoring drivers in MVM. Similar to
Linux device driver which shields the diversity of underlying
hardware device for user-level application, the monitoring



driver in VMDriver encapsulates related information about a
TVM corresponding to the specific guest OS. When an event
happens in the TVM, the event sensor residing in VMM
intercepts it and reports to the corresponding monitoring
driver in MVM. The monitoring driver reconstructs the
semantic information under the context of guest OS. With
this, a set of monitoring drivers running in MVM mask the
differences of multiple TVMs and expose the same interface
to other management tools and platform administrators. VM-
Driver enables several novel benefits for general monitoring
purpose. First, multiple monitoring tools can be deployed
on a single physical platform for TVMs with variant OSes,
which is critical for the business success of large data center
and cloud computing platform. Secondly, VMDriver enables
existing monitoring tools to be useful for multiple guest
OSes, instead of the specific one. For example, a single
malware detection tool can detect malicious behavior both
in Linux and Windows with the same interface provided by
VMDriver.

We have implemented VMDriver on Xen. Event intercep-
tion function resides in Xen and diverse monitoring drivers
are implemented as kernel modules in Dom0. Experimental
study confirms that VMDriver is effective on monitoring dif-
ferent OSes in VMs. In addition, it provides general interface
for other monitoring tools such as malware detection, and
has small performance overhead.

The rest of this paper is organized as follows. Section II
introduces the related work on performance monitoring
and security monitoring. In Section III, we describe the
problem in server cluster and data center as the application
scenario, and present the overview and design requirement of
VMDriver. Section IV presents the implementation detail of
VMDriver on Xen, and section V shows the experiment and
evaluation. After that, we discuss the advantage of VMDriver
and point out its limitation at the same time. At last, we
conclude this paper in Section VI.

II. RELATED WORK

A. Performance Monitoring

Performance monitoring tools are usually distributed with
virtualization system software such as Xen [4], VMware
[15], and Virtual PC [16]. They are used to manage and con-
trol TVMs by system administrator. For example, VMware
provides graphical management for controlling all TVMs
and software development kit (SDK) for developers. Beside
graphical interface, Xen also offers command mode of
monitoring tools. The administrator can use xm to send
the requests and daemon xend responses these requests.
xentop displays real-time information about all TVMs, and
xentrace captures trace buffer data from Xen. All these
performance monitoring tools are coarse-grained as they take
a complete VM as monitoring granularity. Because of this,
they are independent from guest OS and do not have the
generality problem.

B. Security Monitoring

With the unique position on a virtualized platform, VMM
has been leveraged for fine-grained monitoring for TVMs.
By observing TVM events at VMM level, VMM-based
approach does not affect the runtime behavior of TVM and
is resistant to malicious modification from TVM. Observing
system state outside a monitored system is called virtual
machine introspection (VMI), which is firstly proposed by
Garfinkel and Rosenblum in Livewire [7]. In this way,
intrusion detection is built with the merits of both high resis-
tance and excellent visibility. VMscope views a VMM-based
honeypot’s internal events from outside [8]. Jones et al.
propose a VMM-based detection and identification service
for hidden processes [9]. VMWatcher enables ”out-of-the-
box” malware detection by addressing semantic gap between
observed events at VMM level and guest OS context in the
TVM. Moreover, it implements strong tamper-resistance by
moving anti-malware facilities out of VM [10]. Ether is
a transparent and external approach for malware analysis
[11], which implements monitoring instruction execution,
memory write, system call execution, and limited scope of
a chosen process by hardware virtualization extension. K-
Tracer dynamically analyzes Windows kernel-level code and
extracts malicious behavior from rootkits [12]. Rkprofiler
is a sandbox-based malware tracking system for dynamic
monitoring and analyzing the behavior of Windows kernel
malware [13]. Lares is an active architecture for security
monitoring using virtualization [14]. In this framework,
monitoring hooks are installed in an unreliable TVM, which
is protected by VMM. In 2008, VMware released the
virtualization-based library - VMsafe [17]. It provides a
set of API for other security manufacturers to improve the
security of virtualization architecture. Xenaccess [18] is an
open source monitoring library on Xen, which provides
a convenient interface for programmers by encapsulating
libxc and libblktap supplied by Xen.

Most of the above work focus on specific function of
virtualization monitoring and target for specific type of
TVM. Xenaccess is designed for general memory and disk
introspection, but it can be evaded by [19]. In data center and
cloud platform, TVMs running on single physical platform
differ with each other. When a new TVM is launched on or
migrated to a physical platform, these secure tools may fail
to provide effective monitoring. Thus, they can not fit the
requirement of heterogeneous TVMs. The design objective
of this paper is the generality of monitoring TVMs with
various guest OSes and a unified interface for high-level
monitoring tools.

III. VMDRIVER OVERVIEW

A. Problem Statement

Server cluster and data center are armored with powerful
processing nodes which are usually virtualized and have
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Figure 1. Virtualized platform nodes in data center

multiple TVMs running at the same time. Typically, the
MVM inspects all TVMs running on the same node.

Consider two nodes, NodeA and NodeB, as shown in
Figure 1. Initially we assume NodeA has only the MVM
and one TVM (VMX). In order to consolidate service or solve
hardware fault, another TVM (VMY) running on NodeB is
migrated to NodeA. The TVMs on NodeA and NodeB
vary with time, and they can migrate between these phys-
ical nodes according to resource scheduling strategy. It is
essential to monitor the states of all TVMs in time such
that the platform administrator or service provider can take
corresponding action according to the inspection result. The
dynamic execution environment of single node makes this
task challenging in real world: it is hard to inspect the states
of all TVMs with current monitoring mechanism. Either
they are not fine-grained enough to capture the internal state
of guest OS, or they focus on specific function and OS
environment thus lack generality. The problem is salient in
large-scale server cluster and data center, where a single
physical node may have hundreds of TVMs concurrently
running with different type and version of guest OSes.

For fine-grained monitoring, the MVM on a physical node
can receive internal state information of a TVM with the help
of VMM. Due to the position of VMM, the obtained state
information is at binary level, such as registers and memory
pages. Nevertheless, security tools execute policy at system
level (e.g., process, file). For this reason, it is necessary to
translate binary information to system information, which is
named semantic reconstruction. Figure 2 gives an example
of system call interception and semantic reconstruction at
the VMM layer, which is expressed in a C-like pseudo-
code. Whenever a system call happens in the TVM, the
VMM intercepts it with function intercept_syscall
and returns current CPU registers (regs_info) (line 18
in Figure 2). After that, semantic reconstruction is im-
plemented by function syscall_handler, and binary
information is translated to system semantic (line 19 in

Figure 2. System call interception and semantic reconstruction

Figure 2), such as system call number (syscall_num)
and process identification (pid). Ultimately, system call
information (syscall_info) is sent to the MVM by
function notify_managment_vm (line 20 in Figure 2).
In order to understand the events happened in the TVM,
a monitoring tool in the MVM should perform semantic
reconstruction, which is tight with guest OS in the TVM.
That is, the tool should be OS-ware. If there is another
TVM with different type or version, the same semantic
reconstruction may not work.

B. Solution Overview

We adopt a novel method to encapsulate the OS-related
information of a TVM with a monitoring driver. The moni-
toring driver is dynamically loaded when the corresponding
TVM is launched on or migrated to this platform. The
driver provides uniform interface for other monitoring and
management tools, which extends the working scope of
existing monitoring tools and provides efficiency for new
tools.

The concept of monitoring driver is similar to the device
driver in traditional OS. Before presenting the details of
our solution, we briefly review the device driver model
in traditional OS. Device driver is the integral component
of OS, and provides the communication channel between
computer system and peripheral equipments [20]. There are
distinct difference of device driver model between Windows
and Unix/Linux system. In this paper, we only introduce the
Linux device driver model, as we take it as the reference
model for VMDriver. Linux considers each device in the
system as a file, and provides a simplified interface for
user space applications. There are three types of device in
Linux system, character, block and network [21].



Character and block device driver are accessed in
the same way, but different with network device driver.
Character and block devices are viewed as special
files, and provide the same interface as other common files.
Application can perform generic file operation on these
devices through device driver, such as open, read, and
write. Device driver masks the variation of diverse devices
and bridges the gap between applications and peripheral
equipments with uniformed interface. An application can
access any type of existing or future device once its device
driver is available in the OS.

For sake of flexibility, device driver in Linux is
usually compiled as kernel module. When a device
driver is registered into the kernel, the dispatch routine
about the specific device is represented through struc-
ture file_operations, and exports all public functions
through a symbol table. These routines implement the ac-
tions that all applications can perform on this device. Device
driver maps file operations to the handler of the device.

We adopt the idea from Linux device driver model for
VMDriver, as Figure 3 shows. Different shapes (e.g., ellipse,
rectangle, and diamond) represent different types of monitor-
ing driver in the MVM, which correspond to different guest
OSes in TVMs. These drivers provide a standard interface
for upper monitoring tools or other management applica-
tions. Event sensor in the VMM intercepts certain events
which can be configured by each driver. Whenever an event
is intercepted by event sensor, the low level information is
intercepted and its semantic information is reconstructed by
the driver. Thus, the tools and applications in the MVM can
be independent of guest OS.

Through this way, VMDriver separates the monitoring
point from the semantic reconstruction module and masks
the variance of guest OS for general but fine-grained mon-
itoring mechanism. A monitoring driver is implemented as
a kernel module in the MVM, which is similar to the
device driver in traditional Linux. The responsibility of
the management module in the MVM is to control all
monitoring drivers. When needed by a monitoring tool, a
monitoring driver is loaded into the MVM’s kernel by the
management module.

This paper makes an analogy between the device driver
model and VMDriver from three aspects: object, target, and
procedure. There are many TVMs with various categories
and versions, which are similar to diverse devices in OS. The
device driver masks the heterogeneity of underlying devices.
VMDriver uses monitoring driver to shield the differences of
TVMs. The procedure is similar: both provide transparency
to upper software (applications vs. monitoring tools), and
can be dynamically loaded when needed.

C. Design Requirements

Aiming to provide practical and general monitoring
mechanism for large-scale system, VMDriver should be:

Figure 3. VMDriver architecture for VM monitoring

comprehensive–it inspects all TVMs on a physical platform;
independent–it should be independent from the type and
version of TVMs, and uniform–it provides common interface
for other services and management tools. In order to achieve
these requirements, we identify the following challenges in
our design of VMDriver.
Separation and cooperation: All existing security moni-
toring methods are deployed monitoring function in VMM
layer, which leads to the inspection for specific guest OS.
For the purpose of easy implementation and high perfor-
mance, event sensor and semantic reconstruction are all
implemented in VMM level in previous work. However,
they lack flexibility for general virtualized platform. We
believe that for the sake of generality, it is critical to shift
semantic reconstruction from VMM to MVM, while event
interception is still deployed in VMM for effectiveness and
performance purpose. Therefore, building efficient coopera-
tion between event inspection and semantic reconstruction is
critical for the practice of VMDriver. When an event happens
in a TVM, event sensor acquires the state with low level
data (for example registers or memory pages) and notifies
the monitoring driver in the MVM. During this process, the
monitoring driver needs the help of VMM, e.g., to obtain
the virtual memory page of the TVM.
Universal interface: To enable the generality of monitoring
function, a monitoring driver should provide standard inter-
face for other monitoring tools. For the sake of flexibility,
a monitoring driver should be encapsulated in the form
of kernel module. Because VMM merely provides virtual
hardware interface for these TVMs, a monitoring driver can
not detect the type and version of a TVM automatically. That
is, a high level monitoring tool in the MVM should specify
the type and version of guest OS in order to load the specific
monitoring driver. Necessary function in the MVM should
be provided for this, e.g., via VM launch and migration
daemon.

IV. DESIGN AND IMPLEMENTATION
We have implemented VMDriver on Xen 3.1 with Linux

2.6.18. There are two different virtualization modes provided



by Xen: para-virtualization and full-virtualization. A guest
OS needs to be modified under para-virtualization mode
for high performance, which is suitable for open source
OS. Under full-virtualization mode, a guest OS can run on
Xen without any modification, which usually needs support
from hardware. For generality purpose, VMDriver aims to
support as many OSes as possible including non-open source
ones (e.g., Windows). Thus we focus on the monitoring of
full-virtualization TVMs in this paper. Note that VMDriver
can be easily implemented on other hypervisors, such as
VMware and Virtual PC.

A. Implementation Overview

In Xen, the MVM is a privileged VM called Dom0,
which is responsible for managing and controlling other
unprivileged VMs called DomU. Figure 3 shows the software
stack of VMDriver on Xen. From bottom to top, the stack
includes event sensor, diverse monitoring drivers (Drive1, ...,
DriverN), management module, and monitoring tools. Event
sensor in the VMM intercepts the variation of a DomU’s state
and provides communication interface for monitoring drivers
in Dom0. When specific event happens in DomU, event sen-
sor intercepts it and notifies Dom0 with this communication
interface. On the other side, individual monitoring driver
corresponding to the type and version of DomU invokes the
communication interface to map virtual address from DomU
during semantic reconstruction. The management module,
which is independent from DomU, dynamically loads moni-
toring driver for high-level monitoring tool.

In general, there are large numbers of events happening in
a TVM (DomU). For the interest of VM monitoring, we focus
on system call, which are also the target of most existing
security monitoring tools [22]. System call is the useful
way to inspect process state, through which the system
state of a TVM can be derived. Whenever a system call
happens, the event sensor in VMM intercepts and turns the
execution flow to the VMM. With the light of hardware-
assisted virtualization technology such as Intel VT and AMD
SVM, our event sensor is transparent to DomU. We use Intel
VT in our implementation; however our technology can be
easily ported to AMD platform.

B. Event Sensor in VMM

Both Intel VT and AMD SVM adapt privileged instruc-
tions with a new CPU execution mode that allows the VMM
to run in a new root mode below ring 0. The control
flow transferring into the VMM is called VMExit and the
control flow transferring to the TVM is called VMEntry.
A VM can explicitly force a VMExit by using a VMCall
instruction. A guest OS runs in non-root mode, which
ensures that critical OS operations cause VMExit, such
as privilege instruction, external interrupt, and page fault.
When this happens, the state of guest OS (registers and
context) is stored in the virtual machine control structure

Figure 4. System call handler in VMM

(VMCS) region, which is maintained by the VMM. After that,
the VMM checks the reason of VMExit and executes the
corresponding handler. After the VMM handles the event,
the CPU resumes the execution flow of guest OS. At the
same time, the processor transforms from root mode to
non-root mode.

In legacy Linux, system call is the interface between user
mode (ring 3) and kernel mode (ring 0). There are two
methods of system call implementation: software interrupt
(int $0x80) and fast system call (sysenter in Intel
and syscall in AMD). With traditional software inter-
rupt, when one process in user mode invokes a system
call, the kernel checks its privilege and input parameter,
and invokes the corresponding kernel mode routine. The
transition from user mode to kernel mode is time-consuming.
Fast system call provides a quick transition method. Be-
cause there is no privilege inspection and stack opera-
tion, its execution speed is faster than software interrupt.
So far fast system call has been applied in Linux 2.6
and Windows XP. Related registers (SYSENTER_CS_MSR,
SYSENTER_EIP_MSR, and SYSENTER_ESP_MSR) must
be prepared before instruction sysenter/syscall exe-
cutes. Register SYSENTER_EIP_MSR indicates the entry
point of function sysenter_entry.

According to the implementation of different system call,
we use different mechanisms to intercept them in the VMM.
As Figure 4 shows, system call with software interrupt can
be intercepted by hardware and handled by the VMM as
general protection fault. With hardware supported virtual-
ization, interrupt instruction is trapped by CPU and handled
by the VMM. We replace the interrupt handler with event
sensor in the VMM. When a system call is invoked by int
$0x80, it is intercepted by event sensor before the interrupt
handler.

In order to intercept fast system call, we employ the



Figure 5. Communication between monitoring driver and event sensor

page fault handler mechanism of Xen. When the monitoring
procedure starts, the entry address (SYSENTER_EIP_MSR)
of fast system call is set to be non-existent value. When the
application invokes a system call, page fault happens and is
trapped by Xen, where the event sensor implements the inter-
ception. Intuitively, this mechanism increases the frequency
of VMExit thus introduces overhead. However, VMExit is
a very frequent operation in full-virtualization mode (round
100,000 times per second). Our experiments show that the
performance penalty is tolerable (cf. Section V).

Event sensor in Xen is dependent on the underlying
hardware and in effect for all guest OSes. It intercepts
low level information (registers) about DomU, which is
similar to the structure cpu_regs_t in Figure 2. Event
sensor saves all information in local buffer and notifies the
corresponding monitoring driver in Dom0, which performs
semantic reconstruction.

C. Monitoring Driver

When a monitoring driver is loaded, it creates an event
channel port and a shared page. The event channel port
marks the communication way by which Xen notifies the
monitoring driver. The shared page contains temporal in-
formation between Xen and the monitoring driver. For
semantic reconstruction, the monitoring driver launches hy-
percall (do_domctl) to notify Xen. When the event sensor
intercepts system information about DomU, it replicates the
information (registers in VMCS and DomU kernel informa-
tion) to Xen through function __hvm_copy_foreign.
And then it copies these information to the shared page
through function copy_to_user and notifies the moni-
toring driver through event channel port. Figure 5 illustrates
the communication between the monitoring driver and event
sensor. This notification and invocation procedure executes
recursively until the procedure of semantic reconstruction is
completed.

The major function of a monitoring driver is to translate
binary data to OS object (e.g., process and file). Each
monitoring driver corresponds to one type of guest OS. In

this paper, we mainly introduce the semantic reconstruction
procedure of three common OSes: Linux 2.6.24, Linux
2.6.31, and Windows XP.

For Linux, when a system call happens in DomU, the
event sensor intercepts it and the control flow is transferred
to Xen. The intercepted information includes register EAX
which stores system call number and arguments hold in other
registers (EBX, ECX, EDX, ESI, EDI). Kernel stack (SS and
ESP) and structure thread_info share 2 pages in Linux.
Structure thread_info locates in lower address, while the
kernel stack locates in higher address. That is, if the page
size is 4KB, structure thread_info aligns to 8KB (213)
and the lower 13 bit is set to zero. The current position
of kernel stack is denoted by register ESP, which can be
acquired from the VMCS field. Based on the discussion
above, the initial address of structure thread_info can
be calculated by masking the lower 13 bits of register ESP,
ESP&(∼ (213− 1)). By this means, the pointer of structure
thread_info is reconstructed.

Structure thread_info and task_struct contains
almost complete process information in DomU in the form
of doubly-linked list, which is described in detail by [20].
Through this way, all processes in DomU can be displayed. In
addition, we analyze all file objects that the current process
operates on including all opened network connections. We
focus on four types of system information of DomU: (1)
single process information, (2) process list in DomU, (3)
file objects that the current process operates on, and (4)
all network connections. There is a little difference for the
kernel structure between Linux 2.6.24 and Linux 2.6.31,
such as process structure (task_struct). The offsets of
these items in the structure differ with each other, and we
define these structures in distinct kernel modules.

For Windows XP, the semantic reconstruction process has
some differences. Figure 6 illustrates the information about
process in Windows. Usually, there are four structures about
Windows process: EPROCESS, Process Environment
Block (PEB), ETHREAD, and Thread Environment
Block (TEB). Virtual address 0xFFDFF000 contains the
pointer of structure KPCR. Structure KPCR has the member
of KPRCB. Structure KPRCB is a composite structure which
contains the current thread structure (KTHREAD). Structure
KTHREAD is the first member of structure ETHREAD. Struc-
ture ETHREAD has the member ThreadsProcess, which
represents the process that the current thread belongs to.
Structure EPROCESS has one member which points to the
next process structure. Through these, we can traverse all
processes running in one TVM. Although the implementa-
tion detail is different, the fundamental principle of semantic
reconstruction is similar to that in Linux.

D. Management Module

The unified interface is provided by a global management
module called manage_mod, which is implemented as a
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kernel module and loaded when Dom0 starts. It then loads
a monitoring driver whenever a monitoring tool requires. In
order to work with other modules, manage_mod complies
with standard device driver interface. The main functions of
module manage_mod are as follows.

1) manage_mod_open: A monitoring tool opens the
management device /dev/manage_mod with this
function, which returns the file descriptor (fd) of the
management module.

2) manage_mod_read: After the semantic reconstruc-
tion of a monitoring driver in kernel mode is com-
pleted, the monitoring tools in user mode can obtain
the result through this interface.

3) manage_mod_ioctl: This function loads a moni-
toring driver. According to the arguments from user
space, it firstly checks if a DomU with domid exists.
If yes, it loads the corresponding monitoring driver for
the guest OS in the DomU. Because Xen works on the
hardware merely, it is impossible to detect the type
and version of guest OS in Xen or Dom0. In order to
solve this problem, a monitoring tool should specify
the type and version it intends to monitor. Through
this interface, an administrator or management tool can
specify the process and file to be monitored, which
is very useful in real world. Our current implemen-
tation supports four types: (1) LIST_PROC_INFO:
list the detailed information about specific process,
such as pid, uid, gid, process name, process
state, opened files, and network connections; (2)
LIST_PROC_LIST: display all processes running
in the DomU; (3) LIST_FILE: list all operations
on specific files, such as pid, process name, sys-
tem call number, file name, and operation time; (4)
LIST_NET_CON: display all network connections in
the DomU. We can develop other security functions in
monitoring drivers.

4) manage_mod_close: This function closes the man-
agement device with file descriptor (fd) returned by
function manage_mod_open.

V. EXPERIMENTS AND EVALUATION

We test both the functionality and performance of VM-
Driver. The functionality is proved by verifying if monitor-
ing drivers can provide desired monitored information about

Figure 7. The sample monitoring application

these TVMs with various guest OSes. The performance
impact is measured with CPU processing time and I/O
speed with our experiments. We discuss the advantage and
limitation of VMDriver at the end of this section.

A. Functionality

In order to demonstrate the generality of VMDriver, we
have implemented three monitoring drivers for three differ-
ent guest OSes: Ubuntu 8.04 with Linux 2.6.24 (Dom1),
Ubuntu 9.10 with Linux 2.6.31 (Dom2), and Windows XP
(Dom3). VMDriver runs in the kernel mode of Dom0, thus
does not affect the normal execution flow of other DomU’s.

Figure 7 shows a test program (considered as a mon-
itoring tool) which we use to display the process list
in each TVM. Domain identification (domid) and OS
type (os_type) are the arguments represented by the
request structure request_t. This application opens the
management device with open("/dev/manage_mod",
O_RDWR), which invokes function manage_mod_open
of the management module in kernel mode. Structure
request_t is defined and initialized for specific do-
main (Dom1). Function ioctl specifies the service type
LIST_PROC_LIST, which lists the information of all
processes in Dom1. After that, this application fetches all
process information recursively. The same function is used
to fetch process information of other TVMs with different
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Figure 8. Process list acquired by VMDriver

input arguments. Figure 8 shows the results. During the
monitoring procedure, the management module loads the
monitoring driver corresponding to guest OS.

We further test the generality of VMDriver by detecting
rootkit in different DomU through the comparison between
internal and external process list. We use adore-ng [23]
as a sample, which is a Linux kernel rootkit that replaces
certain kernel-level function pointers to hide some processes
or files. In our test, adore-ng.ko is firstly loaded into
Dom1 (Ubuntu 8.04). A user-level application named ava
is used to control the functionality of adore-ng, i.e., to
simulate an attacker who wants to conceal the existence of
the victim’s shell with the command ava i 5168 (5168
is the pid of bash in Figure 9). After that, we can find that
there is no bash process in Dom1. However, the monitoring
tool in Dom0 can discover the hidden process bash in
Dom1, and Figure 9 shows the detection result. With the
same experiment, the monitoring tool can detect adore-ng
in Dom2, although guest OS is different.

Dom0 (Fedora 8) Dom1 (Ubuntu 8.04)

Figure 9. Identifying hidden process in Dom1 with monitoring tool in
Dom0

FU [24] is a Windows kernel-level rootkit with similar
function as adore-ng. Through the same method, our test
tool can detect it with the unified interface provided by
VMDriver. The only difference is the argument used by the
test tool, which indicates a different monitoring driver is
used to monitor the TVM running Windows XP.

B. Performance

We study the performance of VMDriver with CPU-
intensive and IO-intensive benchmarks. The test machine has
two Intel Xeon E5310 CPUs running 8 cores at 1.6GHz,
4MB cache per core, and 4GB system memory. The host
OS runs Fedora Core 8 (Dom0) and Xen 3.1.0. We use
the same DomU as aforementioned. In order to examine
the performance overhead, each DomU is allocated with one
virtual CPU (VCPU) and 1024MB memory. For each test
case, we run 10 times and take their average value.

Firstly, we measure the load/unload time of monitoring
driver module. When a monitoring tool in Dom0 starts, it
invokes the management module to load the corresponding
monitoring driver. Figure 10(a) shows the measurements.
The load/unload time of monitoring driver for these TVMs
(Dom1, Dom2, Dom3) are all at millisecond level. Since
the monitoring module is loaded once, the overhead of this
operation is negligible during the monitoring procedure.

We then compare the execution time between traditional
method (Combination) (which puts event sensor and seman-
tic reconstruction together in the VMM) and VMDriver with
three basic functions: (1) traversing process list, (2) printing
single process information, and (3) displaying all network
connections. Figure 10(b) shows the execution time of these
functions. The results show that the performance penalty of
VMDriver is from 21.8% to 30.7%. The reason is that during
semantic reconstruction of VMDriver, DomU is suspended by
Xen. There are multiple mode switches between monitoring
driver in Dom0 and Xen, which do not exist in traditional
method. The procedure of semantic reconstruction is the
performance bottleneck, and it will be optimized in future
work.

In order to test performance impact on input/output,
we measure file read/write operations under three condi-
tions: unmodified Xen (Base), combination of event sensor
and semantic reconstruction (Combination), and separation
of event sensor and semantic reconstruction (VMDriver).
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Figure 11. Benchmark results of I/O

We use iozone, a widely used benchmark for file sys-
tem. The command we use is iozone -a -i 0 -i
1 -i 2 -s 1G -f iozone.txt, which indicates that
the benchmark operates on file iozone.txt. We test
the efficiency of file read, write, random-read, and
random-write. The file size we chose is 1GB, which
is as large as DomU’s memory. Figure 11(a) shows the
speed of random-read when the block size varies from
4KB to 16384KB, and Figure 11(b) represents the speed
of random-write. The horizontal axis represents the
buffer size (KB), and the vertical axis represents the reading
or writing speed (MB per second). When the block size
increases from 4KB to 16384KB, the overall efficiency of
random-read and random-write improves gradually.
According to the result from Figure 11(a) and 11(b), we
can find that the random-read speed is higher than
random-write, and the monitoring function takes less
effective on random-write than random-read. In the
worse case, the efficiency loss is 26.1% for random-read,
and 5.7% for random-write, compared with Base. In
most cases, VMDriver has approximate efficiency compared
with Combination. This proves that VMDriver brings little
performance overhead.

C. Discussion

Lares [14] is an architecture for secure active monitoring,
which disposes hooks in the TVMs protected by the VMM.
For each guest OS, VMM should be modified, thus it limits
the monitoring generality for diverse guest OSes. Ether
[11] puts both event sensor and semantic reconstruction in
the VMM, thus it does not solve the generality problem
either. To the best of our knowledge, VMDriver is the first
approach to address the generality problem of monitoring
diverse guest OSes. At the same time, it enables fine-
grained monitoring by separating event sensor and semantic
reconstruction.

Our implementation assumes that Xen and Dom0 are the
trusted computing base (TCB) of a platform. However, as
Dom0 is a complete of Linux system, it may have the same
vulnerabilities as legacy Linux OS. Thus, a new attack (VM
escape) in DomU can utilize the vulnerability of Xen or
management tools to penetrate into Xen or Dom0. In order to
enhance the robustness of VMDriver, we implement most of
modules in Dom0’s kernel mode, and Dom0 does not provide
extra service except management and monitoring tools.

We leverage underlying hardware with full-virtualization
mode to intercept events in the VMM, as privileged opera-



tions must be completed by Xen which has higher privilege
than all TVMs. This brings more performance overhead
compared with native system or para-virtualization mode.
While we minimize the performance overhead in our design,
we rely on CPU vendors to further improve the performance
of hardware-assisted virtualization.

VI. CONCLUSION

In this paper we propose VMDriver, a driver-based mon-
itoring mechanism for virtualized platform. VMDriver sep-
arates event sensor and semantic construction in the VMM
and the MVM respectively. Semantic construction is imple-
mented by monitoring drivers and encapsulated as kernel
modules, which correspond to variant TVMs. As a result,
the monitoring mechanism is decoupled with the type and
version of the TVM, and is effective for all types of guest
OSes. We have implemented VMDriver on Xen with the
light of hardware-assisted virtualization . Our experiments
demonstrate the expected functionality and generality of
VMDriver, and show that it brings acceptable performance
overhead.
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