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ABSTRACT
This paper presents PolyHype, a novel architecture that
leverages the power of emerging many-core based cloud-on-
chip systems to support multiple hypervisors (or virtual ma-
chine monitors) on a single physical platform. A PolyHype
platform consists of a control plane and multiple hypervi-
sors created on-demand. Each hypervisor can further create
multiple guest virtual machines within a resource and man-
agement realm. PolyHype provides improved scalability, se-
curity, and dependability comparing with mono-hypervisor
systems in today’s cloud environment.

Categories and Subject Descriptors
D.4 [Operating Systems]:

General Terms
Design
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1. INTRODUCTION
Cloud computing is emerging as a viable alternative to premise-
based deployment of hardware and software solutions. The
economy of scale and elasticity offered by cloud comput-
ing has garnered rapid adoption for an increasingly dynamic
and competitive business climate. As a consequence, cloud
computing is quickly altering the landscape of the informa-
tion technology service industry. Virtualization plays a crit-
ical role in cloud computing by multiplexing the resources
and computing power of a single platform to multiple logi-
cal platforms. The development of virtualization technology
has turned traditional software into virtual appliances and
allows software and its execution environment to be rapidly

deployed and delivered as services in ways that are both
massively scalable and elastic. According to IDC’s analysis,
cloud services will be in the order of $44.2bn in 2013 [4].

Virtualization has existed long before the emergence of cloud
computing. However, with the light of recent advance on
low cost many-core processors, virtualiation has made cloud
computing economically viable. Many-core processors have
increased virtualization density to the point at which large
numbers of virtual servers can be ran concurrently on a sin-
gle physical server. In foreseeable future, the number of
processor cores in a single processor will continue to dou-
ble steadily [6]. Sooner or later, we will reach the era of
hyperscale virtual server consolidation where hundreds or
even thousands of virtual servers can be packed on a single
many-core based physical server. This will enable virtual-
ization based computing at epic scale.

Although cloud computing holds great potential and
promises, security is one of the main challenges and defi-
ciencies in today’s cloud environment. Not surprisingly, the
characteristics of multi-tenancy and shared resources intro-
duce new risks and threats to any resources on cloud plat-
form. Potential risks include failure of separation mecha-
nisms for storage, memory, routings between different ten-
ants, and hypervisor subversion [18]. Further threats come
from the possibilities of “escape” from a guest virtual ma-
chine (VM) and being able to inject codes into the host
system or other VMs [9, 12]. Public consent and study [5,
10] have shown major security concerns, including the reluc-
tance to deploy virtual machines on shared physical servers
(which run against the fundamental cloud computing prin-
ciples of resource sharing and on-demand provisioning), po-
tential leak and disclosure of confidential and proprietary in-
formation to third parties, and compromising of co-located
virtual machines. These concerns are well justified by iden-
tified and potential vulnerabilities associated with commod-
ity hypervisors and virtual machine systems on shared plat-
forms [15, 3, 9, 12, 18]. In the near future, we can expect to
see many new security exploitations on cloud environment
towards platforms and user information.

In line with these concerns and challenges, we propose Poly-
Hype, a poly-hypervisor architecture to improve the depend-
ability, scalability, and security of many-core based cloud



servers. Comparing with today’s mono-hypervisor (Mono-
Hype) based systems, PolyHype supports running multiple
hypervisors or VMMs (virtual machine monitors) on a sin-
gle physical platform, in turn, each of which can execute
multiple VMs. By leveraging many-core based cloud-on-
chip processor architecture, this extra abstraction provides
strong isolation between physical resources managed by in-
dividual hypervisor realms. As a direct consequence, the
vulnerabilities of one hypervisor or a VM within a hyper-
visor can be confined within its own domain, which makes
platform-wide attacks much harder. With careful design on
physical separation of CPUs, memory, storage, and I/O de-
vices, PolyHype can achieve more dependable, secure, and
scalable cloud server platform that fits the requirement of
hyper-scale virtual server consolidation.

This paper first analyzes and summarizes security risks, threats,
and attacks on existing cloud servers (section 2), and then
presents the PolyHype architecture to support multiple iso-
lated hypervisors and realms on a single many-core based
physical server (section 3). We highlight several key de-
sign challenges for PolyHype, including strong separation at
physical platform resource level such as CPU, memory, and
storage. We also identify variant I/O virtualization options
and discuss their merits on performance and compatibility
aspects.

2. HYPERVISOR RELATED THREATS TO
CLOUDS

In cloud computing environment, virtual machines from dif-
ferent cloud customers share the same physical server and
hypervisor. Virtualization offers“layered defense”for system
security, usually by assuming that a malicious attacker who
controls or penetrates one guest virtual machine cannot com-
promise the underlying system and other virtual machines.
This should not always be taken for granted. Previous stud-
ies have demonstrated the vulnerabilities and real attacks
that determined attackers can exploit hypervisor vulnera-
bility, and consequently compromise services of co-located
cloud users [15, 3, 9, 12, 18, 14]. We summarize several
risks and threats of virtualized platform in cloud computing
environments as follows.

2.1 Hypervisor Vulnerabilities
On a cloud server platform, virtual machines from differ-
ent customers sit above a common hypervisor that man-
ages both the physical hardware resources and customer re-
sources. Like any other software layer, a hypervisor can
have vulnerabilities and is prone to attacks or unexpected
failure. Commodity hypervisor has significantly grown in
functions and features, and thus in code size. These make
them look closer to a real operating system (OS) with large
trusted computing base (TCB), and increasing design and
implementation vulnerabilities. Their isolation and secu-
rity functions might be compromised by attacks from guest
OS [7].

An attacker can compromise a hypervisor by hacking it from
inside a guest virtual machine and exploit all the guests. Hy-
pervisor layer attacks are very attractive. In a MonoHype
system, the hypervisor fully controls the physical resources
and all guest virtual machines that run on top of it. Past

few years have seen a number of successful hypervisor sub-
versions [15, 3, 9, 12, 18, 14].

King et al., [8] described the concept of a virtual machine-
based rootkit and demonstrated the subversion of VMWare
and VirtualPC using hypervisor rootkit SubVirt. Blue Pill [14]
is a rootkit that can trap a running native OS into a guest
virtual machine“on-the-fly”with hardware-assisted virtuliza-
tion technology such as Intel VT-x or AMD Pacifica. In [12],
the author investigated several popular x86 based virtual
machine implementations and tested whether the assumed
hypervisor security and virtual machine isolation can be
taken for granted. The authors performed hypervisor stress
tests by injecting random instructions and I/O activities to
the hypervisor from a guest virtual machine. The results
identified vulnerabilities in all popular virtual machine im-
plementations for x86 architecture in use today. If exploited,
a vulnerable VMM can be subverted to execute arbitrary
code on the host with the privileges of the VMM process.
In addition, an exploit from a virtual machine guest could
cause VMM to terminate unexpectedly or trigger an infinite
loop that prevents the host from performing normal admin-
istration operations for other virtual machines.

When a hypervisor is subverted, an attacker can escape the
isolation between different customers. For example, a doc-
umented attack on VMWare [15] allows “guest to host es-
cape”. After a hypervisor is subverted, an attacker may take
control of other virtual machines running on the same hy-
pervisor or gain access to the data contained inside them.
Furthermore, an attacker may manipulate resource alloca-
tion; reduce resources assigned to other virtual machines and
as a consequence cause denial of service.

2.2 Weak Separation between VMs
Cloud computing infrastructures mostly rely on architec-
tural designs where physical resources such as computing ca-
pacity, storage, and network, are shared by multiple virtual
machines and therefore multiple customers. Multi-tenancy
and resource sharing are two of the defining characteris-
tics of cloud computing environments. In future many-core
based systems, hundred or even thousand of virtual ma-
chines may share the same physical platform. Failure of
resource separation between different tenants could lead to
potential devastating results such as unauthorized access to
shared resources, provoking denial of services (e.g., manipu-
late resource allocated to other customer’s virtual machines
or terminate other customer’s running virtual machines),
and side-channel data leakage. In [13], using Amazon EC2
cloud system, the authors illustrated the steps for accessing
confidential information from running EC2 instances and
demonstrated side-channel exploits to EC2 instances.

2.3 Resource Exhaustion
Cloud services acquire resources in on-demand manner. In
multi-tenancy working environment, malicious attackers may
trigger resource exhaustion and cause denial-of-resources at-
tacks to other users’ virtual machines. Shared resources
with capacity limitation include memory, storage, I/O band-
width, networking buffers, CPU, and etc. If an attacker
can trigger the allocation of these limited resources, but the
number or size of the resources is not controlled, the attacker
could cause a denial of service by consuming all available



resources on a physical platform. For example, a memory
exhaustion attack against an application could slow down
the application as well as its host OS. A malicious customer
may run mischievous guest virtual machines that use certain
resources intensively. For example, a virtual machine can
deliberately trigger a lots of interrupts or generate switches
between virtual machine and hypervisor at extremely high
frequency.

3. ARCHITECTURE AND DESIGN
This section describes our PolyHype design and architec-
tural support in details.

3.1 Requirements
Comparing with the MonoHype system [2, 11], a PolyHype
system in ideal scenario should satisfy the following require-
ments.

• Separated hypervisors that can scale with large scale
many-core based platform and support hyper-scale vir-
tual server consolidation for multiple customers;

• Two-tiered resource allocation and isolation mecha-
nism: resources such as CPUs are first allocated and
partitioned among hypervisors and then for each hy-
pervisor, the resources are shared among guest virtual
machines; and

• Security breach compartmentalization: an architecture
capable of preventing security breach from spreading
to other customer’s virtual machines.

One desirable feature to support these requirements is that
different hypervisors share minimal physical resources, thus
the normal function of a hypervisor requires little or no in-
teraction from other hypervisors. With this, an attack on
one hypervisor by a malicious customer or attacker may not
affect other customers’ hypervisors and guest virtual ma-
chines. Ideally, PolyHype achieves the same level of avail-
ability and dependability as running each hypervisor on a
dedicated MonoHype platform using single physical server.

3.2 PolyHype and VM Realms
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Figure 1: Concept of PolyHype Platform

On a PolyHype server, a VM realm refers to all guest virtual
machines supported by one VMM or hypervisor. A Poly-
Hype server may constitute multiple concurrent VM realms,
and launch new VMMs in on-demand manner. A Poly-
Hype server has a single control plane that administrates
the physical machine and is able to retain selective control of

Dedicated MonoHype PolyHype
Servers

Hypervisor NA all VMs limited
vulnerabilities affected

Resource NA high (shared low (two tiered
monopolization risks by all VMs) resource partition

and sharing
Many-core NA limited better
scalability

Exploit isolation yes limited better

Table 1: Comparison of Three Frameworks

resources, including processor cores, physical memory, inter-
rupt management, and I/O devices. The control plane can
be a VM realm, aka manager realm, while others are regu-
lar realms. The manager realm does not run guest virtual
machine for cloud customers directly. It can allocate physi-
cal resources to a VMM, bootstrap, or terminate the VMM.
After started, a VMM can function as a normal hypervisor,
i.e., it can manage a number of virtual machine guests and
act as a host for the guests. The control plane runs at the
highest privilege level, thus ensures isolation among VMMs
by allocating or partitioning resources between individual
VMMs. The allocated resource can be physical or virtual
(details discussed in the remainder of this section).

For strong isolation purpose, each realm comprises at least
one physical processor core and allocated physical RAM
space. There is no overlap on processor cores and RAM
space for different realms. For a regular realm, its processor
cores (one or more) run at lower privilege level than the man-
ager realm. This prevents a regular hypervisor from chang-
ing resource allocation made by the control plane. After a
hypervisor is started, the control plane delegates control of
the allocated physical resources to the started hypervisor.
In turn, the hypervisor can further create guest virtual ma-
chines and allocate assigned resources by the control plane
to the guests. The design presents an additional abstraction
layer between the guest virtual machines and the physical
host. Interrupts for each VM realm are routed and handled
by the corresponding hypervisor for the realm. Page faults
and exceptions caused by guest virtual machines of a realm
are handled by the realm’s hypervisor just like in normal
MonoHype systems.

When a hypervisor starts, it boots from a modified BIOS
that bypasses physical RAM initialization. The control plane
retains the control of certain physical resources such as phys-
ical memory allocation and I/O device discovery.

Table 1 compares PolyHype, MonoHype, and dedicated phys-
ical servers from aspects of vulnerabilities to hypervisor breach,
resource monopolization risks, many-core scalability, and ex-
ploit isolation. Overall, PolyHype is more scalable and se-
cure, and well positioned for the emerging cloud-on-chip and
growth of hyper-scale virtual machine density.

3.3 VM Realm Memory Mapping
To support strong memory partitioning between multiple
hypervisors on a single platform, we propose a physical mem-
ory remapping mechanism. In particular, physical memory
space is divided into chunks of equal size (e.g., 8MB). The
control plane assigns physical memory chunks to each hy-



pervisor and its VM realm. The remapping mechanism re-
stricts memory access from a hypervisor and VM realm to
pre-assigned physical memory regions. This is achieved by a
hardware physical memory remapping logic situated in the
memory controller. The remapping logic creates a virtual
continuous physical memory space for each hypervisor and
its VM realm. It is programmed by the privileged control
plane. A regular hypervisor running at lower privilege level
cannot modify or program the remapping logic. For each
memory access (e.g., read or write access from a hypervi-
sor and VM realm), the memory remapping logic translates
the address of the access request to its corresponding physi-
cal memory address. It serves as a memory access reference
monitor and performs access control based on configurations
provided by the control plane. For translating memory ad-
dresses, the memory controller uses either a VM realm to
physical memory remapping table managed by the control
plane or a local cache of the remapping table. The remap-
ping table cache is part of the memory controller. It resem-
bles TLB inside MMU and caches recently-used entries of
the VM realm-to-physical memory remapping table.

Unlike a regular hypervisor, the control plane or privileged
manager realm can access the entire physical memory space
without using translation. However, only a portion of the
physical memory space is allocated to the control plane. Op-
erating systems or virtual machines within the control plane
can use the physical memory space allocated to them freely
for their own purposes. The rest physical memory space is
reserved for other hypervisors and VM realms, while the con-
trol plane has read/write access rights to it. Overall, phys-
ical memory isolation for PolyHype is achieved by restrict-
ing memory access from hypervisor and VM realm within
the space that is assigned by the control plane, by using the
remapping or the address-translation tables.
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Figure 2: Physical Memory Remapping

Figure 2 shows an example physical memory allocation for
three VM realms: A, B, and C. When a hypervisor or a VM
tries to access to a certain memory location, the remapping
hardware looks up the address-translation tables for access
permission of the realm to the specific location. If the hy-
pervisor or VM realm tries to access outside of the mem-
ory range assigned to it by the control plane, the remapping
hardware blocks the access and reports a fault to the control

plane, which is achieved by raising exception to the proces-
sor core running the control plane.

The described physical memory remapping is different from
traditional virtual memory management in many aspects.
Traditional memory paging and MMU are tied with process
management, while our physical memory remapping mech-
anism is used for partitioning physical memory resources
among multiple VM realms. It presents a “virtual” continu-
ous physical memory space for each hypervisor.

3.4 I/O Support
One of the main design challenges of PolyHype is I/O vir-
tualization support. In this subsection, we briefly explain
several design options towards this and discuss the trade-
offs between them.

To virtualize I/O devices, the following operations need to
be supported: 1) device discovery and configuration: It in-
cludes operations for querying I/O devices on a hardware
platform and setting up the devices’ configuration registers
for initialization; 2) I/O transactions: Data Transfer to and
from devices including DMA; and 3) interrupts, by notifying
a hypervisor on state updates and events of a device.

Typically I/O virtualization in MonoHype is implemented
using one of three different approaches: emulation, para-
virtualization, and hardware assisted virtualization (e.g., di-
rect assignment on Intel VT-d [1] or single-root IOV where
an I/O device can be shared by multiple VMs). Emulation
implements I/O devices and hardware in software. Para-
virtualization requires modification of a guest OS. Hardware
assisted I/O virtualization such as VT-d can allocate an I/O
device to a VM using IOMMU, a memory address transla-
tion for I/O transactions. Single-root IOV enables virtual
functions on I/O devices and allows an I/O device to be
shared by multiple VMs.
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IO Proxy Mode: One design option is to use device em-
ulation for I/O virtualization, as Figure 3 shows. The con-
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trol plane consists of a hypervisor and a number of I/O vir-
tual machines, and has the full control of physical I/O re-
sources. I/O devices are allocated to I/O virtual machines
in control plane using hardware assisted I/O virtualization
such as single-root IOV or VT-d. A regular hypervisor and
its VMs can only access the physical I/O resources using
the control plane services. In a VM realm, a guest virtual
machine uses emulated device drivers, which communicate
with the I/O virtual machines in control plane using phys-
ical shared memory. This is feasible because the control
plane has control of the entire physical memory space. Note
that the control plane does not run virtual machines for
cloud customers. Virtual machines on the control plane are
executed by dedicated processor cores in parallel with cus-
tomers’ virtual machines in regular realms. At high level,
the system functions like a distributed systems where the
control plane and I/O virtual machines act as I/O proxies
for the guest virtual machines of a regular realm, by per-
forming I/O transactions and issuing DMA data transfer on
behalf of the emulated device drivers. A drawback of this
approach is that it does not scale well if there are numerous
I/O transactions from multiple guests in a VM realm or VM
realms since the control plane is one central place to process
the transactions.

Multiple Root Complexes: Yet another option is to use
systems with multiple physical I/O root complexes. As Fig-
ure 4a shows, hardware I/O and CPU resources are parti-
tioned among hypervisors and VM realms. Each hypervisor
controls the hardware I/O resources and devices allocated
to it. The control plane retains certain high level control of
the hardware resources such as start/reset of the CPU cores
and I/O devices. For each VM realm, its hypervisor man-
ages the I/O devices under its control. It performs device
discovery, control, and configuration for the realm’s virtual
machines. These virtual machines in a VM realm share the
I/O devices managed by its hypervisor. Within the realm,
the hypervisor can assign I/O devices to virtual machines
using hardware I/O virtualization support (e.g., IOMMU).
The system uses a non-transparent I/O bridge/switch to in-
terconnect the multiple I/O root complexes.

Using Existing I/O Virtualization: A third option is to
leverage the existing hardware support for MonoHype I/O
virtualization. It works as follows. The control plane retains
the control of I/O devices and assigns I/O resources to guest
virtual machines of a realm. This allows I/O virtualization
on a PolyHype system using existing available I/O virtual-
ization support. The control plane performs device discov-
ery, manages the I/O devices, and assigns devices to guest
virtual machines of a VM realm. One guest virtual machine
can issue DMA data transfer using hardware I/O virtualiza-
tion such as VT-d or IOMMU without involving the control
plane. When it needs to access protected resources (such
as I/O configuration and interrupt management), it first ex-
its into the hypervisor of its realm. The hypervisor then
sends an interrupt (such as Inter-processor Interrupt (IPI))
to the processor cores running the control plane. The control
plane handles the request and returns results to the hyper-
visor. For each regular VM realm, its hypervisor cannot
perform these I/O controlling functions which are reserved
for the control plane. It can only forward the requests from
its guests to the control plane.

Virtual Root Complexes: A fourth option is to use a vir-
tual I/O root complex mechanism shown in Figure 4b. An
I/O controller on a single platform can support the discovery
of multiple virtual I/O root complexes. Both device assign-
ment assisted by platform hardware I/O virtualization such
as IOMMU and device level IOV are supported. The control
plane configures the I/O controller and allocates virtual I/O
root complex to each hypervisor and VM realm.

Of these four options, the first and third option work with
the existing I/O virtualization support in MonoHype based
systems. The third option can leverage existing hardware
support for I/O virtualization such as IOMMU or single-root
IOV. The multiple root complex approach does not require
any new standard and supports PolyHype I/O virtualiza-
tion using replicated I/O hardware. It can achieve higher
performance but has less flexibility comparing with the first
and third option. The virtual root complex approach re-
quires hardware support and standard upgrade for multiple



virtualized I/O root complexes.

3.4.1 VM Migration
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Figure 5: Guest VM migration.

In general, a VM realm can cross multiple physical PolyHype
servers, as Figure 5 shows. To migrate a guest virtuial ma-
chine from one physical server to another, the target server
has to create a corresponding realm hypervisor and allocate
resources first. Then the guest virtual machine itself can be
migrated.

4. RELATED WORK
In this section we compare our system with related works,
which we classify them under two categories:

The first category includes hardware and architectural sup-
port for CPU and I/O virtualization (e.g., [1, 17]). To our
knowledge, majority of the published studies and designs in
this space focus on supporting single hypervisor based sys-
tems. In contrast to these systems, our system is one of
the firsts that employ new architectural features to support
multi-hypervisor based platform.

Another body of related research includes micro-kernel based
hypervisor. NOVA [16] is a micro-kernel based hypervisor
that uses a thin and simple virtualization layer to reduce
the attack surface and as a result improve system security.
Our multi-hypervisor based system is orthogonal and com-
plementary to micro-kernel hypervisor research. Comparing
with micro-kernel based hypervisor, our system eliminates
the necessity of sharing hypervisor by different cloud cus-
tomers on a platform and thereby improves platform scala-
bility, reliability, and security.

5. CONCLUSION
We present the concept and high level architecture of Poly-
Hype, a platform framework to support multiple hypervi-
sors on single physical platform by leveraging the emerging
many-core cloud-on-chip processor. Each hypervisor man-
ages guest virtual machines like traditional virtualization
mechanism. The strong isolation between hypervisors and
their realms is achieved by separation of physical resources
provided by a control plane of the platform, which makes

each hypervisor run on logically isolated host. PolyHype
provides improved scalability, security, and dependability
beyond legacy virtualization platform. Many technical chal-
lenges have to be addressed towards the support of Poly-
Hype, including physical memory isolation and I/O virtual-
ization.
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