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Abstract—An administrative role-based access control (AR-
BAC) model specifies administrative policies over a role-based
access control (RBAC) system, where an administrative per-
mission may change an RBAC policy by updating permissions
assigned to roles, or assigning/revoking users to/from roles.
Consequently, enforcing ARBAC policies over an active access
controller while some users are using protected resources would
result in conflicts: a policy may be in effect in the RBAC
system while being updated by an ARBAC operation. Towards
solving this concurrency problem, we propose a session-aware
administrative model for RBAC. We show how the concurrency
problem can be resolved by enhancing the eXtensible Access
Control Markup Language (XACML) reference implementation.
In order to do so, we develop an XACML-ARBAC profile to
specify ARBAC policies, and enforce these polices by building
an ARBAC enforcement module and a session administrative
module. The former synchronizes with the evaluation of access
control requests. The latter revokes conflicting user sessions
immediately prior to enforcing administrative operations. Ex-
perimental studies show reasonable performance characteristics
of our initial enhancement to Sun’s reference implementation.

I. INTRODUCTION

The fundamental tenant of role-based access control
(RBAC) model [18] is that every role is granted a set of per-
missions necessary and sufficient to perform the job functions
of an individual in an organization. Over the years, many
administrative role based access control (ARBAC) models
have been proposed [17], [8], [6], [15], [14], following the
spirit of administrating an RBAC model using another RBAC
model. ARBAC models specify the administrators’ privileges
with so called administrative roles that have permissions to
configure the components in an RBAC system, including cre-
ating/removing roles, changing permissions granted to roles,
and assigning/revoking users to/from roles. Independently, the
eXtensible Access Control Markup Language (XACML) [2]
has become the standard to specify access control policies
for Web Services. In order to specify RBAC policies using
XACML, an RBAC profile has been defined in XACML [1].
However, to the best of our knowledge, there is no XACML-
ARBAC profile to specify ARBAC policies.

During the processing of developing an XACML-ARBAC
profile for managing RBAC systems, we have encountered
a set of challenges. Firstly, when an administrator exercises
any of those access rights granted under an ARBAC policy,

it would result in altering the permissions of a user that
may be using resources granted under an already enforced
RBAC policy. For safety purposes in many applications, the
enforcement of an ARBAC policy would entail immediately
changing the permissions to use a resource while a user is
accessing it. Secondly, an administrative operation usually
updates an RBAC policy, which results in read-write conflicts
when the access controller is evaluating a user’s request
based on the updated policy. The underlying reason for these
problems lies in the fact that all ARBAC models focus on
defining policies to assign different administrative permissions
to different administrative roles, while in practice, enforcing
these policies affects the runtime state of the RBAC system
which may result in unexpected loss of permissions within
ongoing sessions and inconsistent policies configurations.

Towards solving these two problems, we propose a session-
aware administrative model for RBAC. Based on this model
we specify concurrency requirements of an ARBAC model
and introduce the concept of lock scope for a role, which
captures the affected roles when the permissions granted to
this role are updated due to administrative operations. We then
propose an XACML-ARBAC profile in XACML to specify
ARBAC policies. Finally we have implemented our solutions
by extending Sun’s XACML reference implementation [4].
Specifically, we have developed a special administrative policy
enforcement point (A-PEP) that competes for read-write locks
for RBAC and ARBAC polices along with the evaluation
engine of the access controller. We have also developed a
session administrator that terminates all user sessions that
are affected due to a pending administrative policy change
immediately before its enforcement.

The rest of the paper is organized as follows. Section II
briefly describes RBAC and ARBAC essentials. Section III in-
troduces our session administrative model for an RBAC system
and concurrency control requirements. Section IV presents our
XACML-ARBAC profile and the architecture to enforce this
profile in XACML. Section V describes our implementation
and Section VI presents some performance characteristics.
Section VII presents related work and Section VIII concludes
this paper.



II. PRELIMINARIES

A. RBAC and ARBAC

We use the notation RBAC = (U , O, A, R, P , ≤, U2R,
R2P ) for the model of an RBAC system, where the first
four entities are the sets of users, objects, actions, and roles,
respectively. P is a subset of O × A, representing the set of
permissions. The partial ordering ≤⊆ R×R is the role hier-
archy. U2R : U 7→ 2R and R2P : R 7→ 2P are relations that
are functional in their first coordinate, modeling user-to-role
and role-to-permission assignments. That is, U2R(u,M) and
R2P (r,N) are true iff user u is allowed to play the set of roles
M and role r can execute the permission set N respectively.
We use function assignPerm(u) = ∪r∈U2R(u),r≥r′R2P (r′)
to return the set of permissions that a given user obtains
through his or her assigned roles.

We base our work partially on ARBAC97 [17] and SAR-
BAC [8], which suggest having a set of administrative roles
(AR) distinct from user roles, and permit these administrative
roles to create and remove users, roles, assign and revoke users
to (user) roles, and grant and revoke permissions to (user and
administrative) roles. ARBAC97 has three sub-models referred
to as URA97, PRA97, and RRA97, which controls user-to-role
assignments (U2R), role-to-permission assignments (R2P),
and role-to-role assignment (≤), respectively. An ARBAC
model is defined as follows.

Definition 1 (ARBAC): Let (U , O, A, R, P , ≤, U2R,
R2P ) be an RBAC model. An administrative RBAC model
is a tuple ARBAC = (U , AO, AA, AR, AP , ≤A, U2AR,
AR2AP ), where
• AO = U∪R∪U2R∪R2P∪ ≤ is the set of administrative

objects;
• AA is the set of administrative actions given in Table I;
• AR is a set of administrative roles;
• AP ⊆ (AO × AA) ∪ (AO × AO × AA) is the set of

administrative permissions;
• ≤A⊆ AR×AR is the administrative role hierarchy;
• U2AR : U 7→ 2AR is the user-to-administrative role

assignment;
• AR2AP : AR 7→ 2AP is the administrative role-

permission assignment.
As defined, administrative objects (AO) in ARBAC include

the set of users (U ), roles (R), user-to-role (U2R) and role-
to-permission (R2P ) mapping and the role inheritance rela-
tion (≤) in RBAC, and administrative actions (in Table I)
create, update, or destroy these objects. For example, the
AssignUser(u, r) and DeassignUser(u, r) operation cre-
ates and removes entries in the user-to-role mapping U2R, re-
spectively. Each execution of an administrative action changes
the RBAC system configuration. Due to space limitation,
the formal specification for the administrative operations are
not covered in this paper. An administrative permission is
an application of an administrative action on one or two
appropriate administrative objects.

All administrative operations can be classified into “+”
operations and “-” operations. A “+” operation adds elements

+ Operations - Operations
AddUser(u) DeleteUser(u)
AddRole(r) DeleteRole(r)
AssignUser(u,r) DeassignUser(u,r)
GrantPermission(r,P) RevokePermission(r,P)
AddEdge(rc, rp) DeleteEdge(rc, rp)

TABLE I: Administrative Operations

to existing administrative objects such as assigning a user or
granting a permission to a role, while a “-” operation deletes
elements such as revoking a user or permission from a role.
Different administrative operations invoke different session ad-
ministrative actions in our session-aware administrative model
introduced later.

III. SESSION ADMINISTRATIVE MODEL

A. RBAC Session Administration

The RBAC96 [18] and NIST RBAC [9] models include the
concept of a session, which is used as artifact to model the ap-
plications interaction with the access controller. Specifically, a
session is a unique context associated with a user, within which
that user activates a subset of assigned roles. Consequently,
every activated role belongs to one session, and each session
belongs to a unique user. Some primitive session management
functions are specified in the NIST RBAC model [9]. However,
they are not included in existing ARBAC modes [17], [8], [6],
[15], [14]. In order to specify appropriate ARBAC policies for
an RBAC system, we define a complete administrative model
for session management first.

Definition 2 (Session Administrative Model): Let (U , O,
A, R, P , ≤, U2R, R2P ) be the model of an RBAC system. A
session administrative model is a tuple SAM = (ACTIV E−
S, S −ACTION , U2S, S2R, actRole, actPerms), where

• ACTIV E−S is the set of all sessions active at a given
system state;

• S − ACTION ={CreateSession(u, s),
DeleteSession(u, s), ActivateRole(u, s, r),
DeactivateRole(u, s, r)} is the set of session
administrative actions, where u ∈ U , r ∈ R and
s ∈ ACTIV E − S.

• U2S : U 7→ 2ACTIV E−S is a function mapping a user
to a set of active sessions at a system state;

• S2R : ACTIV E − S 7→ 2R is a function mapping an
active session to a set of activated roles at a system state;

• U2S ◦ S2R(u) ⊆ U2R(u) is the constraint that at a
system state, all activated roles of a user is a subset
of his or her assigned roles, where U2S ◦ S2R(u) =
∪s∈U2S(u)S2R(s);

• activeRoles(u) = ∪s∈U2S(u)S2R(s) is a function map-
ping a user to a set of activated roles in all active sessions
at a system state;

• activePerms(u) = ∪s∈U2S(u),r∈S2R(s),r≥r′R2P (r′) is
a function mapping a user to a set of activated permis-
sions at a system state.



Each session administrative action changes the system to a
new state, for example, by creating/deleting a session for a
user, or activating/deactivating a role within a session.

B. Concurrency Control

Similar to an RBAC model, an ARBAC model defines
the configuration of the administrative functions of an RBAC
system. However, as stated, any configuration change affects
the running system state, which may demand session adminis-
trative actions according to application specific requirements.
The interaction between session administrative actions and
system administrative operations (i.e., the ARBAC operations
defined in Section II-A) needs to be specified in order to
define safety for an ARBAC model. As one of the major
contributions of this paper, we identify the following two
concurrency requirements between the session administrative
model and the system administrative model for an RBAC
system.
Revoke activated role or delete active session immediately

Suppose an administrative action aact ∈ AA changes the
state of RBAC to a state RBAC ′. At a give system state
t, if ∃u ∈ U, p ∈ P , p ∈ activePerms(u)|t ∧ p /∈
assignPerms(u)|RBAC′ , then
• ∀s ∈ U2S(u), if ∃r ∈ R, p ∈ R2P (r) ∧ r ∈ S2R(r),

DeleteSession(u, s)|t, or
• ∀s ∈ U2S(u), if ∃r ∈ R, p ∈ R2P (r) ∧ r ∈ S2R(r),

DeactivateRole(u, s, r)|t,
where assignPerms(u)|RBAC′ is the set of permissions that
user u can activate under RBAC ′, and DeleteSession(u, s)|t
and DeactivateRole(u, s, r)|t are session administrative ac-
tions at system state t. This requirement specifies that, when
aact removes one or more activated permissions of a user in
a session at a system state, either the active session should be
terminated , or all corresponding roles with the permissions
should be deactivated. Obviously, only “-” administrative
operations cause these actions in a system.

Delay administrative operations At a give system state t,
when a permission is used by a user in an active session,
any revocation of this permission from the user by an ad-
ministrative operation is delayed until the role corresponding
to the permission is deactivated, or the session is terminated.
Formally, when aact ∈ AA changes an RBAC model to
RBAC ′, if ∃u ∈ U, p ∈ P, s ∈ U2S(u)|t, and p ∈
activePerms(u)∧p /∈ assignPerms(u)|RBAC′ , then aact|t′
when p /∈ activePerms(u)|t′ . That is, the administrative
operation aact is executed at system state t′ > t where the
permission is not activated anymore.

Note that these two requirements can be individually or
jointly specified in a particular system, e.g., some permissions
need to be immediately deactivated in an active session when
they are revoked by an administrative action, while other
permissions may delay the execution of an administrative
operation. For example, the user session is performing some
activity that must be completed, such as waiting for a reply
from a remote database or rolling back a transaction. Now,

if an administrator wants to remove the permission granted
to the user which requires terminating the user session. The
enforcement of administrative operation is delayed until the
user session ends in order to avoid inconsistency.

When an administrative operation modifies a role, we not
only need to manage current active sessions, but also manage
any created sessions. This is especially necessary in delayed
administrative actions. Specifically, when an administrative
operation is delayed, although affected permissions or roles
are not deactivated immediately , we need to prevent the user
from activating them in a new session. To do this, we lock the
affected roles. The administrative operation places write locks
on the affected roles to prevent the policy decision point (PDP)
from “reading” the roles and other administrative operation
from “writing” the roles.

Definition 3 (Lock Scope): Let (U , O, A, R, P , ≤, U2R,
R2P ) be the model of a RBAC system and r ∈ R be a role.
We define the read scope and write scope of r respectively
as rScope(r) = {r′ ∈ R|r′ ≤ r} and wScope(r) = {r′ ∈
R|r′ ≥ r}.

As stated in Definition 3, the read scope of a role r includes
all its junior roles and itself, and the write scope of r includes
all its senior roles and itself. This is because, when a session
using a role r may lose permissions if any junior role r′ loses
its permissions, and therefore needs to ensure that if r′ is to
lose permissions, then r needs to be deactivated. Conversely, if
role r is to lose permissions due to an administrative operation,
then all roles senior to r, that is the write scope of r must not
be allowed to be active. For example in Figure 1, the read lock
scope for R3 is {R6, R5, R3}. The write lock scope for R3
is {R0, R1, R2, R3}. Note also that the lock scopes of a role
could be changed because of an administrative operation.

R0

R2
R1

R3 R4

R5

R6

R7

Fig. 1: An example role hierarchy.

We can define the entities affected due to invoking an
administrative operation using lock scope. Algorithm 1 in
Figure 2 shows how to computer entities affected due to every
administrative operation listed in Table I.

IV. XACML-ARBAC PROFILE AND ENFORCEMENT
ARCHITECTURE

A. XACML-RBAC Profile

The XACML-RBAC profile 2.0 has been approved as an
OASIS standard [1] to specify core and hierarchical compo-



Algorithm 1: Compute affected entities
Input: adminOp
Output: Return affected to A-PEP

1 switch adminOp do
2 case DeleteUser(u)
3 affected:=u;
4 case DeleteRole(r)
5 affected:=wScope(r);
6 case DeassignUser(u,r)
7 affected:=(rScope(r),u);
8 case RevokePermission(r,P)
9 affected:=wScope(r);
10 case DeleteEdge(rc, rp)
11 affected:=wScope(rp);
12 otherwise
13 affected:=NULL;
14 return affected;

Fig. 2: Compute affected entities of an administrative action.

nents of RBAC models. In this profile, objects, actions, and
users are expressed as XACML <Resource>s, <Action>s
and <Subject>s. But roles are expressed as <Subject> at-
tributes or <Resource> attributes. This profile also defines
three generic XACML policies: a Permission <PolicySet>,
a Role <PolicySet>, and a Role Assignment <Policy> or
<PolicySet>. These are used to express the remaining en-
tities of an RBAC model (i.e. permissions, U2R and R2P
mappings, and a role hierarchy ≤), and are briefly explained
as follows.

A Permission <PolicySet> is a <PolicySet> used to define
a set of permissions associated with a role. It may contain
<PolicySetIdReference> to other Permission <PolicySet>s.
Stated <PolicySetIdReference>s can be used to inherit per-
missions of a junior role. Currently, this is the only way to
specify the role inheritance in the XACML-RBAC profile.

A Role <PolicySet> binds a set of attributes defining a role
in a <Target> to a <PolicySetIdReference> outside of that
<Target>. The latter points to the Permission <PolicySet>
of the role.

A Role Assignment <Policy> or <PolicySet> does not
have a standard specification. The objective of the role as-
signment <Policy> or <PolicySet> is to specify the user-
to-role (U2R) assignment. This part of an RBAC policy is
supposed to be specified by an entity external to the XACML
policy framework, referred to as the Role Enabling Authority
(REA). The XACML-RBAC profile does not specify any more
requirements for the REA.

B. The XACML-ARBAC Profile

In the OASIS XACML-RBAC profile, roles are defined as
attributes of subjects and resources. We enhance the XACML
syntax by introducing a new data type Role. As our im-
plementation needs to distinguish administrative roles from
user roles, we introduce a roleType attribute that can take
value from {userRole, adminRole}. We use all other primitive
entities from the XACML-RBAC profile. In particular, the role
hierarchy and role-to-permission assignments are expressed in
the same way as in the XACML-RBAC profile. We use an

XML file to maintain all user-to-role assignments in the policy
repository.

We can get all the roles that a user can invoke by querying
this XML file. That can be considered a special internal Role
Enabling Authority. Although we could have maintained the
user-to-role assignment as a Role Assignment <PolicySet>,
the reason we do not do so is that the current XACML
reference implementation does not answer a query such as
What are the roles assigned to Alice?. Using this extra syntax,
we state administrative policies using the same machinery as
the RBAC profile, but with the following constraints.

Constraining the Permission <PolicySet> All permissions
listed in a <PolicySet> of an administrative role must be
administrative permissions. By enforcing the following con-
straints on the syntax used in a permission <PolicySet>, we
ensure that it is an administrative Permission <PolicySet>.

1) The <Condition>s are created from applying Boolean
operations to existing XACML condition functions and
an enlarged set of condition functions listed in Table II.

2) The (<Action>, <Resource>) pair listed in <Rule>
must be an AP . That is, the actions must be chosen
from operations in Table I.

Constraining the Role <PolicySet> The Role <PolicySet> of
an administrative role must be an administrative <PolicySet>
with the following additional constraints:

1) All role names that appear in the <Target> of the Role
<PolicySet> should be administrative roles.

2) The <PolicySetIdReference> contained in the Role
<PolicySet> should point to an administrative Permis-
sion <PolicySet>.

C. Enforcing XACML-ARBAC Profile

In order to enforce our XACML-ARBAC profile, we en-
hance the existing XACML reference implementation with
the two entities shown in bold in Figure 3 and explained as
follows.

The Administrative PEP (A-PEP) receives an administrative
access control request, returns a response to the administrator,
and if needed, updates relevant polices as a consequence of
enforcing the requested administrative operation. The A-PEP
functions as a Role Enabling Authority. Consequently, when
a subject is assigned to a role and revoked from a role, the
A-PEP acts as an enabler/disabler by invoking the appropriate
administrative operation and updates the U2R mapping in an
XML file.

The Lock Manager provides the concurrency control neces-
sary to maintain the transactional consistency between simul-
taneous operations that the PDP requires reading policies in
order to evaluate them and the A-PEP needs to modify polices
to enforce administrative operations.

D. Concurrency Control

When a non-administrative request arrives at the PDP, the
PDP requests a read lock on the policy that is found using the
target matching algorithm. In case of an administrative request,



Function Intuitive Meaning
role-exist(r) check the presence of the role r
inherited-by-assigned-role(r) check if the given role r is inherited by a role already assigned to the subject
inherit-assigned-role(r) check if the given role r inherits a role already assigned to the subject
role-assigned-exist(s,r) check if the subject s is already assigned to the role r
permission-exist(r,p) check if the role r has been already granted the permission p
role-has-children(r) check if the given role r has any children
role-has-parent(r) check if the given role r has any parent
role-is-assigned(r) check if the given role r is assigned to a user or not
role-is-inherited-by(r1,r2) check if r1 is inherited by r2
role-is-parent-of(r1,r2) check if r1 is parent of r2

TABLE II: Extended functions applied in <Condition> in XACML-ARBAC profile
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Fig. 3: Extended XACML architecture for XACML-ARBAC
enforcement.

the policy evaluation part is similar to the non-administrative
request, where the PDP acquires a read lock on the policy for
evaluation. If the administrative request is granted, the PDP
sends a request to the A-PEP. After receiving a permit decision
from the PDP, the A-PEP acquires a write lock on the policy
(recall that administrative requests update XACML policies)
that is to be updated. We now describe the details of these
steps.
Evaluating Authorization Requests Sun’s reference imple-
mentation does not alter any XACML policies, and it uses
the policy evaluation algorithm explained in [2]. As our
enhancements update policies, this evaluation algorithm needs
to be protected by a semaphore. Consequently, when a non-
administrative request arrives at the PDP, the PDP first requests
a read lock (from the Lock Manager) on the policy that is
found using the target matching algorithm, evaluates the re-
quest using the existing XACML policy evaluation algorithm,
updates the run-time PEP-List (the list of PEPs), and finally
releases the read lock on the policy and sends the response
back to the requesting PEP, which in turn returns the response
back to the user and invokes application dependent activity to
enforce the decision. If the PDP fails to acquire the read lock,
it returns indeterminate as a response to the requesting PEP.
The PDP goes through the steps outlined in Figure 4.

Algorithm 2: PDP evaluating request
Input: Request, PEPID
Data: PEPList
Output: access control decision

/*PDP maintains the PEP-List accessible to A-PEP*/
1 policy:=targetMatching(request);

/*find the policy to be evaluated using target matching*/
2 if AcquireLock(policy,read) then
3 decision:=evaluate(Request,policy);
4 PEPList:=+PEPID;
5 ReleaseLock(policy,read);
6 else
7 decision:=Intermediate;
8 return decision;

Fig. 4: PDP evaluation algorithm.

Enforcing Administrative Operations When an administrative
request is submitted to the A-PEP, the A-PEP forwards the
request to the PDP for evaluation. The PDP uses the same
evaluation algorithm used to evaluate the non-administrative
request (see Figure 4) and returns the decision to the adminis-
trative PEP. If the returned value received at the A-PEP is not
a permit, the A-PEP conveys the decision to the administrator.
Otherwise (e.g., the return value is permit), the A-PEP uses
the algorithm shown in Figure 5 to enforce that decision.
As the algorithm states, if the decision is not a permit, the
A-PEP returns that decision to the administrator (lines 19).
Otherwise, it acquires a write lock on the policy to be updated
(line 3), calls the method getAffected(adminOp) using
the algorithm shown in Figure 2 to determine the parameters
that are affected by the administrative operation (Line 5).
Then, the A-PEP sends a request to all relevant PEPs to
terminate user sessions that can be affected by enforcing the
enforced administrative operation (lines 6-8), so that updating
a policy while these users access permissions granted earlier
do not render the access controller unsafe. Because the access
controller cannot wait forever for those PEPs to confirm that
the requested sessions have been terminated, the A-PEP sets
up a timer (line 7). If all those PEPs returned successful
answers (lines 12-14), the A-PEP updates the policy to reflect
the administrative operation, releases the write lock on the
policy (line 16), and finally informs the administrator that
the administrative operation is being enforced (the permit
decision). Conversely, if any PEP fails to return a positive
answer when the timer expires, the administrative request is
denied.



Algorithm 3: Enforcing administrative operations
Input: adminOp, PDPdecision
/*PDP returns policy decision to A-PEP*/

Data: PEPList
Output: Return decision to administrator

1 if PDPdecision==permit then
2 decision:=deny;
3 if AcquireLock(policy,write) then
4 if adminOp is a (-) operation then
5 Affected:=getAffected(adminOp);
6 forall PEP ∈ PEPList do
7 set(timer, value);
8 sendRequest(PEP,(Affected,killSession));
9 if expires(timer) then
10 acceptFlag:=ok;
11 forall PEP ∈ PEPList do
12 recv(PEP,(Affected, killsSession, NotOK));
13 acceptFlag:=reject;
14 if acceptFlag=ok then
15 modifyPolicy(policy, adminOp);
16 ReleaseLock(policy,write);
17 decision:=permit;
18 else
19 decision:=PDPdecision;
20 return (admin, decision);

Fig. 5: Enforcing administrative operations.

E. The Lock Manager

The Lock Manager maintains read/write locks on
policies, where the PDP is the only potential reader and
the A-PEP is the only potential writer of all policies.
Because the polices are role-based, the locks are actually
placed on the roles. We implemented locking with two
atomic operations AcquireLock(role, read /
write), ReleaseLock(role, read / write) and
an AttemptLock(role, ReadLock, WriteLock)
operation. The method prevents dead-locks and circular locks
because all roles are maintained in an ordered list and locks
are acquired in the same (increasing) order [12].

V. PROTOTYPE IMPLEMENTATION

To show the feasibility and performance of our framework,
we have implemented a prototype to enforce the extended
XACML profile for ARBAC and concurrency control by
augmenting Sun’s XACML implementation [4]. Our prototype
boots up the access controller with a default administrative
XACML policy, which permits the creation of a super user
(SU) and a super role (SRole), where the SRole is the adminis-
trative role, assigns SU to SRole, and grants the administrative
permissions as shown in Table I to SRole. In our imple-
mentation, we revoke the conflicting ongoing user sessions
immediately prior to enforcing administrative operations.

A. Implementing Condition Functions and Administrative Op-
erations

Sun’s reference implementation uses a set of methods,
referred to as condition functions that compare the retrieved
attributes values to expected values to make access decisions.
The condition functions provided by Sun’s implementation are
not capable of checking the conditions for each administrative
operation. For example, to add a role r into the system, the

access controller needs to check if r is already defined or
not. In order to address this deficiencies, we have made two
enhancements in our implementation as follows.

In order to check for pre-conditions of each administrative
operation, condition functions given in Table II are imple-
mented by extending the function base provided by the existing
reference implementation. In each function, we implement the
evaluate method that is used to evaluate the condition.
The input to the condition is provided using attribute
designators that read information from the request con-
text. In addition, the condition evaluation also requires access
to policies, which is provided by initializing each function with
a reference to the policy finder module of the PDP.

The second is a module used by the A-PEP to modify
policies once the PDP permits an administrative operation.
This is achieved through a PolicyManager that initializes
and calls accessor and mutator methods to update the policies.
The AbstractPolicy class in Sun’s reference implemen-
tation has been extended with mutator methods as described
in Table III. To obtain and update user-to-role assignment,
we use standard DOM APIs [5] in order to parse the XML
file containing user-to-role assignments.

B. Implementing the Lock Manager

The Lock Manager implements a waiting queue with a
vector, where index i indicates the ith access request, and
serves all requests in the order of submittion. The vector
of a waiting process hold semaphores. When a process calls
AcquireLock(), the semaphore has “memory” if a previ-
ous ReleaseLock() has been made. Our implementation
uses a waiting thread that is woken up when its turn arises in
the waiting queue.

VI. PERFORMANCE EVALUATION

The concurrency controller’s waiting queue implementation
slows down the access controller. If the number of admin-
istrative operations are executed few and far between, then
there is a minimal waiting time for the PDP to request and
obtain read locks. However, when an administrative operation
is submitted, the total service time becomes the sum of request
generation time to the PDP, PDP evaluation time, response
building time, lock acquisition time, time to communicate with
affected PEPs, time to kill sessions (optional), time to update
a policy, and the time taken to release the locks. Thus, when
an administrative request is submitted, it delays other user
requests that have been submitted after that request. Hence
our objective is to evaluate this overall effect on the access
controller due to administrative requests.

As a preliminary step towards determining the timing over-
heads, we build the role hierarchy given in Figure 1. The role
hierarchy has eight (8) roles. We grant ten (10) permissions
per each of these 8 roles. We assign fifty (50) users per
role, and assume that there are ten (10) active user sessions
per each role. After building this RBAC policy, the sizes of



Methods Intuitive Meaning
getInstance(XMLNode) create an instance of Policy or PolicySet object based on the DOM node
getChild(childId) return a child of the instance of the Policy or PolicySet
addChild(childId) add a child to the instance of the Policy or PolicySet
deleteChild(childId) delete the child from the instance of the Policy or PolicySet
getChildren(XMLNode) return all children of the Policy or PolicySet
setChildren(XMLNode) set the child policy tree elements for this node
encode(outputStream) encode the state of the Policy object to Policy Type XML reprentation

TABLE III: Accessor and mutator methods used in the PolicyManager
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Fig. 6: Latency of AssignUser.

our Role <PolicySet>, Permission <PolicySet> and user-
to-role assignment file on disk became 12k, 122k, and 41k,
respectively.

We simulated the PEP action using method calls where all
PEPs take equal time to kill a session. We also placed the PDP,
A-PEP, and all other (user) PEPs on the same machine - a
3.4GHz Dual Core Windows XP machine with 1.5G memory.
We measured the time taken for administrative operations by
calling the Java method System.nanoTime() [3]. We executed
8 out of the 10 administrative operations and measured their
execution delays, of which we report one in Section VI-A.
In addition, we executed one complex operation removing
a role from the role hierarchy, which requires executing a
series of simple administrative operations. They are described
in Section VI-B.

A. Simple Administrative Operations

We built the role hierarchy shown in Figure 1 using our
administrative operations. That activity took about 959 msecs
to add 8 roles, 844 msecs to add 9 edges, and 711 msecs to
grant 10 permissions per each of the 8 roles, and about 3384
msecs to assign 50 users to each role. The average time taken
for each simple operation is between 68 to 120 msecs. Out of
all these operations, Figure 6 shows the individual time taken
for assigning 50 users to each of the 10 roles. We notice that
the time grows due to the growth of the U2R mapping. Further
analysis shows that this is due to the time taken to parse the
XML policy is proportional to the file size.

B. Complex Administrative Operations

The DeleteRole(r) assumes that for r ∈ ROLE, no user has
activated r in any session and r is not related to any other roles
in the hierarchy. Therefore, to remove a role, we need to ensure

that these pre-requisites are satisfied by (1) terminating all ses-
sions that have activated r, (2) removing all (u, r) ∈ U2R for
all u ∈ USER, (3) removing all edges (r, rp) or (rc, r) ∈≤,
and then (4) calling the administrative operation DeleteRole(r).
Consequently, the time taken to remove a role from the role
hierarchy is the sum of time taken to do these individual
operation. Accordingly, in order to determine the effect of
time taken to delete a role on the number of users permitted
to use the role, the number of sessions activating the role and
the number of edges connecting the role, we conducted three
experiments.

In the first experiment, we fixed the number of users
assigned to each role and the number of active sessions of each
role. Figure 7 shows the total time taken to delete a role with a
fixed number (50) of users permitted to use that role and fixed
number of sessions (3) that activated the role given in Figure 1,
varying numbers of edges to be deleted. Starting with Figure 1,
deleting roles R6 and R7 requires deleting one edge, deleting
roles R0 and R4 requires deleting 2 edges, deleting R1, R2,
R3, and R5 requires deleting 3 edges. Figure 7 shows that the
time taken to delete edges is proportional to the number of
edges that need to be deleted.

In the second experiment, we fixed the number of sessions
activated by each user at 3, varying numbers of users permitted
to activate the role. Figure 8 shows the total amount of time
taken to delete each role in Figure 1. Here we assigned 10, 20,
30, 40, 50, 60, 70, and 80 users to R0, R1, R2, R3, R4, R5,
R6, and R7, respectively. Figure 8 shows that the total time
taken to delete a role is proportional to the number of users
that need to be revoked from the role.

In the last experiment, we fixed the number of users
assigned to each role at 50, varying numbers of sessions that
activate the role. We activated 10, 20, 30, 40, 50, 60, 70,
and 80 sessions by R0, R1, R2, R3, R4, R5, R6, and R7,
respectively. As Figure 9 shows, the total time taken to remove
a role increases with the number of sessions that activate the
role.

Several observations stand out form this performance study.
First, simple administrative operations execute very fast be-
cause they do not affect user activities. Second, the complex
operations, especially the DeleteRole operation, takes more
time because it requires executing a series of administra-
tive operations. For example, in the last experiment, Delete-
Role(R3) requires executing 50 DeassignUser operations, 3
DeleteEdge operations, 1 DeleteRole operation, and killing 40
sessions. The amortized time for each operation is about 83
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Fig. 7: Effect of # edges on time to remove a role.
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Fig. 8: Effect of # users on time to remove a role.
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Fig. 9: Effect of # sessions on time to remove a role.

msecs, which is reasonable. Fortunately, deleting a role in a
system or organization does not happen often.

VII. RELATED WORK

Over the years, researchers have proposed a plethora of
Administrative Role Based Access Control (ARBAC) [17], [8],
[6], [15], [14] models as the conceptual vehicle to adminis-
trate RBAC systems. These models mainly address how to
configure U2R, P2R and ≤ relationships in an RBAC system.
Concurrency control is not addressed in these models.

Seitz et al. [13] present a system permitting controlled
policy administration and delegation using the XACML access
control system. They use a second access control system
Delegent, which has delegation capabilities to supervise modi-
fications of the XML-encoded XACML policies. Concurrency
issues arising due to administration and policy evaluation is
not addressed by them.

Crampton and Chen [7] propose an approach to implement
the RBAC model using XACML. They attempt to implement
the ANSI RBAC standard [9] using a suit of XACML po-
lices. They use attribute-based role assignment for the U2R
assignment, define an XML-based language for specifying
separation of duty constraints and propose an extension to
the XACML reference architecture in order to enforce these
constraints. To the best of our knowledge, these have not been
fully implemented.

Concurrency control on XML data has been an active
research recently. Haustein et al. [11] introduce a data model
called taDOM tree to allow fine-grained locking using a
combination of node locks, navigation locks, and logical locks,
which we intend to use for our future research.

Janicke et al. [10] propose a concurrent enforcement model
for usage control (UCON) [16] policies. Their model separates
user, access controller, and system. While their technique
enforces concurrency control based on static analysis of de-
pendencies between polices, we resolve concurrency issues
during the runtime of a system.

VIII. CONCLUSION

We propose an enforcement framework for ARBAC policies
with XACML. To address concurrency issues, an session-
aware administrative model for RBAC is used to manage
interactions and potential conflicts between session manage-
ment and administrative operations. We specify concurrency
requirements of an ARBAC model and introduce the concept
of lock scope for a role, which captures the affected roles

when the permissions granted to this role are updated due
to administrative operations. We have developed an XACML-
ARBAC profile to specify ARBAC polices and extended Sun’s
XACML enforcement architecture by introducing an adminis-
trative policy enforcement point (A-PEP) and a Lock Manger
to ensure the safety and integrity of policy management.
We have implemented a prototype to enforce the extended
XACML-ARBAC profile and demonstrated the feasibility of
our framework. Our experimental study shows that our solu-
tion encounters a small performance overhead.
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