
Systematic Policy Analysis for High-assurance Services in SELinux

Gail-Joon Ahn † and Wenjuan Xu †

University of North Carolina at Charlotte
{gahn,wxu2}@uncc.edu

Xinwen Zhang
Samsung Information Systems America

xinwen.z@samsung.com

Abstract

Identifying and protecting the trusted computing base
(TCB) of a system is an important task to provide high-
assurance services since a set of trusted subjects should be
legitimately articulated for target applications. In this pa-
per, we present a formal policy analysis framework to iden-
tify TCB with the consideration of specific security goals.
We also attempt to model information flows between do-
mains in SELinux policies and detect security violations
among information flows using Colored Petri Nets.

1 Introduction
Determining whether a system can be trusted or not is a

critical problem in systems and network management. Par-
ticularly for security reasons, a local or remote system ad-
ministrator typically needs to verify if a system meets in-
formation security objectives, such as integrity, confiden-
tiality, and availability requirements. For example, in or-
der to deploy applications in distributed and collaborative
computing environments, one machine may need to check
if another machine currently runs a known good version of
an application software on a well-configured, trusted oper-
ating system. Otherwise, a remote machine may run buggy
or malicious application codes, or may be improperly con-
figured such that the trusted application can be corrupted by
untrustful programs or users. Supporting such an important
assurance feature with comprehensive security analysis is
necessary to trust a target system based on its current secu-
rity configurations and policies.

Information flow control is the foundation of many secu-
rity requirements such as integrity and confidentiality. The
earliest information flow analysis works adopted a lattice
model to illustrate the flow relationship between objects [9].
Those works assume that every object is labelled with a se-
curity attribute, and check information flow by examining
†The work of Gail-Joon Ahn and Wenjuan Xu was partially supported

by the grants from National Science Foundation (NSF-IIS-0242393) and
Department of Energy Early Career Principal Investigator Award (DE-
FG02-03ER25565).

the security labels of the objects in a flow path. Particu-
larly, the lattice model requires that information cannot flow
from low integrity objects to high integrity objects. In prac-
tical systems, however, under various circumstances, infor-
mation flow is allowed from low integrity subjects to high
integrity subjects. Clark-Wilson model [8] attempts to cap-
ture this notion. It states that information can flow from low
integrity objects to high integrity objects only through cer-
tain programs so-called transaction procedures (TP). Jaeger
et al. adopted this approach and proposed a CW-lite model,
where filters are deployed in all application interfaces han-
dling information flow from low integrity data to high in-
tegrity applications [11].

There are several related approaches and tools support-
ing security policy analysis based on information flow con-
trol [1, 10, 11, 12, 17]. However, those tools and approaches
cannot analyze the integrity protection of information do-
main, simply called domain, between services and applica-
tions. In other words, most of previous works focused on
the identification of a common and minimum trusted com-
puting base (TCB) which includes trusted subjects for an
entire system. Also, they cannot analyze security of high
level application domains, where TCB may have various
dependable relationships with different trusted subjects. In
this paper, we consider a domain as a collection of sub-
jects and objects which jointly function for an application
or system service. Hence, the trust of these application and
service domains cannot be judged unless information flow
between them are appropriately evaluated.

Towards high-assurance applications and services based
on a minimum TCB, we propose a framework to identify
policy violations caused by interactions between applica-
tions and system services. We first seek a general policy
analysis method to identify the TCB of individual domains.
We then build a tool to automate the analysis task and visu-
alize policy configurations and security violations. Finally,
we present general principles to resolve violations based on
a domain-based Clark-Wilson security model. This paper
is organized as follows. Section 2 describes some related
works followed by our methodology for policy analysis in
Section 3. Section 4 describes how our methodology can

be applied to analyze SELinux policies and presents some
identified security violations and solutions. Section 5 con-
cludes this paper and presents our future work.

2 Background and Related Work

2.1 SELinux Policy Related Work

As most existing works on policy analysis focus
on SELinux policy, we first give an overview here.
SELinux [18] implements MAC-based mechanism in Linux
kernel, where the policy is built on the Type-Enforcement
model [6]. In SELinux, domains (e.g. passwd t)
are used to label processes (e.g. password manage-
ment process) and types (e.g. security t) are used
to label files and other resources (e.g. files in di-
rectory /security). An SELinux policy includes a
set of policy rules indicating how domain (or subject)
types can access object types (e.g. allow passwd t
security t:dir{read search getattr};). An
access operation is specified by two pieces of information:
a class (e.g. file, directory) and a permission (e.g. read,
write). Although SELinux adopts RBAC to help policy or-
ganization, existing SELinux policy analysis works mainly
focus on the Type-Enforcement model.

Previous methods and tools developed to analyze
SELinux policies include Gokyo [11, 12], SLAT (Security
Enhanced Linux Analysis Tool) [10], PAL (Policy Analy-
sis using Logic Programming) [17], APOL [1] and SEAn-
alyzer [7]. Gokyo is used to check the integrity protection
of the TCB in SELinux. The integrity of the TCB holds if
there is no subject identified by a security type in SELinux
–that can be written by a type outside the TCB and read by
a type inside the TCB, except for special cases in which a
designated trusted program sanitizes untrusted data when it
enters the TCB. Gokyo mainly identifies a common TCB
in SELinux but a typical system may have multiple security
goals with obviously different kinds of trust relationships.
Hence, Gokyo cannot cover all the aspects of policy viola-
tions. SLAT [10] defines an information flow model to an-
alyze SELinux policies. In SLAT, the model defines infor-
mation flow relations as flow transitions based on the write
and read operations. Through a set of flow transition rela-
tionships, a path is defined to reflect a sequence of events.
Sarna-Sota et al. [17] use the SLAT information flow model
to implement a framework for analyzing SELinux policies,
which is called PAL. PAL creates a logic program and is ca-
pable of executing queries to analyze policies. PAL is im-
plemented using the XSB logic-programming system [3].
APOL [1] is a tool developed by Tresys Technology to an-
alyze SELinux configuration policies. Its main features in-
clude forward and reverse domain type transition analysis,
direct and transitive information flow analysis, relabel anal-

Table 1. TCB identified.
ipsec mgmt t setfiles t sysadm t initrc t getty t
load policy t hwclock t syslogd t mount t apt t

admin passwd exec t automount t ldconfig t kernel t klogd t
checkpolicy t cardmgr t fsadm t snmpd t init t
bootloader t logrotate t newrole t quota t dpkg t
local login t sshd login t useradd t passwd t sshd t

ysis, and type relationship analysis. SEAnalyzer [7] is a
tool based on Colored Petri Net (CPN) to analyze SELinux
policies. Policy violations can be identified through creat-
ing queries in CPN. Queries in SEAnalyzer are built on the
similar information flow model with SLAT, which is mainly
about TCB protection.

Although the above-mentioned tools and languages pro-
vide different ways for analyzing SELinux policies, we still
need a systematic method to analyze policies effectively and
seamlessly. Specifically, SLAT, PAL and APOL require an
administrator to be well versed in SELinux policies to gen-
erate meaningful queries and ultimately extract meaningful
information. Gokyo does not address the issue of the ap-
plication/system service level integrity. SEAnalyzer tries to
use CPN to aid analysis processes. However, it expresses
generated policy violations in CPN token text expressions.
Where the number of identified policy violations is large,
especially during the initial states of a analysis process, it
is still difficult for a policy administrator to understand and
resolve identified violations. Our work demonstrates a new
and systematic way to use CPN for automating and visual-
izing policy analysis.

2.2 Trusted Computing Base

The concept of TCB partitions hardware and software of
a system into two parts: the part inside the TCB and the part
outside the TCB which are referred to as trusted (TCB) and
untrusted (NON-TCB) respectively. Therefore, the identi-
fication of TCB is obviously a basic problem in security
policy design and management. Jeager et al. [11] attempt
to identify TCB in SELinux with the following steps: (i)
Domain type transition-based TCB Initial Identification to
identify the initial minimum TCB based on the domain type
transition relationships. The subject types such as boot t
and kernel t can be identified as an initial TCB; (ii) Flow
transition–based TCB Identification to identify other sub-
jects that have information flow to all of the subjects in the
initial TCB and to append those identified subjects to the
initial TCB; and (iii) Identified TCB Adjustment to detect
policy violations from NON-TCB to TCB, manually adjust-
ing TCB based on the analysis results as shown in Table 1.

In this paper, we propose Reference Monitor based Ini-
tial TCB Identification approach for general policy analysis.
Based on the definition of TCB, we identify the initial TCB
through the identification of subjects functioning as the ref-

erence monitor. Applying our main idea to SELinux, we
determine the types that are responsible for the reference
monitor such as checkpolicy t and load policy t
as part of the TCB. To support these services, we first iden-
tify other types such as kernel t in the initial TCB. After
the reference monitor based TCB identification is complete,
we apply the method of flow transition and TCB adjust-
ment to help accomplish the TCB identification task. In our
work, through automatic identification process, we success-
fully identify several additional types including kudzu t,
lvm t, and restorecon t in the TCB.

3 Our Methodology for Policy Analysis

In this section, we present a formal specification of pol-
icy graph and information flow transitions. We then discuss
our strategies to identify the security properties of a policy
including different TCBs and security violations. Finally,
we discuss general principles to resolve policy violations.

3.1 Security Policy

Our security model is similar to many traditional ap-
proaches [14]. Specifically, a set of sensitive resources (e.g.,
files, directories, sockets, and processes) to be protected in a
system are called objects, and the active entities performing
actions (rights or permissions) on objects are called sub-
jects (e.g., users and representative processes). A security
policy is composed of a set of subjects, a set of objects, and
the corresponding relationships indicating whether a sub-
ject can perform what kind of actions on an object. For
information flow purpose, all operations between subjects
and objects can be classified as write like or read like and
operations between subjects can be expressed as calls [10].
Figure 1 shows the information flow relations with these
three types of operations between subjects and objects. Fig-
ure 1 (a) describes that if subject x can write to object y,
then there is information flow from x to y, which is denoted
as write(x, y). Figure 1 (b) shows that if subject x can read
object y, then there is information flow from y to x, which
is denoted as read(y, x). Figure 1 (c) describes that if sub-
ject x can call another subject y, then there is information
flowing from y to x, which is denoted as call(y, x). Based
on these concepts, we arrive the definition of policy graph
to express information flow relations between subjects, ob-
jects, and operations.

x y
read_like

x y
write_like

x
call

y

(a) write_like information flow (b) read_like information flow (c) call information flow

Figure 1. Types of information flow relations.

Definition 1 A Policy Graph of a system is a directed graph
G=(V,E), where a set of vertices V represents all subjects

and objects in the system, and a set of edges E=V × V rep-
resents all information flow relations between the subjects
and objects. That is,

• V=Vo

⋃
Vs, where Vo and Vs are the sets of nodes that

represent objects and subjects, respectively.
• E=Er

⋃
Ew

⋃
Ec. Given a subject x, y ∈Vs and an

object o ∈ Vo:
– (x, o) ∈ Ew if and only if write(x, o).
– (o, y) ∈ Er if and only if read(o, y).
– (y, x) ∈ Ec if and only if call(y, x).

3.2 Information Flow Transitions

In a policy graph, if subject s1 can write to object o, and
o can be read by another subject s2, then it implies that there
is an information flow transition from s1 to s2, denoted as
flowtrans(s1, s2). Also, if s2 can call s1, then there is
the flow transition from s1 to s2. The sequence of flow
transitions between two subjects represents an information
flow path.

Definition 2 In a policy graph G=(V,E), for any s1, s2 ∈
V , an information flow transition flowtrans(s1, s2) ex-
ists if ∃o ∈ V , write(s1, o) ∧ read(o, s2), or call(s1, s2).
We also say that predicate flowtrans(s1, s2) is true if
flowtrans(s1, s2) exists.

Definition 3 In a policy graph G=(V, E), an informa-
tion flow path flowpath(s1, sn) exists and predicate
flowpath(s1, sn) is true if flowtrans(s1, sn), or ∃si ∈
V , flowpath(s1, si) ∧ flowpath(si, sn).

3.3 TCB of a Domain

Protecting a system’s TCB can satisfy a particular secu-
rity goal such as protecting kernel integrity. However, some
of other security goals such as separation of different pro-
cesses or limiting the privileges of certain processes cannot
be satisfied at the same time. To address this, we propose a
new concept called the domain TCB to determine if a policy
can satisfy such kind of security goals.

Definition 4 Let d be an information domain functioning
as certain application or system service through a set of re-
lated subjects and objects. The TCB(d) is a set of subjects
in d which has the same level of security sensitivity.

Superficially, a TCB(d) represents a set of subjects and
objects that handle or contain all critical data processed for
the functionality of domain d. Note that the concept of in-
formation domain has much wider scope than the domain
type in SELinux in this paper. For example, a web server
domain running in a system consists of many subjects–such

as processes, plugins, tools–and objects including data files,
config files, and logs. We consider all of these subjects and
objects as the TCB of this domain, while its network ob-
ject such as socket:80 is not considered as its TCB since it
may accept low integrity data. Our objective is to identify
the TCB of each domain and consider its integrity for assur-
ing secure applications and system services. The following
principles for the TCB(d) identification are proposed. For
sake of clarification, the kernel-level minimum TCB we in-
troduced in Section 2.2 is called system or global TCB.

• Keyword-based TCB(d) identification: To identify the
TCB(d) subjects of certain application or system ser-
vice domain, we first identify all of subjects related to
the integrity of the target domain based on some key-
words. For example, in SELinux we use the keyword
httpd to identify its initial TCB(d) subjects for the
TCB of a web server, and mail and sendmail to
identify its initial TCB(d) subjects for the TCB of mail
service domain.

• Flow transition-based TCB(d) identification: The sub-
jects that can flow only to or from the initial identified
TCB(d) are included in the domain TCB.

• Policy violation-based TCB(d) adjustment: Through
identifying the policy violations, we adjust the TCB(d)
with incorrectly included or excluded subjects.

3.4 Domain-based Integrity Model

The concepts of flow transitions and paths are used in our
information flow-based policy analysis for domain TCB and
policy violation identifications. For this purpose, we need to
identify which flow transitions and paths can cause possible
violations. Specifically, as integrity protection is the focus
of this paper, we identify policy violations based on an in-
tegrity model. Traditional integrity models include Biba [5]
and Clark-Wilson [16]. Biba integrity property is fulfilled
if a high integrity process cannot read lower integrity data,
execute lower integrity programs, or obtain lower-integrity
data in any other manner. Clark-Wilson provides a differ-
ent view of dependencies, where low integrity data can flow
to high integrity only through particular information flow
channels, TPs or filters in CW-lite [11]. A typical exam-
ple of filter can be a firewall, and a valid flow transition is
that a mail application receives mails by calling the firewall
application to sanitize data before handling.

As communication and collaboration between applica-
tions and services are frequently required in most contem-
porary systems, one-way information flow with Biba would
be sufficient for the most cases. However, filters between
high integrity and low integrity are necessary for TCB and
NON-TCB isolations, but may not be flexible for domain-
based isolations. For example, in SELinux, processes of

user applications and staff applications are required to be
isolated, which both are beyond the minimum and global
system TCB. Hence, our approach is a domain-based Clark-
Wilson isolation model. Specifically,

Definition 5 Clark-Wilson is satisfied for an information
domain d only if for any information flow path in d, (i)
all nodes along the path are in TCB(d), or (ii) it flows to
TCB(d) from system TCB, or (iii) it flows to TCB(d) from
other domain TCBs with the legitimate filter.

Through this definition, Clark-Wilson isolation requires
the system’s information flow adhere either within a do-
main TCB from system TCB to a domain TCB, or between
domain TCBs via filters. In this paper we do not discuss
the integrity of filters, which can be ensured with integrity
measurement and attestation mechanisms [15]. Instead, we
assume that filters always correctly sanitize data between
domains. In practice, filters between domains are applica-
tion or service dependent. For instance, a firewall works
as a filter for mail service by checking incoming mails be-
fore sending to a mail application. However, for a service
like logrotate, the firewall does not work as a filter be-
cause logrotate enables automatic rotation of log files
and does not depend on data in the files. In our work, ini-
tially we do not have a set of predefined filters. After de-
tecting a possible policy violation, we try to identify a filter
subject to resolve the violation.

3.5 Violation Detection and Resolution

Based on our domain-based Clark-Wilson model, we
treat a TCB(d) as an isolated information domain. We use
the following two rules for identifying possible policy vio-
lations in a system.

Rule 1 If there is an information flow path from a subject
out of the system TCB to the system TCB without passing
any identified filter, there is a policy violation for protecting
the system TCB.

Rule 2 If there is an information flow path from TCB(dx)
to TCB(dy) without passing any filter, there is a policy vio-
lation for protecting TCB(dy).

After initial policy violations are identified with these
two rules, we use different strategies to resolve those vi-
olations. Specifically, for a violation, we first check if it
can be solved by adding or removing related subjects to or
from the domain TCB. This causes no change to the policy
graph. Secondly, we check if a subject along the violated in-
formation flow path can be regarded as a filter. If a filter is
identified, then the violation is a false alarm and there is no
change to the policy graph. Thirdly, we attempt to modify

Policy
Permission

Mapping
TCB Domain

Identification

Resolution of Policy

Violation

Domain-based Integrity

Model

Policy Violation

Detection

Information Flow

Transitions

Policies Graph

Definition

Simulation Report

about policy violation

Policy Violations

Represented in

CPN

Analysis Report Module

Policy Visualization Module

Policy in CPN

Graph
Policy in XML

Policy Parsing Module

Policy Checking

Rules

Policy Analysis Modules

Policy Modification

inputinput

input

System Components

input

transform

execute modify

Policy parsed into entities and

entities relationship

Policy mapped with TCB,

TCB(d) definition

generate

generate

Decision Flow

Load the

policy

Policy

administrat

or

Visualize

the policy

Analyze

the policy

graph

OK

Policy

Violation

Visualize

the policy

violation

support

Modify the

policy in graph

or text mode

parsed policies

policy graph

simulation report

Yes

Yes

No

modification

No

policy binary file

Modify the

policy in

graph

modified

policy

graph

Modify the

policy file
modified policy file

Figure 2. Policy analysis framework.

policy graph, either by excluding subjects or objects from
the violated information flow path, or by replacing subjects
or objects with more restricted privileges. Finally, we insert
filters that act as a high-assurance gateway between unau-
thorized subjects and protected subjects.

4 Realization and Experiments

We built our prototype based on Colored Petri Nets,
which is a powerful graph-based analysis tool for system
modeling [13]. A Petri Nets includes three basic compo-
nents: places, transitions, and arcs. Arc expressions spec-
ify a collection of tokens, which can be added to or re-
moved from places. If a transition input place contains at
least one token that is equal to the corresponding arc ex-
pression, the transition is enabled. The difference between
CPN and Petri Nets is the inclusion of color sets in CPN,
which can be viewed as abstract data types in a program-
ming language. These types determine data attributes and
operations used in arcs, guards, and initialization expres-
sion functions. CPN can support graph hierarchy, zoom in,
zoom out, color expression, and so on. Also, CPN has a
simulator to support execution of CPN models. The sim-
ulation is to validate whether a system works correctly re-
flecting the design principles. It supports both interactive
simulation and automatic simulation. In the interactive sim-
ulation, a user can set breakpoints, choose between enabled
binding elements, change markings of places, and study the
token in detail, while the simulator makes random choices
of the enabled binding elements and automatically executes
the whole CPN models in the automatic simulation.

Figure 2 shows our policy analysis framework that in-
cludes Policy Analysis Modules, System Components, and
Data Flow for policy analysis. Policy Analysis Modules
are composed of several analysis components such as TCB
Domain Identification, Policy Graph Definition, Informa-
tion Flow Transitions, Domain-based Integrity Model, Pol-
icy Violation Detection and Resolution of Policy Violation

that are designed based on the policy analysis methodol-
ogy proposed in Section 3. For the System Components, the
Policy Parsing Module is to parse and map the operations
between types to write like, read like, or call operations.
For example, the operation like getattr can be mapped
to a read like operation. System TCB and domain TCB
are discovered and inserted into the policies using the TCB
Domain Identification module in Policy Analysis Modules.
Through the Policy Visualization Module, a security policy
is transformed into an XML file, which is transformed into a
CPN graph based on the Policies Graph Definition module.
A set of policy checking rules are taken as an input into the
CPN graph, and the generated CPN graph is executed with
the CPN simulation function. The policy checking rules are
built by using the modules in Policy Analysis Modules such
as Information Flow Transitions, Domain-based Integrity
Model, and Policy Violation Detection modules. The Analy-
sis Report Module generates a simulation report containing
information about policy violations by executing the poli-
cies in CPN graph and then the simulation report is trans-
formed into another XML file. The graph along with policy
violation specifications is also generated through CPN as an
output. In addition, this module supports policy modifica-
tion performed by Policy Violation module. The Decision
Flows components govern all processes in our framework.

4.1 Policy in XML

Based on the definition of policy graph, we design a
scheme to express policies in XML. As shown in Figure 3,
the XML file generated from a parsed SELinux policy has
two elements: DT and DD. The DT element includes
three sets of subelements: (1) non replicated operation re-
lationships between types, (2) the types that can flow out
and into other types, and (3) the starting types which can-
not have a flow into by any other types. Also, it may con-
tain the types that can only be flew into. The DD element
specifies information about non-replicated transition rela-

tionships between types.
In our experiments, we parsed a real world SELinux

binary policy file policy.19 into a defined policy structure
based on the source package of APOL [1] with our pars-
ing tool. Then, we retrieved the information about subject
types, object types, and related rules. Using LibXML2 [2],
we transformed these information into an XML file con-
forming the defined policy template. Based on our TCB
identification strategy mentioned in Section 2.2, we car-
ried out the system TCB identification. The collection
of the domain TCBs for all applications and system ser-
vices was performed based on our TCB(d) identification
method. In the example SELinux policy, there are 35
user applications, 37 staff applications, 34 administrative
applications, and 84 system services. In user, staff, and
sysadm levels, we identified information domains as duser,
dstaff and dsysadm, respectively. More fine-grained do-
main identifications are performed against different appli-
cations and services within these domains. For example, the
user mozilla t related domain should be isolated from
the user xserver t related domain. Table 2 shows the
comprehensive list of TCBs that our tool successfully iden-
tified. The list of system service daemons are also shown
in Table 2 and each daemon is identified as an individual
domain.

domain--domain transition relationship

types involved in the domain-type related path

domains that are the starting points of the domain-type related paths

domains involved in the domain-type related paths

domain—type relationships

 <?xml version="1.0"? encoding="UTF-8"?>

-<policy>

-<section type="DT">

 <dtoperation start="user_t" direction="write_like" end="devtty_t" />

<dtoperation start="user_mozilla_t" direction="write_like" end="devtty_t" />

<dtoperation start="user_games_t" direction="write_like" end="devtty_t" />

.......

<dlist d="user_t" />

<dlist d="user_mozilla_t" />

.......

<dslist d="kernel_t" />

.......

<tlist d="devtty_t" />

.......

 </section>

-<section type ="DD">

<domaintrans start="sysadm_t" transdomain="mount_t"/>

<domaintrans start="initrc_t" transdomain="mount_t"/>

........

</section>

 </policy>

Figure 3. SELinux policy rules in XML format.

4.2 Graph-based Policy Analysis and Vi-
olation Identification

Tlist1'[“name”]Tlist

tl^^[“name”]
tl

(b) DrawFO(name)

allowname

(a) DrawSP(name) (c) DrawFI(name) (d) DrawOP(name)

allowname 1name

Tlist

tl

Figure 4. Graph drawing.

To automatically visualize a policy, we use Extensible
Stylesheet Language (XSL) [4] to transform a policy in

Table 2. TCB(d) identified.
TCB(duser)

user crond t user crontab t user xserver t
user gpg t user home ssh t user mozilla dbusd system t
user mail t user screen t user gpg helper t

user tvtime t user mplayer t user mozilla javaplugin t
user lpr t user spamc t user games t
user uml t user mozilla t user dbusd user t
user ssh t user gag agent t user ssh agent t
user gph t user chkpwd t user ssh keysign t

user locate t user vmware t user dbusd system t
user dbusd t user lockdev t user spamssassin t

user irc t user cdrecord t user gpg pinentry t
user xauth t user mencoder t

TCB(dstaff)
staff crontab t staff xserver t staff mozilla javaplugin t

staff gpg t staff mencoder t staff ssh keysign t
staff su t staff cdrecord t staff home ssh t
staff ssh t staff vmware t staff dbusd system t
staff gph t staff chkpwd t staff userhelper t

staff crond t staff screen t staff gpg helper t
staff lpr t staff xauth t staff spamassassin t

staff locate t staff lockdev t staff mplayer t
staff irc t staff spamc t staff mozilla dbusd system t

staff mail t staff games t staff gpg agent t
staff sudo t staff mozilla t staff gpg pinentry t
staff uml t staff tvtime t staff ssh agent t

staff dbusd t
TCB(dsysadm)

sysadm su t sysadm mozilla t sysadm mozilla javaplugin t
sysadm gph t sysadm spamc t sysadm spamassassin t
sysadm sudo t sysadm games t sysadm mozilla dbusd system t
sysadm uml t sysadm cdrecord t sysadm ssh agent t
sysadm irc t sysadm crontab t sysadm gpg agent t

sysadm crond t sysadm passwd t sysadm userhelper t
sysadm gpg t sysadm mplayer t sysadm ssh keysign t
sysadm mail t sysadm xserver t sysadm dbusd sysadm t
sysadm xauth t sysadm dbusd t sysadm dbusd system t
sysadm ssh t sysadm screen t sysadm gpg pinetry t
sysadm lpr t sysadm chkpwd t sysadm gpg helper t

sysadm vmware t
Daemons

uml switch t postfix bounce t vpnc t nfsd t
canna t cyrus t dhcpc t udev t
ipsec t mdadm t apmd t ntpd t

ssh keygen t telnetd t zebra t nscd t
dovecot auth t slrnpull t saslauthd t howl t

prelink t tftpd t sendmail t rpm t
i18n input t fetchmail t smbd t gpm t

privoxy t bluetooth t nmbd t lpd t
ypbind t ypserv t crond t pppd t
cupsd t mysquld t squid t mrtg t
dhcpd t dictd t arpwatch t hald t

cpuspeed t inetd t httpd t innd t
spamd t timidity t irqbalance t acct t

vmware t winbind t kadmind t xdm t
networkmanager t dmesg t radiusd t rshd t

printer t rhgb t radvd t ptal t
slapd t gssd t auditd t rpcd t

fingerd t named t dovecot t ftpd t
krb5kdc t procmail t hostname t rdisc t

postgresql t updfstab t cpucontrol t ping t
games t iptables t sound t

XML to CPN graph. The following basic functions are de-
signed for the CPN graph generation as shown in Figure 4.

• DrawSP(name) is to draw the types that no informa-
tion can flow into. This function draws a place that
contains the initial marking whose value is the name
of the place, and the arc that has a variable to express

Hierarchical graph for

SELinux policies

Policy

violations

Figure 5. Policy visualization with hierarchy.

information contained in the place and the transition
called allow. dlist is a color set of the place express-
ing a string list containing one or more type names.

• DrawFO(name) is to draw the places for types from
which information can flow out. It is similar to
DrawSP(name), but the places generated with this
function do not have initial markings.

• DrawFI(name) is to draw places containing types from
which no information can flow out.

• DrawOP(name) is to draw an arc that connects types.
The expression on the arc is to generate a list express-
ing flow transitions caused by domain type transitions
or operations between types.

With the above functions, XML-based SELinux policy
rules are parsed into a CPN graph. In order to perform
the process of detecting policy violations in CPN, the TCB
related definitions, filter information and the rules for pol-
icy violation identification are also expressed in XML and
transformed into CPN graphs. As stated in Section 3.4, it is
hard to initially identify filters so we set initial filter values
to null and put this information into the policy XML file.
Later, when possible policy violations were detected, filters
were identified and added to the XML file through CPN.
Figure 5 illustrates a snapshot of our policy visualization.

Simulation is a technique supported by CPN to analyze
a system by conducting controlled experiments [13]. In
our experiments, we utilize the simulation feature to gen-
erate policy violations with text expressions. To better un-
derstand the violations, we visualize the generated expres-
sions with another XML transformation. In our simula-
tion, policy analysis results are stored in a simulation report.
Through parsing the simulation report, we generate infor-
mation about policy violation specifications and produce a
new XML file with the similar XSL algorithm. The gener-
ated XML file is transformed into another CPN graph for
visualization. Figure 6 shows an identified policy violation,
specifying that some NON-TCB domain types can write to

the type devtty t, which can be read by some TCB types.
As examples of system TCB isolation violations, Table 3 in-
cludes the identified policy violations caused by the identi-
fied information flow path from NON-TCB subjects to sys-
tem TCB subjects fsadm t and snmpd t. As examples of
TCB(d) isolation violations, Table 3 also shows all policy
violations identified for protecting sysadm xserver t,
which belongs to TCB(dsysadm).

Domain types as

TCB

Domain types as

NON-TCB

Critical type

Figure 6. Example violations.

Based on the principles proposed in Section 3, our exper-
iments also dealt with corresponding methods for resolving
the policy violations. There are policy violations ignored
because of its relationship to the filter. For example, the
policy violations caused by writing and reading devlog t
can be ignored. devlog t is used to label the log files of
syslogd t, which provides two system utilities: system
logging and kernel message trapping. devlog t is also
used to store log information rather than the information
of certain resources. Hence, even though there is an infor-
mation flow from NON-TCB subject user mozilla t to
TCB subject fsadm t through devlog t, it is a policy
violation that can be ignored.

Most policy violations need to be resolved through
policy modifications. For example, to the policy
violations caused by the read and write accesses to

Table 3. Policy violation examples.
fsadm t, snmpd t, and mount t related violations

Subject Type:Class Subject Resolution
200 network fsadm t Filter

2 mnt t:dir fsadm t Modify
hotplug t etc runtime t:file fsadm t Ignore

33 unpriv userdomain:fd use fsadm t Modify
134 initrc t:fifo file fsadm t Modify
16 removable device t:chr file fsadm t Modify
3 scsi generic device t:chr file fsadm t Modify

200 devlog t:sock file fsadm t Ignore
200 network snmpd t Filter

2 mnt t:dir snmpd t Modify
hotplug t etc runtime t:file snmpd t Ignore

200 devtty t:chr file snmpd t Modify
134 initrc t:fifo file snmpd t Modify
104 initrc devpts t:chr file snmpd t Modify
200 devlog t:sock file snmpd t Ignore

sysadm xserver t related violations
mta agent t sysadm tty device t:chr file sysadm xserver t Modify

sound t sysadm tty device t:chr file sysadm xserver t Modify
158 network sysadm xserver t Filter
10 zero device t:chr file sysadm xserver t Modify

158 devtty t: chr file sysadm xserver t Modify

devtty t, our solution is to redefine devtty t by in-
troducing user devtty t, sysadm devtty t,
staff devtty t, system devtty t, and
daemon devtty t. Corresponding policy rules are
also modified as follows:

allow user mozilla t devtty t:chr file
{read write getattr ioctl}; is changed to
allow user mozilla tuser devtty t:chr file
{read write getattr ioctl};

Also, the domain-based Clark-Wilson model is applied
to some policy violations such as network related policy
rules for violation resolution. The domain type transition
relationships between the types and network filter domains
need to be defined. We can assign the access of network
types using network filters as follows:

allow user xserver t
networkfilter t:process transition; or
allow networkfilter t node type:node
{udp send rawip send rawip recv};

5 Concluding Remarks

In this paper, we have proposed a domain-based Clark-
Willson model to analyze system security policies. In par-
ticular, our general method shows how we can identify sys-
tem TCB and domain TCBs in the context of information
domains in a system, and presents a set of rules to detect all
possible policy violations from NON-TCB to system TCB,
and between domain TCBs. We also automated the analysis
processes using CPN and visualized graph-based violations.
We adopted SELinux policy as an example to demonstrate
the functionality and effectiveness of our methodology.

When one or more policy rules are modified in a policy,
with our current approach the policy has to be re-loaded and
a complete analysis is required to check the resolution re-
sults. Developing a fully automatic and dynamic approach
for policy analysis remains as our future work, since man-
ual analysis is still needed to identify real violations after
the CPN-based analysis in our method.

References

[1] Tresys Technology APOL. Available at
http://www.tresys.com/selinux/.

[2] XML Organization. The XML C parser and toolkit of
Gnome. Available at http://xmlsoft.org/.

[3] XSB. Available at http://xsb.sourceforge.net/.
[4] XSL. Available at http://www.w3.org/TR/xsl/.
[5] K. J. Biba. Integrity consideratio for secure compuer sys-

tem. Technical report, Mitre Corp. Report TR-3153, Bed-
ford, Mass., 1977.

[6] W. E. Boebert and R. Y. Kain. A practical alternative to
hierarchical integrity policies. In Proceedings of the Eighth
National Computer Security Conference, 1985.

[7] Y.-M. Chen and Y.-W. Kao1. Information flow query and
verification for security policy of security-enhanced linux
using cpn. In International Workshop on Security (IWSEC),
2006.

[8] D. D. Clark and D. R. Wilson. A comparison of commercial
and military computer security policies. Proceedings of the
IEEE symposium on security and privacy, 1987.

[9] D. E. Denning. A lattice model of secure information flow.
Commun. ACM, 19(5):236–243, May 1976.

[10] J. Guttman, A. Herzog, and J. Ramsdell. Information flow
in operating systems: Eager formal methods. In Workshop
on Issues in the Theory of Security (WITS), 2003.

[11] T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity pro-
tection in the selinux example policy. In Proceedings of the
12th conference on USENIX Security Symposium, 2003.

[12] T. Jaeger, X. Zhang, and A. Edwards. Policy management
using access control spaces. ACM Trans. Inf. Syst. Secur.,
6(3):327–364, 2003.

[13] K. Jensen. Coloured Petri nets: basic concepts, analysis
methods and practical use, volume 3. Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[14] B. Lampson. Protection. In 5th Princeton Symposium on
Information Science and Systems, pages 437–443, 1971.
Reprinted in ACM Operating Systems Review 8(1):18–24,
1974.

[15] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and implementation of a TCG-based integrity measurement
architecture. In USENIX Security Symposium, 2004.

[16] R. S. Sandhu. Lattice-based access control models. IEEE
Computer, vol.26(no.11):9–19, 1993.

[17] B. Sarna-Starosta and S. D. Stoller. Policy analysis for
security-enhanced linux. In Proceedings of the Workshop
on Issues in the Theory of Security (WITS), 2004.

[18] S. Smalley. Configuring the selinux policy.
http://www.nsa.gov/SELinux/docs.html, 2003.

