
Botnet with Browser Extensions
Lei Liu1, Xinwen Zhang2, and Songqing Chen1,

1 George Mason University 2 Huawei Research Center
Fairfax, VA 22030 Santa Clara, CA 95050

{lliu3, sqchen}@cs.gmu.edu xinwen.zhang@huawei.com

Abstract—Botnets are responsible for many large scale orga-
nized Internet attacks today. Along with the fight between botnet
developers and defenders, the battle field has significantly evolved
from traditional centralized IRC to various new approaches,
aiming to make bots and command and control channel more and
more stealthy. In this work, through prototype implementations,
we demonstrate that browser extension is a very effective botnet
vehicle with very large installation base and the capability of
accessing rich sensitive user data in the browser. The automatic
update mechanism of browser extensions further offers a stealthy
command and control channel between bots and a botmaster.
Compared to many others, extension-based bots are more stealthy
and harder to defeat since all mainstream browser architectures
provide rich APIs for browser extensions to enrich users’
browsing experience with insufficient consideration of malicious
extensions. Via both an IE add-on and a Chrome extension, we
show that attacks like email spamming, DDoS, and password
sniffing are trivially feasible. Our study shows that an effective
scheme is imperatively demanded to mitigate such threats.

I. INTRODUCTION

Botnets are one of the biggest threats to Internet security
today. They are responsible for a majority of large scale
organized Internet attacks, such as DDoS and spamming,
credit card number and password harvesting [3].

Typically, a botnet consists of three key elements: a botmas-
ter or botmasters, hundreds to thousands of bots (compromised
computers), and a command and control channel via which
the botmaster controls the bots. Therefore, the battle between
botnet operators and defenders focuses on these aspects: a
botmaster tries its best to hide itself from being identified by
using stealthy command and control channels, and a bot tries
to hide from being detected by host-side anti-malware systems
and obtain as many privileges as possible.

In early days, a botmaster often communicates with con-
trolled bots through a centralized IRC server. This enables a
botmaster to hide its communication with bots in normal users’
legitimate traffic. Therefore, it is natural to monitor TCP port
6667 which is for IRC traffic [24] in order to detect command
and control information. Other solutions include building IRC
server scanners to detect potential botnets by identifying non-
human behavior characteristics in traffic [26], [27].

Driven by profit, botnet developers are constantly exploring
new mechanisms for command and control channels and
developing more stealthy bots that can easily infect large scale
hosts. For example, with the scrutiny of the IRC channels, bots
have been found to bind to other commonly used applications,
such as a Web browser [5], and to use other protocols, such

as HTTP [16]. Random delay can be added to command
propagation among bots in order to avoid detection [12].
Since the centralized control through a IRC server could
be easily detected and shut down, P2P based botnets have
also been developed [18], [22], [28], [31], [29]. For example,
Overbot [29] has demonstrated that P2P bots can be built on
Kademlia-based P2P networks.

In this work, we show another form of bots and command
and control channels: browser extensions and their automatic
update mechanisms implemented in mainstream browsers.
Although the concept of developing or hiding bot in a browser
extension has been mentioned recently [23], [30], to our best
knowledge, we are the first to implement this botnet model
and demonstrate its feasibility under the latest mainstream
browser extension architectures. Via implementation, we show
that potentially a malware developer can lure a user to install
a malicious extension, which, under both Internet Explorer
(IE) and Chrome’s extension architectures, can easily steal
user sensitive online data such as username/password, and
send out to external servers. Furthermore, the extension can
easily file cross-site HTTP requests to send spam emails and
launch DDoS attacks. More critically, by leveraging the built-
in automatic update mechanism implemented in IE, Mozilla,
and Chrome, a bot in the form of a browser extension can
easily obtain command and control messages from a botmaster
without triggering any anti-virus software.

Several advances of browser development have motivated
and enabled this new form of botnet. First of all, web browsers
nowadays have become a major vehicle for common people
to surf the Internet and consume web services, including e-
commerce and online banking services. Therefore, plenty of
sensitive information becomes the target for bots to harvest.

Secondly, there exist a large number of browser extensions
and plugins to enrich users’ browsing experience. For example,
they can help browsers process different types of media
contents, or automate user actions such as filling forms or
remembering password. For this purpose, browsers provide
lots of APIs for extension developers to access the core
browser resources and web pages, including DOM, cookies,
browsing history, bookmark, toolbar, etc. This opens a large
attack window for malicious extensions and plugins.

Thirdly, through our implementation, we find that although
mainstream browsers have some built-in security mechanisms
for securing extensions, they are far from sufficient to confine
the behavior of malicious extensions. In particular, in IE,
browser extensions such as menu extensions, custom toolbars,

explorer bars, and Browser Helper Objects (BHOs) share the
same process space of the browser and thus can perform any
action on the available windows and modules. A BHO even
can modify the functionality of the browser by adding binary
components. Therefore, it is very difficult to restrict the behav-
ior of a malicious extension in IE without restricting the whole
browser process’s capability, e.g., running IE in protected
mode [2]. Chrome adopts a multi-process architecture in which
extensions run in separated processes from the main browser
process. Chrome further defines individual permissions that
can be assigned to extensions, such as the permissions to inject
JavaScript into web pages, making cross-site access requests,
accessing tab and window modules, cookies, local storage,
etc. However, the design of Chrome extension security aims
to prevent malicious web pages from leveraging extensions
to obtain these permissions, and the coarse-grained permis-
sion management cannot prevent malicious extensions from
accessing sensitive data in web pages and browser modules
and making cross-site HTTP requests.

Last and most importantly, the extension update mechanism
implemented in mainstream browsers provides a very stealthy
command and control channel for extension-based botnets.
Specifically, in Chrome and Mozilla, each browser extension
includes an update_url in its metadata, with which the
browser uses to check updates, e.g., each time when the
browser starts [4], [1]. Therefore, a botmaster can easily propa-
gate attack command and victim information to a large number
of bots without being detected by anti-virus software. Such an
approach could be used to distributed bot binary as well. In
IE, a malicious add-on even can implement its own update
mechanism and download arbitrary code and data. Compared
to other approaches, a malware developer can simply develop
popular extensions with bot functions hidden. In this case, all
browsers with such extensions installed become bots, and a
botmaster can communicate with them with ease.

With implemented malicious extensions on both IE and
Chrome, we demonstrate three types of bot attacks, including
email spamming, DDoS, and password sniffing. For email
spamming, instead of sending spam emails in a burst fashion,
we implement silent and sporadic email spamming that are
harder to be detected. For DDoS, we launch DDoS attacks
in the IE add-on and the Chrome extension with the same
command file. For password sniffing, we demonstrate it is easy
to sniff login password in e-transactions with different banks.
Through these experiments, we show that such attacks could
be practicably mounted with trivial efforts. Our study shows
that we are in great need of some effective scheme to defeat
such threats.

II. SECURITY MODEL

There are many different ways to distribute browser
extension-based bots. As aforementioned, a botmaster can
develop popular extensions with normal functions that can be
discovered and downloaded by users. Although browser devel-
opment communities encourage users to download extensions
from trusted sources, e.g., in Chrome and Firefox extension

galleries, it’s usually very difficult to evaluate if an extension
is benign [8], partially due to the large number of extensions
from third-party developers and the very dynamic behavior
of the programming languages used in extensions, typically
JavaScript and HTML. On the other hand, there is no effective
mechanism yet to prevent a user from installing extensions
downloaded from other sources, e.g., embedded links from
spam emails or phishing web pages. The recent Trojan posed
as a fake Chrome extension suggests that such threats are not
fictitious [7].

Alternatively, a bot extension does not need to have ma-
licious code and functions when it is firstly installed, e.g.,
to escape from offline code analysis tools [8]. After the
installation base reaches a certain level, the developer or the
extension owner can leverage the stealthy update mechanism
to include malicious code and data into the extension, hence
tuning it to a bot whenever needed.

Therefore, in this study, we do not make a specific assump-
tion for distributing and installing bot extensions. Instead, we
evaluate how an extension can harvest sensitive information in
a browser environment, and obtain network access capability
to launch botnet attacks. We further explore how a botmaster
leverages the automatic extension update mechanism for com-
mand and control channel. We implement bot extensions on
both IE and Chrome, which represent two mainstream browser
architectures with different extension security models.

III. ATTACK CASES WITH IE ADD-ONS

Microsoft Internet Explorer (IE) is the most popular
browser. To demonstrate the threat of malicious extensions,
we have implemented an IE add-on for various attacks. An
IE add-on runs in the same process space and has the same
privileges as the IE browser. As a result, it can access resources
like all other native applications without any restriction. More
specifically, an IE BHO has the privilege to 1) access Internet,
2) access disks, 3) access browser resources such as cookies
and bookmarks, and 4) access web page objects such as all
DOM elements. IE add-ons can also implement their own
update mechanisms in an ad-hoc manner as they can access
local filesystems and network resources freely.

In this study, we have implemented a BHO named HDV for
IE8 on Windows 7 with a hardcoded update URL. This BHO
is claimed to help process video files and it periodically checks
an update server via the URL. It downloads the update files
whenever they are available. The hidden bot thus can receive
commands distributed by the botmaster with the update server
we have set.

A. Silent Email Spamming

Today botnets are notoriously responsible for most of spam
emails on the Internet [3]. A spammer controls or rents a
botnet and sends spamming commands to bots. After receiving
spamming commands, bots send spam emails to victims. To
defeat various malware detection mechanisms, a bot, instead of
keeping sending spam emails at a high rate, can be instructed

2

to send spam emails only sporadically, which makes detection
more difficult. Our implementation below works in such a way.

Because an IE add-on has full privileges to access the DOM
elements of a web page, we leverage this feature for spamming
attacks. When a user is accessing a web email system, the
user often composes email content in an edit area and sends
out when editing is done. In this case, the email content is
saved in the DOM element. Thus, for spamming attacks, right
before the email is actually sent out, HDV can modify the
DOM element by injecting some spam content to the email
content. When the victim opens the tampered email, she will
read the embedded spam content. In this implementation, we
experiment with the popular iPlanet email system [6].

Fig. 1. IE BHO for Email Spam: Step 1 – Prepare the spam content

Figure 1 shows the update file we prepare for the update
for HDV. To inject the spam content, the BHO only needs to
tamper with the DOM element that stores the email content
at a proper time. In our implementation, the email content is
saved in a TextArea element with name text. Thus, the
attack steps are as follows.

• First, the BHO retrieves the update file and reads spam
content and a specific web email URL.

• Second, the BHO waits for the given URL to be accessed
and listens to various browser events to monitor user
behaviors.

• Third, when the user sends out the email, which is usually
triggered by a click event, the BHO accesses the DOM
element with name text and appends the spam content
at the end of email.

Fig. 2. IE BHO for Email Spam: Step 2 – User sends out the email

Figure 2 shows the snapshot when the user finishes editing

and is ready to send out the email. When a user clicks a button
to send out an email, in IE, there is a click event with a button
as the source and sometimes it can further lead to a form
submission event. For the spamming purpose, HDV needs to
capture these events in order to tamper with spam content. To
capture the email sending action, HDV does the following in
our implementation.

• It keeps listening to DISPID_DOCUMENTCOMPLETE
event; when the document loading is complete, it walks
through all DOM elements recursively and registers form
events.

• When it captures a form event
DISPID_HTMLFORMELEMENTEVENTS2_ONSUBMIT
or a button event DISPID_HTMLELEMENTEVENTS2_
ONCLICK, it searches for the TextArea element with
name text and appends the spam information to the
email content.

In our implementation, in order to precisely capture email
sending moment, we have instructed HDV to listen to both click
and submission events and carefully analyze the event source.
Different web email systems may have different implementa-
tion because they could use different components for editing
and different approaches to send email. Thus other events may
need to be monitored in other systems.

Fig. 3. IE BHO for Email Spam: Step 3 – The actual received email

Figure 3 shows the actual email received. In this attack,
the spam content is appended to a legitimate email, and thus
it is difficult to filter such an email even the embedded link
is known to be malicious. On the other hand, it is not easy to
automatically split the email content into two parts and remove
the spam part eventually. Once this approach is widely taken,
we believe that existing email spam filtering systems need
enhancements to prevent it.

B. DDoS Attack

With HDV, we can also launch DDoS attacks. The DDoS
attack is implemented in a similar approach as before.

We use the update file as shown in Figure 4(a). In this
example, the DDoS information includes the victim’s URL
(www.google.com), attack start time (12:35), request
interval (1 second), and attack duration (1000 seconds).
After obtaining the victim’s URL, the extension can send

3

HTTP requests to the victim as instructed by the DDoS
command. Upon receiving the update file, HDV will parse the
command. When the specified attack time comes, it will start
to send DDoS traffic. Figure 4(b) shows the captured traffic
information of this BHO once the attack starts.

(a) Step 1: receiving DDoS command via BHO update

(b) Step 2: sending DDoS packets

Fig. 4. IE BHO for DDoS: Attack in progress

C. Password Sniffing on Chase Login

Nowadays, many Internet surfers use web browsers to
do online shopping and access online bank accounts and
financial services. Sensitive information such as bank account
and password in these transactions is often saved by the
web browser, temporarily or permanently, which makes web
browsers a major target of spyware. Recent research has shown
that many spyware are in the form of malicious browser
plugins [32]. In our experiment, the example attack is against
chaseonline.chase.com.

An IE add-on runs in the same memory space as the
browser, and it can directly read all web page DOM elements.
Therefore, one can leverage this for password sniffing trivially.

Fig. 5. IE BHO for Password Sniffing: Step1 – the command

Figure 5 shows the update file we prepare for HDV on the
update server, which specifies information about when to steal
the password: upon the access of a particular URL.

Fig. 6. IE BHO for Password Sniffing: Step2 – Password sniffing in progress

When the BHO detects that the web browser is accessing
the URL https://chaseonline.chase.com/
shown in Figure 6, it will read the password DOM
element from the web page in the method of
OnDocumentComplete(IDispatch *pDisp,
VARIANT *pvarURL) as follows:

CComQIPtr<IWebBrowser2> spTempWebBrowser = pDisp;
...
CComPtr<IDispatch> spDispDoc;
hr = m_spWebBrowser->get_Document(&spDispDoc);
...
CComPtr<IHTMLElementCollection> spAll;
hr = pDocument->get_all(&spAll);
hr = spAll->item(svarItemIndex,

svarEmpty, &spdispAll);
CComQIPtr<IHTMLElement> spElement = spdispAll;
if (hr == S_OK && pwId == "Password")
{

BSTR innerText;
spElement->get_innerText(&innerText);

}

After reading the password, HDV can save it to local disk or
send it out with any networking protocol. Usually the password
sniffing attack only starts when the user finishes all input
and submits data to a server. In most cases a form is used
to input and submit the account information. Thus the BHO
can use a similar mechanism as that in the spamming attack
to monitor form submission events. When the form data is
finally submitted, the account and password information is
read stealthily.

IV. ATTACK CASES WITH CHROME EXTENSIONS

Chrome is relatively new. It uses a multi-process archi-
tecture, where a single browser kernel process runs in the
privileged mode to access platform and system resources, on
behalf of multiple renderer processes. Each renderer process
corresponds to a web page running as a tab. A renderer process
runs in a sandboxed environment so it cannot directly access
system resources such as the filesystem and the network. It
can only send such requests to the browser kernel process.

4

(a) Step 1: receiving spam content via extension update (b) Step 2: passively monitoring user’s login with Bang! extension

(c) Step 3: automatically sending out the spam email (d) Step 4: received spam email

Fig. 7. Chrome Extension for Email Spam

A Chrome extension usually includes an extension core and
one or more content scripts. A content script is written in
JavaScript that can be injected into a web page when the
page is loaded. It then runs in the renderer process space to
access the DOM tree. The extension core includes one or more
background web pages written in HTML and JavaScript, and
runs in a separate renderer process. A content script has the
least privileges so it cannot access any object out of its renderer
process space and has to communicate with the extension core
via Chrome’s inter-process communication (IPC). While the
extension core contains the bulk of the extension privileges,
it runs in a sandboxed environment. Therefore, it cannot
access resources of the host platform and the network directly,
and can only communicate with external web resources via
XMLHttpRequest. Although binary code can be included
in a Chrome extension, it can be run in a sandboxed plugin
process; therefore we focus on JavaScript and HTML based
extensions only in our study.

Different from IE, Chrome defines a set of of permissions
for extensions, such as the permission to inject JavaScript into
web pages, make cross-site access requests, and access tab and
window modules, cookies, local storage. The desired permis-
sions of an extension are specified in a manifest.json
file by its developer, and prompted to the user when it is

installed. The design of Chrome extension architecture is based
on the assumption that extensions are benign-but-buggy; that
is, the goal of the security architecture is to protect extensions
from being exploited by malicious web pages and control the
potential damage done to the browser kernel process if an
extension is exploited.

As Chrome is gaining increasingly popularity, we further
develop a Chrome extension Bang! that is again claimed for
video processing but includes bot functions. We demonstrate
that even with very normal permission specifications, a mali-
cious Chrome extension can conduct typical botnet attacks.

A Chrome browser checks the update information of an
extension from embedded update_url every a few hours.
If an update is available, the browser downloads the update and
updates the extension. Similar to IE, we utilize this mechanism
to distribute bot commands.

A. Sporadic Email Spamming

To send out spam emails, Bang! has the following permis-
sion specification:
"permissions": [

"tabs", "http://*/*", "https://*/*"
]

The http://*/* and https://*/* permissions are
very common in popular extensions. Among the top 30 popular

5

extensions from Chrome extension galley, 19 extensions (out
of 30) have been granted such permissions. These permissions
enable Bang! to send HTTP requests to all destinations.

With such permissions for Bang!, we store the spam
information in a file called spam.txt under the extension
directory on our update server. Every time when the extension
is activated, it will check and read this file and then obtain
spam information including victims’ email addresses and spam
content.

Figure 7 shows the email spam attack we have imple-
mented via this extension. Basically, after acquiring the spam
information that is shown in Figure 7(a), to send out spam
emails, the extension still needs additional information such
as an email account to login into a mail server. There are
different ways to achieve the access to an email account. For
example, this information can be saved in spam.txt that has
been provided by the botmaster, or the spammer may have
registered some free email accounts.

In our example, the Chrome extension does not need email
account information beforehand. Instead, it utilizes the user’s
legitimate account when the user logins into her email system.
This approach can evade detection more effectively, because
spam emails are sent out when the user logins into her web
email system as shown in Figure 7(b). In the figure, the
extension Bang! is our bot extension to monitor the user
login. As the extension is granted the privilege of "tabs", it
listens to the update notification of the tabs with the method
of chrome.tabs.onUpdated.addListener(). When
the user logins into a web email system, the credential is
represented by the session id (sid) and rewritten to the URL
of the subsequent HTTP requests. As the bot extension has
the tab permission, it can listen to the tab update notice. With
this credential information, an HTTP request to the iPlanet
email server is authorized to take any action on behalf of the
user, instead of sending the user name and password in each
transaction. The following code snippet shows the skeleton
of obtaining the sid of a login session and sending the spam
email to the victim email address.

var begin_index = tab.url.indexOf(’sid=’);
if(begin_index >= 0)
{

var end_index = tab.url.indexOf(’&’,
begin_index+4);
var sid = tab.url.substring(begin_index,
end_index);

var mailhttp = new XMLHttpRequest();
var mailurl = tab.url.substring(0,

tab.url.indexOf(’?’));
var victim = ***%40***;
var subject = "RE: Balenciaga";
var spam = "Dear Sir/Madam ...";
vvar params = sid + "&subject=" + subject +

"&to=" + victim + "&cc=&bcc=&text=" + spam +
"&html=&mbox=INBOX&uid=&parts=&answer=false
&attachments=©=Sent&smtp=true&draft=&priority=1
&xpriority=3&receipt=&remove=false&replyto=
&tzoffset=4&security=false&vcard=";

mailhttp.open("POST", mailurl, true);
mailhttp.setRequestHeader("Content-type",

"application/x-www-form-urlencoded");
mailhttp.setRequestHeader("Content-length",

params.length);
mailhttp.setRequestHeader("Connection", "close");
mailhttp.send(params);
}

Figure 7(c) shows the sent email in the sent box of the
user. In this example, the extension sends out the spam email
with this mechanism through the mail server with the user’s
legitimate account. Figure 7(d) shows the received spam email
in the victim account. In this email spamming attack, our
extension sends out the HTTP requests, which in turn triggers
the web server to send spam emails to the victim. As the
victim email address can be embedded in the extension (as in
spam.txt), the bot can always obtain new victim emails by
updating the extension from the botnet master’s server, which
is allowed by default in Chrome ecosystem.

B. DDoS Attack with the Same Update File

Fig. 8. Chrome Extension for DDoS Attacks

With a very similar mechanism, our extension can command
its bots to launch DDoS attacks against a victim server. We use
the same update file as shown in Figure 4(a) as the command
information that is obtained from an extension update. Figure 8
shows the packet level traffic after the DDoS is initiated.

C. Password Sniffing on Citi Bank Login

In order to access sensitive information in the Chrome
browser, our extension needs to access the DOM tree of a web
page. Therefore it needs the cross-site permission to insert the
content script when a web page is rendered. The following
manifest shows the permission specification.

"content_scripts": [
{

"matches": ["https://online.citibank.com/*"],
"js": ["jquery.js", "myscript.js"]

}

6

(a) Step 1: receiving command from the botmaster via extension update

(b) Step 2: passively monitoring the user login (c) Step 3: emailing the password to the botmaster

Fig. 9. Chrome Extension for Password Sniffing

],
"permissions": [

"tabs", "https://online.citibank.com/*"
],
...

Figure 9(a) shows the command the extension re-
ceived. The command instructs the extension to steal
the password and send it to the designated email ad-
dress. With the above specification, when the user
browses the page of online.citibank.com, the con-
tent script is injected into the target web page, i.e.,
https://online.citibank.com, and the JavaScript
has full privileges to access all DOM elements including the
form with user name and password. It reads these values
when the user inputs her password as shown in Figure 9(b).
Figure 9(c) shows that the password information is success-
fully sent to the designated email address. Note the content
script can also send sensitive information to the extension core,
which in turn sends the data to the outside network.

V. DISCUSSION

In practice, a botnet may consist of different types of bots,
some bots could be IE add-ons and some bots could be Chrome
extensions. The botmaster is capable of using the automatic
update mechanism to prepare and distribute various command
and control information and deliver to all bots. For example,
even the same update file could be used for both the IE add-on
and the Chrome extension as we have demonstrated.

IE and Chrome use different architectures. It is difficult to
argue the trade-off between single-process architectures and
multi-process architectures for browsers, considering many
design factors such as performance, parallelization, and se-
curity. For security and reliability, we tend to believe that

a multi-process architecture such as Chrome has more ad-
vantages. However, the current Chrome extension security
model assumes all extensions are benign and only target at
preventing malicious web pages. We believe it is far from
sufficient to defend extension-based botnets, especially with
very coarse-grained permission management. On protection
side, we believe efforts are demanded in the following aspects.

First of all, while the permission specification for an ex-
tension is good to confine the behavior of the extension,
we believe more fine-grained permission management and
enforcement in browsers is mandatory.

The default extension update mechanism should be im-
proved to make it more user-aware. However, research efforts
are needed to make the trade-off between users’ interferences
and friendly usage. Alternatively, taint analysis or code verifi-
cation tools can be used to study every update file downloaded
from the network. The downside, however, is the significant
cost, as the entire update package needs to be tracked and
software updates may be very frequent. Thus, more research
is required in this aspect.

Offloading expensive taint analysis and software verification
operations to cloud can be another option for a regular use.
With the cloud computing facilities, a user may submit the
downloaded software to some software verification service
on a cloud to validate its functions through static and/or
dynamic analysis, and uses it only after it has been thoroughly
analyzed. On the other hand, a software credit system could
be established to let users score the security perspective of
software. The popular online social networks can also help
in this regard. However, this approach may take a while to
be effective as it purely relies on common user’s efforts for
validation. In addition, such a system could also be attacked
by malware developers.

7

VI. RELATED WORK

With the increasing amount of bots and botnets on the Inter-
net, lots of research has been conducted in understanding and
defending botnets. For example, Barford et al. have analyzed
in-depth bot software source code [10] and provided insights
from different perspectives. Furthermore, a Botnet Evaluation
Environment (BEE) is constructed for understanding botnet
activities [9]. Recently, case studies have been performed
to analyze spam bot [13], HTTP based Clickbot.A [16],
and P2P based Kademlia-based Trojan.Peacomm bot [18].
Potential mechanisms for P2P based botnets have also been
studied in [31] with some defense mechanisms.

On the defense side, since traditionally botnets are con-
trolled through IRC by a botmaster, one natural detection
method is to monitor the standard TCP port 6667 for IRC
traffic [24]. Rishi has been proposed to identify IRC based bots
through IRC nicknames [17]. Identifying non-human behavior
characteristics in traffic and building IRC server scanners to
identify potential botnets have also been studied [26], [27],
while authors in [14] measured the elapsed time before an
un-patched system was infected by a botnet. Basic misuse
detection system [20] and IRC traces [11] have also been used
and analyzed for botnet detection. To defend against DDoS
attacks launched through botnets, Turing tests are designed so
that users must solve to access over-taxed resources [21].

The arms race between the malware developers and defend-
ers is endless. It is not surprising that botnets continuously
adopt new technologies like web and P2P, to make them more
and more stealthy. HTTP based botnets have been studied
in [16]. In [18], [31], [22], P2P botnets are analyzed. While
many detection schemes [30], [19], [15], [25], [33] have been
developed and are continuously being developed, we believe
that the key to the shutdown of botnets is the discovery of
their command and control channels.

VII. CONCLUSION

Botnet developers are constantly improving their develop-
ment in order to produce more and more stealthy malware
for all kinds of attacks to make profit. While various ap-
proaches have been studied or used for botnet attacks, the
risk of exploiting widely used browser extensions and their
automatic browser extension update mechanisms for command
and control channel has not been practically investigated. In
this study, we show that it is not difficult to construct stealthy
botnet via browser extensions. Given the large user base of
browser extensions, it is imperative to devise an effective
prevention scheme to mitigate such risks.

REFERENCES

[1] Chrome extension autoupdating. http://code.google.com/chrome/
extensions/autoupdate.html.

[2] Internet explorer protected mode. http://msdn.microsoft.com/en-us/
library/bb250462(v=vs.85).aspx.

[3] Most spam comes from just six botnets, http://en.wikipedia.org/wiki/
Usage share of web browsers.

[4] Mozilla extension versioning, update and compatibility.
https://developer.mozilla.org/en/Extension Versioning, Update and
Compatibility.

[5] One of the most prolific pieces of windows mal-
ware has expired. http://news.softpedia.com/news/
One-of-the-Most-Prolific-Piece-of-Windows-Malware-Has-Expired-51466.
shtml.

[6] Sun software product map,http://www.oracle.com/us/sun/
sun-products-map-075562.html.

[7] Trojan poses as fake google chrome extension.
http://www.bitdefender.com/NW1487-en–Trojan-Poses-as-Fake-Google-
Chrome-Extension.html.

[8] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett. Vex:
Vetting browser extensions for security vulnerabilities. In Proc. of
USENIX Security, 2010.

[9] P. Barford and M. Blodgett. Toward botnet mesocosms. In Proc. of the
First Workshop on Hot Topics in Understanding Botnets, 2007.

[10] P. Barford and V. Yagneswaran. An inside look at botnets, 2006.
[11] D. Brumely. Tracking hackers on irc. http://www.doomdead.com/texts/

ircmirc/TrackingHackersonIRC.htm, 2003.
[12] Z. Chen, C. Chen, and Q. Wang. Delay-tolerant botnets. In Proceedings

of IEEE SecureCPN, 2009.
[13] K. Chiang and L. Lloyd. A case study of the rustock rootkit and spam

bot. In Proc. of the First Workshop on Hot Topics in Understanding
Botnets, 2007.

[14] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup:
Unsterstanding, detecting, and disrupting botnets. In Proc. of the first
Workshop of Steps to Reducing Unwanted Traffic on the Internet, 2005.

[15] W. Cui, R. H. Katz, and W. Tan. Binder: An extrusion-based break-in
detector for personal computers. In Proceedings of USENIX, 2005.

[16] N. Daswani, M. Stoppelman, the Google Click Quality, and Security
Teams. The anatomy of clickbot.a. In Proceedings of the First Workshop
on Hot Topics in Understanding Botnets, Cambridge, MA, April 2007.

[17] J. Goebel and T. Holz. Rishi: Identify bot contaminated hosts by irc
nickname evaluation. In Proc. of the First Workshop on Hot Topics in
Understanding Botnets, 2007.

[18] J. Grizzard, V. Sharma, C. Nunnery, B. Kang, and D. Dagon. Peer-to-
peer botnets: Overview and case study. In Proc. of the First Workshop
on Hot Topics in Understanding Botnets, 2007.

[19] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter:
Detecting malware infection through ids-driven dialog correlation. In
Proc. USENIX Security, 2007.

[20] C. Hanna. Using snort to detect rogue irc bot programs. Technical
report, October 2004.

[21] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale: Surviving
organized ddos attacks that mimic flash crowds. In Proc. of NSDI, 2005.

[22] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet detection
and characterization. In Proc. of the First Workshop on Hot Topics in
Understanding Botnets, 2007.

[23] Kristjan Krips. The security analysis of browser extensions.
http://comserv.cs.ut.ee/forms/ati report/downloader.php?file=
43f05a1a6fa7981ca3422bc3d73b66b8711bc006.

[24] J. Kristoff. Botnets. In The 32nd Meeting of the North American Network
Operators Group, October 2004.

[25] A. Moshchuk, T. Bragin, D. Deville, S. Gribble, and H. Levy. Spyproxy:
Execution-based detection of malicious web content. In Proc. USENIX
Security, 2007.

[26] The Honeynet Project. Know your enemy: Tracking botnets. http://
www.honeynet.org/papers/bots, March 2005.

[27] Stephane Racine. Analysis of internet relay chat usage by ddos zombies,
April 2004.

[28] R. Schoof and R. Koning. Detecting peer-to-peer botnets. http://staff.
science.uva.nl/∼delaat/sne-2006-2007/p17/report.pdf, Feburary 2007.

[29] G. Starnberger, C. Kruegel, and E. Kirda. Overbot: a botnet protocol
based on kademlia. In Proceedings of SecureComm, 2008.

[30] E. Stinson and J. C. Mitchell. Characterizing the remote control behavior
of bots. In Proceedings of DIMVA, 2007.

[31] P. Wang, S. Sparks, and C. Zou. An advanced hybrid peer-to-peer botnet.
In Proceedings of the First Workshop on Hot Topics in Understanding
Botnets, Cambridge, MA, April 2007.

[32] Y. Wang, R. Roussev, C. Verbowski, A. Johnson, M. Wu, Y. Huang, and
S. Kuo. Gatekeeper: Monitoring auto-start extensibility points (aseps)
for spyware management. In Proc. of LISA, 2004.

[33] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:
Capturing system-wide information flow for malware detection and
analysis. In Proc ACM CCS, 2007.

8

