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Abstract. Remote attestation is an essential feature of Trusted Com-
puting that allows a challenger to verify the trustworthiness of a tar-
get platform. Existing approaches towards remote attestation are largely
static or too restrictive. In this paper, we present a new paradigm in re-
mote attestation that leverages recent advancements in intrusion detec-
tion systems. This new approach allows the modeling of an application’s
behavior through stochastic models of machine learning. We present the
idea of using sequences of system calls as a metric for our stochastic
models to predict the trustworthiness of a target application. This new
remote attestation technique enables detection of unknown and zero-day
malware as opposed to the known-good and known-bad classification
currently being used. We provide the details of challenges faced in the
implementation of this new paradigm and present empirical evidence
supporting the effectiveness of our approach.

1 Introduction

One of the main objectives of Trusted Computing (TC) is to create a system
for the establishment of trust on a remote platform. This concept is termed
as remote attestation. The most popular and well adopted technique for this
purpose is the Integrity Measurement Architecture (IMA) [1]. It allows a target
platform to report the hashes of all loaded executables to an authorized remote
challenger. The challenger can verify that all of the loaded executables were in
fact benign, by comparing the hashes against known-good ones. However, this
technique does not cater to the problems posed by execution of the known-good
code in a malicious way. Buffer overflow attacks and, in recent times, return-
oriented programming [2] are clear examples of such issues. It has therefore been
accepted widely [3—7] that dynamic behavior attestation should be investigated
as the means of establishing trust on a platform.

In traditional security research, some of the most successful behavior mea-
surement techniques revolve around the concept of sequences of system calls
originating from an application [8-10]. In the context of remote attestation,
measurement of behavior through system calls has been studied previously in



[3]. However, in our opinion, there are limitations to this approach that keep it
from being deployed in real-world scenarios. For one, it requires the challenger to
statically analyze the source code of the target application (or a disassembly of
the executable if the source is unavailable). This is a complex process and might
lead to a resistance from the mainstream security audience. The magnitude of
this problem increases significantly when we consider the large number of ap-
plications that typically execute on a platform and interact with each other in
intricate patterns. Secondly, this technique requires the reporting of all system
calls to the challenger — a rather tall order considering the huge number of calls
made by a typical application in a short span of time [11].

We argue that the problem of deciding upon the trustworthiness of an appli-
cation has been thoroughly studied in related fields such as intrusion detection
systems (IDS). Some of the techniques of IDS seem to be useful for remote attesta-
tion. However, due to the differences in their protection goals, directly applying
intrusion detection techniques for remote attestation is not viable. There are
several facets of this argument:

1. In an IDS, analysis is done locally and can thus operate on real-time data.
In remote attestation, on the other hand, the analysis has to be performed
remotely. This places a restriction on the amount of information that can be
transmitted over the network in an acceptable time window and thus used
for the purpose of attestation.!

2. In order to be able to trust the validation performed by an IDS on the target
platform, the 1DS will have to be a part of the trusted computing base. This
is infeasible due to the size and complexity of typical IDS code.

3. Remote attestation has the added advantage of being supported by crypto-
graphic hardware. This can be leveraged to add strength to the measurement
engine. Another way of looking at this is that 1DS techniques employ software-
based solutions alone. It has been shown that it is not possible to provide
tamper-proof security without the use of hardware-based solutions [12].

4. 1Ds are more concerned with protecting local resources while attestation aims
at verifying the integrity of the remote platform before releasing sensitive
data to or initiating communication with it.

In this paper, we present the idea of using the techniques developed for intru-
sion detection to facilitate dynamic behavior attestation of a remote platform.
In particular, we discuss how sequences of system calls can be modeled through
stochastic machine learning techniques to decide upon the behavior of a tar-
get application executing on a remote platform. The limitations of having to
measure the system calls on a remote platform and reporting them to the chal-
lenger in an efficient and trustworthy manner are discussed at length. Finally,
we present the details of our experimental results to show that the new remote
attestation technique is not only feasible but also very effective in identifying
malicious behavior on a target platform.

1 It also leads to privacy concerns but we refrain from commenting on those issues
here.



2 Background

2.1 Dynamic Remote Attestation

Several approaches have been proposed in the past to cater to problems caused
by the static nature of IMA [1]. Loscocco et al. [4] proposed measuring kernel
data structures at runtime for attestation purposes. These structures are to be
compared with those generated by debug kernels running in a pristine environ-
ment to decide upon the trustworthiness of the target platform. PRIMA [13] con-
sidered information flows between the target application and other executables
on the system to render some dynamism in the remote attestation paradigm.
Model-based Behavioral Attestation [6] and subsequent efforts [14] have used
the concept of behavior measurement to verify the trustworthiness of a target
application based on the stakeholder’s policies. Davi et al. [5] have used taint
analysis and dynamic tracing to address the issues of static load-time measure-
ment. Similarly, Gu et al. [3,15] have proposed the use of measuring the set
of system calls made by a target application at runtime and comparing them
with the benchmark. The benchmark is obtained by statically analyzing the calls
made by a pristine copy of the application — either through source code analysis
or a disassembly process in case the source is not available.

All of these approaches are too inflexible to be operable in heterogeneous
environments since even the slightest change to the target environment or ap-
plication can cause the target to be tagged as being malicious. We believe that
the approach presented by Gu et al. [3] has a lot of potential but has several
limitations:

1. Reporting all system calls made by a process to a remote platform is a serious
bottleneck. The number of calls made by a typical mail server, for example,
may easily reach several million within the span of a few days’ uptime [11].

2. The sequence of calls made at runtime can be significantly different from
the order expected as a result of code analysis. This can lead to a large false
positive rate when identifying malicious behavior of an application.

3. The approach presented by Gu et al. does not consider levels of trustworthi-
ness of an application. A target is either trusted or untrusted with no ‘gray
areas’ in between.

We believe that the use of stochastic models developed for intrusion detection
systems can provide a foundation for better, more dynamic and flexible remote
attestation techniques. Below, we discuss some of the relevant aspects of these
systems.

2.2 Stochastic Models for Intrusion Detection Systems

Intrusion detection is a highly mature field of research and has seen many sim-
ple to complex techniques. Intrusion detection systems (IDs) fall in two major
categories: host-based and network-based. In this paper, we focus on host-based



intrusion detection systems as our focus is on identifying anomalies in target plat-
forms themselves rather than on the attacks made on the systems. Within host-
based IDs, two major approaches are signature-based and anomaly-based [16].
Signature-based systems are akin to IMA and use hashes of executables to detect
malicious applications. These systems are easier to build and are very accurate
in identifying known malicious code [17]. However, detecting zero-day malware
is virtually impossible with these systems [16]. To detect malicious behavior of
executables, anomaly-based IDS were proposed. These build profiles of ‘good’
and ‘bad’ behavior and judge unknown executables based on their patterns of
execution.

One of the most significant efforts at anomaly-based intrusion detection is
Sequence Time Delay Embedding or STIDE [8]. It defines the behavior of an appli-
cation based on the sequence of system calls it makes. Subsets of these sequences
are defined using predetermined, fixed-width windows. Calls within individual
windows are used as patterns for behavior matching. Unknown code is measured
against these windows to decide whether it is acting suspiciously or not. Since
the inception and successful demonstration of STIDE, several techniques [9, 10,
18-20] have built on this concept to enhance anomaly-based intrusion detection.

For our purposes, we use the most recent (and empirically successful) work
proposed by Mehdi et al. [9] We explain our rationale for this choice in Section 3.
Here, we cover the basics of this technique as it is at the heart of our proposed ar-
chitecture. Mehdi et al. propose the concept of a hypergram, which is a structure
capable of storing system calls made by an executable. It captures information
such as the sequence in which the calls were made as well as the distance (spatial
difference, as opposed to temporal) between elements of the sequence. Formally,
a hypergram is a point in a hyperspace of n dimensions, each representing a
specific system call. The occurrence of a system call causes the hypergram to
move along the dimension associated with that call. The exact semantics of the
move are defined as follows. For each program, the hypergram is initialized to
lie at the origin of the hypercube of n dimensions, each representing a critical
system call that needs to be measured. Afterwards, on the occurrence of each
system call 7:

1. The hypergram is diminished along all dimensions by a factor of §;. The new
position of the hypergram ~ along dimension ¢ at time instance ¢ is given by:
V= fyf_l x 0;. A small value of § for a system call ensures that calls made
in the distant past eventually lose their ability to define the behavior. Calls
made in the recent past have more effect on the behavior.

2. The hypergram is moved along the dimension . The position is updated as:

’yf/ = vita;* ﬂﬁ:# where « is the addition factor and (3 is the sloping factor.

The value of the addition factor defines the effect that each occurrence of the

system call has on the hypergram and 3 ensures that extremely large values

of v along one dimension do not skew the data unnecessarily if a particular
system call is made extensively by a program.

Finally, after each move, the values of hypergrams, along all dimensions, are
rounded off to the nearest integer. In our experiments, we did not see a reason



to enforce this last step (cf. Section 4). Using these semantics, a hypergram is
capable of storing the complete history of the system call sequence leading up
to it.

We argue that the naive approach of using this technique directly for remote
attestation is not a feasible solution. Our reasons are three-fold: (1) The number
of updations to the hypergram is the same as the number of system calls made
by an application. As has been argued before, this is a rather large number and
reporting the log of such a huge number of updations is simply not possible in the
context of remote attestation. (2) This approach uses an in-execution classifier
that produces results in real-time. Remote attestation, by nature, requires a post-
execution analysis and thus would require a difficult classification approach. (3)
In the work of Mehdi et al. [9], there is no mechanism of reporting the hypergrams
to a remote party in a trustworthy manner. We therefore believe that in order
to leverage this model for the purposes of remote attestation, we would need to
come up with an architecture that can address all three of these issues.

3 Leveraging Stochastic Models for Remote Attestation

In order to cater to the problems presented in the previous section, we propose
the introduction of stochastic models in the area of remote attestation to enable
detection of unknown and zero-day malware as opposed to the known-good and
known-bad classification currently being used. Specifically, we use the constructs
of intrusion detection through hypergrams in collaboration with the reporting
facilities provided by the Trusted Platform Module (TPM) [21]. Our reasons for
choosing this specific intrusion detection technique are as follows:

1. Hypergrams allow the aggregation of a large number of system calls, captur-
ing sequences of these calls and the displacement between each call;

2. they have been shown to be highly accurate in the area of local 1DS; and

3. they provide a flexible model that can be tailored to a specific scenario by
tweaking the parameters of the model.

Figure 1 shows the proposed architecture in detail. There are two aspects
of this architecture: 1) Trusted measurement and reporting mechanisms at the
target platform and 2) verification mechanisms at the challenger end.

3.1 Hypergram Measurement and Reporting

Chain-of-trust: In order to establish the chain of trust from the Trusted Plat-
form Module (TPM) to our logging mechanism, we use the constructs of TCG. The
chain-of-trust up to the bootloader is established as per TCG specifications [21].
Moreover, the trustworthiness of the kernel is established through trusted grub
— a trusted boot loader that measures the kernel and extends its hash into a
PCR before passing control onto it. The kernel itself does not have to have IMA
enabled for our architecture to work. In-kernel behavior measurement is done
through a different approach described below.
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Fig. 1. Behavior Attestation through Stochastic Models

Hypergram Measurement: Capturing critical system calls made by an
executable is a fairly trivial task. We implemented this logging mechanism in
a fashion similar to IMA by creating a custom Linux Security Module (LsM) —
labeled scbm (for system call behavior monitor). An LsM [22] allows the execution
of custom functions in the kernel space on the execution of certain kernel opera-
tions. The purpose is to allow a pluggable architecture for defining access control
models and policies. The LsM is notified whenever system calls are made. In our
implementation, however, we are only interested in logging certain system calls
that we identified as being critical (see Section 4.1). For example, the system call
for mapping files to memory, mmap, is recorded through the file_mmap hook, file
operations such as open, close, read and write through inode_permission and
file_permission, socket operations through socket_connect etc.?

In each of these routines, we call a measurement function that calculates the
values of the hypergram associated with the originating executable (as defined
in Section 2.2). The new hypergram value can be retrieved from scbm/scbm_-
hypergram_log_lv file in the securityfs. Moreover, the hash computed over this
new hypergram value is extended into PCR-11.

Hypergram Reporting: The task of reporting the measured hypergrams is
far from trivial. As mentioned in Section 2.1, the typical syscall trace can easily
reach up to millions of lines. Transmitting such a huge log over a network readily
becomes a bottleneck for any remote attestation technique. On the other hand,
if the complete log is not reported, the value of the PCR cannot be verified simply
from the PCR quote structure. This is a problem not only for our architecture
but also for any technique that aims to report the syscall trace to a challenger.
However, the novelty of our approach is that it utilizes hypergrams that, by
definition, incorporate the complete history of the syscall trace leading up to
them. Therefore, in our scenario, it is possible to come up with a solution to this
dilemma.

For this purpose, we introduce the concept of local verification. When an at-
testation request is received, a piece of trusted code within kernel space performs

2 We refer the reader to the source of security_operations structure in the linux
kernel at include/linux/security.h for the details of these and other hooks.



local verification of the hypergram log created during the measurement process.
We call this log hypergram log for local verification (H)). Hashes of entries in
H), are aggregated in the same manner as the pcr_extend operation of the TPM.
The aggregated value is compared with the expected value retrieved from the
pcr_quote operation over PCR-11 to ensure that none of the entries in H) has
been tampered with. This process is termed as local verification of H.

Upon successful verification, the final values of hypergrams associated with
each process are stored in another log file termed as hypergram log for remote
verification (H,). With each entry in H,, PCR-12 is extended with the hash of
the entry. Thus, H, contains one entry per process thus significantly reducing
the size of the log. Moreover, since the final hypergram value is a function of the
complete history of the system calls made by that process, no information loss
occurs as a result of this operation.

Finally, H, and pcr_quote over PCR-12 is returned to the challenger where it
can be verified and validated as described below.

3.2 Verification through Stochastic Models

Once the hypergram log (H,) and PCR quote are received at the challenger
end, they must be verified in order to establish the trustworthiness of the target
application(s). The PCR verification procedure is straight-forward. The aggregate
expected value of the PCR is compared with the value returned as pcr_quote. If
the values match, H, can be considered trustworthy and can be used to measure
the trustworthiness of the target application.

For the establishment of the trustworthiness of the behavior, we utilize stochas-
tic models of machine learning techniques. For this purpose, as per the general
practice, the known-good and known-bad hypergram values must first be col-
lected. This data is called training data and was collected using the same syscall
logging mechanism described in the previous section. We collected benign hyper-
grams from applications running in a pristine, sandboxed environment. The col-
lection of malicious hypergrams is a little more cumbersome as the environment
has to be reset to a pristine state after the dataset for each malicious application
has been collected. Several malicious executables can be found on popular virus
databases such as VX Heavens [23]. Moreover, a test set has to be collected
in the same manner in order to test the effectiveness of the stochastic model
being used. Once the malicious and benign behaviors have been modeled, the
hypergrams received from the target platform can be classified as either benign
or malicious based on the model (or classifier) being used for the classification.

Our proposed architecture is model-neutral in that no model-specific trans-
formation is performed at the target platform. All model-specific operations are
carried out at the challenger side. Therefore, the classifier used by each challenger
can be different and can be upgraded without having to modify the target archi-
tecture. Notice that no machine learning algorithms have been utilized on the
target side. Only the hypergram-based IDS technique is used for measuring the
hypergrams. The machine learning part of our proposed architecture operates
on the challenger end.



Currently, we have investigated several models of machine learning for the
purpose of this classification. These include naive bayes [24], bayesian networks [25],
J48 [26], and OR. Results achieved by these models are discussed in Section 4.

Here, we would like to risk belaboring the obvious by mentioning why this
classification cannot be carried out at the target platform thus removing the need
for trustworthy reporting of the hypergrams. If such an architecture is used, the
complete classification system would have to reside within each of the target
platforms. This would not only increase the size of the trusted computing base
significantly, but also add excessively to the administrative overhead of deploying
and maintaining the attestation system.

4 Evaluation

4.1 Experiment Setup

In order to ensure that our results can be reproduced, we have utilized the traces
of system calls available in the datasets provided by uNM [11]. For the sake of
simplicity, we created a tool — HypergramGenerator (hGen) — for generating
hypergrams from the traces of these system calls. hGen is capable of taking
STIDE [8] input format system call sequences and a mapping file and generating
hypergrams. It allows the user to specify the critical system calls as well as to set
the §, a and 3 parameters . The hypergrams produced by hGen are used to train
the stochastic model based on different machine learning techniques [24-27].

The hGen tool was used to generate training data including both malicious
and benign behaviors from the UNM datasets for inetd, ps and login. As our
workbench, we used the popular Wikato Environment for Knowledge Analysis
(WEKA) tool [28]. Approximately 20% of the data was used for training and the
rest was used as a testset. Similar to [9], we found out that including the scarcely
used system calls in the dataset significantly reduced the accuracy of the model.
We therefore used the hGen tool to find the most-oft used system calls and then
identified the critical calls from among these.

The experiments were run using manually configured values of the three
model parameters J, @ and § as we were unable to use the reasoning proposed
by [9] to automate the process. We then utilized the different machine learning
algorithms to come up with the best possible stochastic model for our datasets.

4.2 Evaluation Criteria

To measure the effectiveness of our approach, we use the widely-adopted concept
of Receiver Operating Characteristics (ROC) curves [29]. An ROC curve is a line
graph of true positives (on the y-axis) against false positives (on the x-axis) for
different threshold values. The Area Under the Curve (AuC) of the ROC is a
measure of how well the model performs. The higher the AUC, the more accurate
is the model.> We calculated the AUC for each of the models we applied on the
hypergrams. The results of our experiments follow.

3 See [30] for the latest details on the ROC curve-based model evaluation.
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Naive Bayes 59.14
OR 62.19
J48 78.65
BayesNet (with Genetic Search)|85.72
In-execution classifier [9] 87.85

Table 1. Comparison of AUCs for different learning models

4.3 Results

Figure 2 shows the ROC curves for the different machine learning algorithms
we used for attestation purposes i.e. naive bayes, bayesian networks, OR and
J48. Table 1 shows the AUC values for the different classifiers. Naive bayes and
OR performed quiet poorly in this scenario. J48 (the WEKA implementation of
C4.5 algorithm) provided better results than these two. Using BayesNet, we
were able to achieve the AuC of 85.72. Note that we do not have access to the
in-execution classifier developed by Mehdi et al. [9] and the values under that
column are taken from their original paper. Note also that we have not been able
to reproduce the AUC level achieved by Mehdi et al. However, we are operating
in a different scenario under different constraints. Also, we believe that this is
the start of a new approach in remote attestation and is likely to get better as
more and more efforts are put in this area.

5 Discussion

One of the most important points to note in our technique is that we have pro-
vided a rather limited training set to our machine learning models. One might
argue that, as with traditional remote attestation techniques, we are only pro-
viding known-good and known-bad hypergram values to our attestation module.
The number of possible hypergrams that might be generated as a result of exe-
cution on the target platform is potentially infinite. Despite this fact, the results
obtained are promising. The reason is exactly our rationale for choosing machine



learning techniques for attestation. Machine learning models are capable of op-
erating on limited and noisy data [27, Chapter 2]. They are frequently used to
predict unknown information based on incomplete input knowledge. Here, we
have leveraged this strength of machine learning models to cater to the fact that
it is impossible to predict all paths of execution for any target application. Of
course, the more accurate information we have about known-good and known-
bad hypergrams (i.e. the larger the training and test data), the more accurate
our model will be.

Secondly, in this paper, we have only discussed the behavior of a single appli-
cation and, by extension, define the trustworthiness of the target platform. The
trustworthiness of the platform is assumed to be synonymous with the trustwor-
thiness of all applications executing on the platform. We have not modeled the
behavior of the platform as a whole. This might form a potentially useful future
direction in this line of research.

Third, as discussed in Section 2.1, none of the existing attestation techniques
have the ability to predict levels of trustworthiness. A target is either trustwor-
thy or it is not. The technique proposed in this paper, in its current form has
the same limitation. However, this is due to the fact that typical machine learn-
ing algorithms apply a threshold for classification. By removing this threshold
application step, we may be able to output the level of trustworthiness rather
than the class. This would require the development of a new ‘classifier’, which
forms part of our future work.

Finally, we would like to point out an issue that this paper has not addressed.
The avid TC developer may have noticed that the local verification step, detailed
in Section 3, breaks the chain-of-trust. A malicious application may somehow
alter the local verification procedure and simply report a ‘known-good’ hyper-
gram to the challenger. We are currently working on addressing this issue by
exploring the semantics of executing the local verification mechanism in a se-
cure execution environment such as one proposed by Flicker [31]. While it might
pose some implementation difficulties, the procedure is trivial at the conceptual
level. Such an implementation would restore the chain-of-trust and provide the
challenger assurance that the local verification mechanism was indeed correct.

6 Conclusions

In this paper, we have presented a new remote attestation technique that utilizes
the constructs of machine learning for the purpose of remote attestation. The
end result is a flexible attestation mechanism that can measure the dynamic
behavior of a target application and, by extension, the target platform. We
have presented the details of the implementation, the challenges faced and the
empirical results in the favour of the proposed system. We believe that this is
a new avenue in remote attestation research and will lead to several new and
improved techniques of remotely verifying the behavior of a platform in a flexible
and scalable manner.

10
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