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Abstract 
 

In grid and cloud computing infrastructures, the in-

tegrity of a computing platform is a critical security 

requirement in order to provide secure and honest 

computing environments to service providers and re-

source consumers. However, due to the fact that soft-

ware components running on a single platform are 

usually provided and maintained by different authori-

ties which are potentially untrusted to each other, the 

problem to monitor and protect runtime system integri-

ty become very challenging and has not been well ad-

dressed yet. In this paper, we present a virtualization 

based dynamic integrity protection method which en-

sures that only appropriate authorities can control 

over their components without interfering with other 

component providers or authorities. In our solution, 

integrity requirements defined by the authorities of 

upper components (e.g., service middleware and appli-

cations) are respected by preventing the underlying 

components (e.g., operating system) from exposing 

their sensitive data, which can be caused by update of 

the underlying components or other malicious actions. 

We implement our solution on Xen-based platform, and 

our evaluation results show that the solution is effec-

tive for integrity protection with acceptable perfor-

mance overhead. 

 

1. Introduction 
 

In grid and cloud computing infrastructures, the op-

erating system, service middleware, and applications 

deployed on a typical computing platform are provided 

and maintained by different authorities, which may not 

trust each other. For example, in a grid or cloud plat-

form, there are normally three different software levels 

controlled by different authorities: (1) resource provid-

ers including the owners of computational nodes or 

other physical resources; (2) solution producers includ-

ing the owners of software solutions and/or databases 

which are deployed on physical resources; and (3) us-

ers including the owners of applications running on a 

solution producer’s product. The integrity of such plat-

form can not only be threatened by malicious attacks, 

such as defects, Trojan horses, and viruses, but also by 

the update of components from multiple independent 

authorities. While the first type of threats is relatively 

easy to eliminate with such as widely-deployed anti-

virus software, the latter becomes very challenging. 

Specifically, it mandates that after a component is up-

dated, the authorities of other components still can trust 

the updated code and data, and consequently the beha-

viors of the updated component. From another point of 

view, a computing system in grid and cloud computing 

environments should be trusted by a remote client or 

user such that, for example, its declared quality of ser-

vice is preserved, or user’s valuable or privacy-

sensitive data on clouds are protected from other enti-

ties including cloud service providers. 

By “trusted” here we mean that a component is au-

thentic: the integrity of its code and data is protected, it 

can only be updated by its authority, and then its beha-

vior is predictable. In collaborative distributed systems, 

it is mandatory for a remote platform to provide its 

integrity status in a trustworthy way to others in order 

to detect and prevent applications from being deployed 

on untrusted even hostile platforms. For this purpose it 

is very important to verify if the platform is a known-

good implementation and is running with a known-
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good configuration. Trusted Computing Group (TCG) 

has specified a small and low-cost Trusted Platform 

Module (TPM) [1] hardware component to enhance the 

security of desktop and portable computers. Various 

mechanisms have been developed to use such hardware 

to generate a proof of a system’s integrity, such as re-

mote attestation and authenticated boot [2][3]. Other 

approaches have been proposed to extend integrity 

measurement and verification up to application level 

[4][5][8]. These approaches provide a way to start with 

a small trusted computing base (TCB) including TPM 

and operating system (OS) kernel, and try to build a 

proof for the whole system by measuring each piece of 

software components according to the sequence of 

platform booting and application loading. 

Unfortunately, previously proposed TCG-like inte-

grity measurement and attestation mechanisms have 

some shortcomings which make them unpractical: first, 

traditional approaches lack the ability to protect sensi-

tive information when a system’s integrity is broken 

during runtime, which is only featured by some expen-

sive trusted hardware such as  IBM 4758 secure copro-

cessor [9]; secondly, by extending the integrity mea-

surement and verification to application level, these 

approaches has a large TCB including whole OS [4][5], 

and they are not transparent to the OS and require 

modifications of OS kernel; and consequently, as a 

usual general-purpose OS is very large and complex, 

these approaches are frequently error-prone and vul-

nerable.   

In our work we leverage the advantage of virtualiza-

tion technology to address above problem. The authori-

ties of the upper components are permitted to provide 

their protection strategies for their sensitive data. For 

example, in cloud computing, the application environ-

ment including operating system and other necessary 

middleware may be provided by solution producers 

(authority of underlying components). We should per-

mit the users of this solution (authors of upper compo-

nent) to protect their sensitive data. We ensure that 

secrets belonging to an authority are only accessed in 

appropriate environment that the authority trusts, 

through monitoring the changes of software compo-

nents in virtual machines (VMs) or domains, and dy-

namically checking the integrity of the corresponding 

components according to the strategies defined by their 

authorities and controlling the access to the disk and 

memory. Our solution is transparent to platform OS as 

it is implemented in virtual machine monitor (VMM) 

layer.  

In this paper, we present a formal security founda-

tion for integrity requirements in multi-authority com-

puting environments based on a trust dependency con-

cept. We then illustrate our implementation which con-

sists of modules for integrity measurement, monitoring, 

and access control in Xen. We leverage hardware-

enhanced virtualization extensions to offer fast system 

call tracing and strong memory context protection. 

The remainder of this paper is organized as follows. 

Section 2 presents related work on platform integrity 

protection. In section 3 we formally analyze the inte-

grity protection requirements for the authorities of up-

per components on a platform, which builds the theo-

retical foundation of our work. We describe our im-

plementation in Xen hypervisor in Section 4. Section 5 

analyzes the effectiveness and runtime performance of 

our implementation. We conclude this paper in Section 

6. 

2. Related Work 
 

The IBM 4758 security coprocessor [10] imple-

ments both secure boot and authenticated boot, albeit 

in a restricted environment. It promises secure boot 

guarantees by verifying all partitions of the whole sys-

tem before activating them. By enforcing signature 

verification on executables before loading them into 

the system, it further protects the security of sensitive 

data when the predefined integrity of the system is 

broken. A mechanism called outgoing authentication [2] 

enables attestation that links each subsequent layer to 

its predecessor. Smith and Weingart [6] discussed how 

to ensure security deployment and the correctness of 

software updating, which relies on the security co-

processor in multi-authority environments. High design 

and development cost prevents it from being widely 

applied, and it’s difficult to support large-scale com-

mercial applications. 

TCG has proposed an open interface for hardware 

TPM which provides cryptographic functionalities and 

protected storage [1]. TPM enables the verification of 

static platform configurations, both in terms of content 

and loading order, by collecting a sequence of hashes 

over target codes. Researchers have examined how to 

use TPM to prove that a platform has booted with a 

valid OS with trusted BIOS and OS loader [4][11].  

IMA [4] is a scheme to extend the TCG specified 

measurements to programs in application layer. Donald 

et al. [5] discussed how to convert a business Linux 

system into trusted virtual computing platform with 

TPM and ensure its trusted environment through inte-

grity check. However, both approaches need modifying 

OS, which limits their application, e.g., on Linux plat-

forms. Another major issue of TCG and IMA is that 

they only have load-time integrity measurement thus 

no runtime integrity guarantee. 

Terra [7]  is a trusted computing architecture built 

on a trusted VMM that authenticates software running 

in a VM for challenging parties. Terra measures the 

trusted VMM on the partition block level. Thus, on one 
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hand, Terra produces about 20 MB of measurement 

values (i.e., hashes) when attesting a 4 GB VM parti-

tion. On the other hand, it is difficult to interpret vary-

ing measurement values. Our system selectively meas-

ures those parts of a system that contribute to dynamic 

runtime system integrity; it does so on a high level that 

is rich in semantics and enables remote parties to in-

terpret varying measurements on file level. 

 

3. Formal Foundations 
 

In this section, we analyze how to protect the sensi-

tive data of upper components according to their inte-

grity protection requirements, considering the existing 

of multiple independent authorities on a single plat-

form. We start with a simple and abstract model for 

program execution and then present the basic concepts 

and principles related to trusted state. Our analysis in 

influenced by the outgoing authentication problem [2].   

 

3.1. Program Dependency 
 

Assumption A computing environment has exactly 

one memory place to hold software and the memory is 

untampered by outside. The computing environment 

cleans all memory states when it is restarted. We de-

note the environment which satisfies the above as-

sumption as CE& . 

Authority An authority can authorize updating or 

loading a program p in CE& .  

As aforementioned, the computing environments we 

face force us to partition the code space in CE&  into 

three layers:  OS layer, service provider layer, and ap-

plication layer. Software in different layers within 

CE&  are typically controlled by different, mutually 

untrusted authorities. So we need to tolerate malicious 

authorities including those of OS and bootstrap. Under 

this scenario we consider a system state as the collec-

tion of the content of memory and CPU registers. The 

instructions and data can be affected by former loaded 

programs.  

Entity A program p, including code and data, is 

loaded and executed inside computing environment 

CE&   at a particular moment. 

A system state is not determined by one entity; on 

the contrary it is determined by the entities come from 

all the software levels. For this reason we need to ex-

plore what happens to a particular platform: not only 

long-term action sequences, but also specific instants 

along that sequence.  

History and Run A history is a finite sequence of 

computations for a particular computing environment. 

A run is an unbounded sequence of computations for a 

particular computing environment. HR means histo-

ry H is a prefix of run R.   

When a program p is loaded in run R, the system 

state is changed, and R becomes R'. So we can say enti-

ty e corresponds to a series of procedures which are 

loaded into the memory in a particular sequence. We 

refer to S as the system state, and at a particular mo-

ment the system state RS  can be denoted by the set of 

all entities which run in CE& , that is, 

}ee,e{S n21R  . We note that p belongs to an au-

thority, and the authority might authorize the compu-

ting environment CE& to load p to change the state. 

The system state is determined by an entity set in 

run R, and the entities interact with each other. Howev-

er, the relationship between them is complex and some 

entities have the ability to read or write other entities. 

Dependency Function Let E be the set of all enti-

ties in CE& , , for Ee,e  21 , if 1e  can read/write the 

data of 2e , then  )e(Depe data 12 ; if 1e can write/control 

the code of 2e , then )e(Depe code 12 , where Dep 

represents the union of Depdata and Depcode on E.  

Naturally, we have the following deduction.  









Transitive)e(Dep)e(Depthen),e(Depeif

Idempotent)e(Depe

1212

11

 
Relation Dep depends on run R. Let R  be the 

transitive closure of Dep. For entity e in run R, we de-

fine }fe:f{)e(Dep
R

R  . 

For entity e in run R, )e (DepR lists all the entities 

in CE&  that can subvert the correct operations of entity 

e in run R. As mentioned above, an entity's action can 

be possibly damaged by other entities. We need some 

notion of trust. Usually, an authority Au has some ideas 

of which applications it might trust and of which ones 

it does not trust.  

Trustset For an authority Au, let Trustset (Au) de-

note the set of entities that Au trusts. 

 

3.2. Integrity Protection Requirement  
 

We use C to denote a system configuration which 

consists of relevant properties, including a vector of 

conditions for each authority: its trust set, authority 

status, code contents, and protected data. A system 

state consists of a program running sequence and pro-
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grams permitted to run in CE& . We denote this by 

ENC& . 

Suppose Au is an application authority in a valid 

configuration C. For )Au(Trustset0&ENC  , 0&ENC  

denotes a state that the protected data of authority Au 

has its initial contents, but no program in 0&ENC  

writes to the protected data since these contents have 

been initialized. i&ENC denotes an updated system 

state when program ip  is loaded. 

 

Authority Au

Trusts distrusts

Security destroy Security preserve 

Programs 
loading action

Trustset(Au) Distrustset(Au)

Programs 
loading action

Programs 
loading action

 
Fig. 1. An authority stops trusting a computing en-
vironment when a loaded program doesn’t belong 
to trust set. 

 

Let  i0 p,p be a valid program loading se-

quence, which have been loaded into a system in con-

figuration C.  If kp (0 ≤ k ≤ i) is the first program in 

this sequence such that )Au(Trustsetk&ENC   is true, 

then the contents of the protected data are destroyed or 

the system returns to 1k&ENC  , as illustrated in Fig. 1.  

If this is satisfied, then only programs loaded before 

kENC&  can directly access the protected data. In 

particular, Au may stop trusting a system state when 

transition from 1&ENC k  to kENC&  includes a 

loading of any code in any underlying layer which Au 

does not trust. 

 

3.3. Trust Validation 
 

Since entity e interacts with other entities in the 

same CE&  which depends on )e(DepR , a desired 

integrity monitoring mechanism in VMM should de-

termine the trust of )e(DepR . 

The question is how to identify an entity and how to 

determine the changes of the entity from the virtual 

layer. It is very difficult to monitor the changes of the 

whole memory to achieve this. An alternative method 

is called as "load time integrate measurement" which 

identify an entity by checking the hash value of the 

corresponding program when the program is loading 

into the memory [3][4][9][13]. In this paper, we as-

sume that code measurements are sufficient to describe 

the changes of an entity. Thus, self-changing code can 

be evaluated because the self-changing ability of code 

is reflected in the measurement and can be taken into 

account in verification.  

Trust State For entity e, run R is trusted by authori-

ty Au only if )Au(TrustseteDepR )( . 

In order to determine whether 

)Au(TrustseteDepR )(  after p is loaded into R and 

R transits into R', the primary function of integrity 

monitoring in VMM is to trace the entity. We note that 

the entity is determined by the sequence of loaded pro-

grams. Let trace (p, R, C) denote the collection of 

loaded entity hash value which is provided by VMM 

when the authority Au loads p in run R. 

Validating Trust State Validating a trust state is a 

mechanism that determines whether CE&  is trusted to 

authority Au when p is loaded in run R, according to  

Trustset (Au) and the collection of loaded entity cre-

dentials Trace (p,R,C). 

The algorithm to validate a trust state is determined 

by the collection of loaded entity credentials Trace 

(p,R,C)  and Trustset (Au). Naturally, Trustset (Au) is 

associated with the application requirement of authori-

ty Au. Therefore for those entities trusted by Au they 

vary with Au with different selections. 

Validation by VMM is reliable and complete, if and 

only if for any entity e, Trustset (Au), and any history 

H and run R where H R, the following is true:  

)Au(trustset)e(Dep))C,R,p(Trace,Au(alidate R v
 

 

4. Implementation 
 

Our solution is built on hardware virtualization ex-

tensions such as Intel VT [14] and AMD SVM [15]. In 

this section, we discuss our implementation on Xen 

HVM DomU based on Intel VT. We first give an over-

view of our implementation, followed by the descrip-

tion of measurement and protection of sensitive data in 

disk by hooking disk I/O. We then show the mechan-

ism to trace program loading and protect memory sen-

sitive data. At the end of this section we describe how 

to validate the integrity of a system and make access 

control decisions. 

 

4.1. Implementation Overview 
 

According to the formal model described in pre-

vious section, in order to protect sensitive data speci-

fied by an authority when the integrity of its trust set is 
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broken, we need to monitor the process of program 

loading, verify whether loaded programs belong to the 

corresponding authority’s trust set, and examine the 

integrity of the loaded programs. 

We leverage virtualization technology to fulfill the 

above requirements. As shown in Fig. 2, all measure-

ment operations and access control of disk files are 

achieved by hooking disk I/O operations. Monitoring 

loaded programs and protecting sensitive data in mem-

ory are implemented by intercepting corresponding 

system calls.  

We leverage Blktap architecture, X86 fast system 

call entry mechanism, and Xen memory management 

subsystem to achieve the measurement, monitoring and 

access control. Our implementation includes a set of 

functional modules: trace module (TAM), system call 

tracer (SCT), and decision-making engine (DME). 

TAM collects the information of disk operations and 

measures the trust set and controls accesses to the disk. 

SCT collects and filters system call arguments and 

provides memory protection. DME makes decision of 

measurements or access control according to informa-

tion sent by TAM and SCT. 

 

Xen

VMExit

System call 
tracer

VMCS

PV-on-HVM 
driver

Backend
driver

Device
driver

Tap FIFO Hash(block X) 

compare

Decision making Engine

Tapdisk 
Driver

Trace module

Domain 0

DomainU 
(full virtulization)

T r u s t S e t  a n d 
protected data

Hardware(CPU +virtualization extensions)

Fig. 2. VMM based integrity protection architecture. 

   

4.2. Measurement and Disk Access Control  
 

Blktap is a user-mode driver which directly manag-

es disk activity with relatively small performance cost 

[12]. TAM intercepts file operations in the user-mode 

of Dom0 when a disk data is processed by the tapdisk 

driver of Blktap. 

TAM does not block disk reading operations, but 

only send operation parameters (include the starting 

sector location and the number of sectors) to DME 

which makes access or measurement decisions accord-

ing to these parameters. According to the decision from 

DME, TAM makes one the following three types of 

actions: (1) measurement operation -- TAM copies 

the buffer of disk reading operations to the measure-

ment buffer, or invokes Blktap asynchronous I/O oper-

ations according to the measurement parameters from 

DME to read the specified data to the measurement 

buffer. At the same time, TAM returns disk reading 

operations and invokes a hash function to take the 

measurement.  When this function returns, TAM sub-

mits the hash value to DME; (2) normal operation -- 

TAM does not take any action and the reading opera-

tion continues; (3) deny operation -- TAM cleans the 

file buffer and returns a reading error.  

For any disk writing operation, TAM blocks it, 

sends the arguments of the operation to DME, and then 

enforces DME decision:  permits write operation or not.  

 

4.3. Monitoring and Memory Access Control 
 

Our implementation monitors system state at the 

following two stages: 

Booting Stage In the booting stage a monitored VM, 

the function of BIOS is offered by the VMM but it 

does not usually directly load the OS. Instead, it only 

loads a portion of a boot loader residing in MBR into 

the memory and transfers the control to the loaded 

code. So TAM must measure the boot loader and the 

OS image. We achieve this by intercepting the disk 

data flow in the booting stage before it is processed by 

the tapdisk driver, and measuring all the data received 

by DME. 

Runtime Stage During runtime, we dynamically 

monitor which programs are loaded and where the pro-

tected data are loaded into the memory.  System calls 

are intercepted using X86 fast system call entry me-

chanism. X86 fast system call is generally used on 

Windows XP and Linux kernel 2.6. The SYSENTER 

instruction triggers the transition from the user mode to 

the kernel mode. The kernel entry address is specified 

by two special registers: SYSENTER_CS_MSR and 

SYSENTER_EIP_MSR. Whenever user-mode applica-

tions require system services, the service number and 

parameters are transferred into the kernel, and then the 

instruction SYSENTER executes. 

In our implementation, the value of register SY-

SENTER_EIP_MSR is set to a magic address which 

leads to page fault every time by SCT. Whenever a 

system call in the monitored VM is invoked, a page 

fault occurs at the special address. When page fault 

occurs and the page fault linear address is equal to the 

magic address, it indicates that the system call has 

happened, and its parameters related to the current 

process are gathered to record reading/writing opera-

tions. Ultimately, the real entry address of a system call 
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is set in the EIP register, and the handler executes in 

the monitored VM. 

It is dispensable to inspect all system calls and their 

arguments. In fact, we focus on system calls for file 

operations and loading modules and applications, such 

as read, write, int_module, execve, and fork. Modules 

are dynamically loaded into kernel space through in-

smod. Applications replace the current execution code 

via the system call execve. The arguments of these sys-

tem calls may include the relative pathname of execut-

able files. The absolute pathname can be resolved ac-

cording to the task_struct structure of the current 

process. After that, the pathname is transferred to DME. 

If the protected data is loaded into the memory, ac-

cessing to the data is controlled by SCT. The most im-

portant thing is the data and the location of the data. 

Through intercepting read system call, we can obtain 

such information in real time. From the arguments of 

read system call, the file descriptor and buffer address 

are easily obtained. Similarly, the absolute pathname 

can be analyzed through the file descriptor and the 

task_struct structure of current process. This informa-

tion is passed to DME. 

To control the access to the protected data in the 

memory, we leverage Xen’s shadow paging mechan-

ism. This technique maintains two kinds of page tables 

for each VM: guest page tables (GPTs), which are con-

trolled by the guest, and shadow page tables (SPTs), 

which are controlled by the hypervisor. Xen controls 

the actual machine frames used by each VM, while 

also provides each guest OS the illusion that it has full 

control of the memory. To achieve the memory access 

control for protected data, we need to control the prop-

agation of entries from GPTs to SPTs and Xen’s page 

fault handler. 

We note that we can trace the page information that 

the protected data is stored with protected page tables 

(PPTs) created by SCT. SCT populates the PPTs with 

references to the physical pages corresponding to the 

linear address space of the protected data. Once the 

access requirement to the protected data in memory 

needs to be controlled, SCT removes references to the 

program's protected pages from the SPTs and flushes 

the TLBs. Due to this setup, access to code/data from 

the SPTs to the PPTs or vice versa leads to page-faults 

that invoke SCT in the hypervisor. This technique only 

provides page-level protection, which is problematic if 

a page contains protected and accessible regions at the 

same time. We need to provide byte-level protection by 

modifying Xen’s page fault handler. Each time a page 

fault occurs due to a failed access operation, we check 

the target’s virtual address, which is stored in the CR2 

CPU register. Next, we check the protection list to see 

if the target address requires protection. If yes, then a 

page fault exception is propagated to the guest OS to 

prevent the access attempt; if not, then the guest at-

tempts to access a non-protected region of a frame that 

contains a protected region. 

 

4.4. Decision-making Engine  
 

DME processes the life cycle of an authority’s pro-

tected data according to information sent by TAM, 

SCT, and the trust set defined by the authority. DME 

supports the authority to describe its trust set and pro-

tected data in higher-level file system--oriented view, 

by specifying which directories and files belong to the 

trust set or which files are protected data, and 160 bit 

hash values are used to identify the integrity of these 

programs. 

At the VMM layer, most of the operations captured 

by TAM and SCT are low-level operations, which are 

closely related to specific system architecture, while 

the trust set and protected data are described with high-

er level semantics. DME translates the easy-to-manage 

higher-level representations into a raw physical opera-

tion. Specific semantic information translation is close-

ly related to guest OS and selected file systems. DME 

builds three structures called trust_inte_file, prote_file 

and mem_pro_file for this purpose. The first two record 

the translated results according to the authority’s trust 

set and protection data, and the third records the mem-

ory address of the protected data. All the files and di-

rectories of the first two structures have a block node 

including all the blocks which the directories and the 

files have occupied. 

When a target VM boots, DME firstly compares the 

hash value of the boot loader and OS kernel image 

with the values in trust_inte_file. If any of them does 

not match, it means the boot loader or Os kernel image 

is not satisfied with the authority’s requirement. The 

access permit bit of the prote_file is set. After initiali-

zation, for each change DME reads a new record from 

the tap FIFO sent by TAM. Next, the record’s block 

number is hashed into the trust_inte_file and prote_file. 

If the record's block number is found in the prote_file, 

it indicates that this disk I/O operation is accessing the 

protected data. DME then checks the access permitted 

bit. If the bit is set, which means the authority expected 

trusted environment is broken, the access requirement 

should be denied. DME sends a deny operation instruc-

tion to TAM. Otherwise, if the access permitted bit is 

not set, DME checks whether the measurement buffer 

is empty. Because loaded kernel modules and pro-

grams are measured asynchronously with file reading 

operations, DME must wait until all the measurements 

are finished. If the protected data is allowed to access, 

for a reading operation, DME sets an opening bit to 

indicate the protected data is to be loaded into memory. 

For a writing operation, DME records the block with 
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the change of the protected data after the writing opera-

tion is completed. 

If the block numbers are matched in trust_inte_file, 

which means the disk I/O operation is accessing the 

trust set. For a reading operation, if the file has never 

been measured before or has been changed, DME 

sends the measurement instruction (including the entire 

block this fill occupied) to TAM. The hash value is 

compared with that in trust_inte_file. If the hash value 

hits in trust_inte_file, it indicates that the loaded data 

and program are satisfied with the requirements of the 

authority. On the contrary, if it misses, the access per-

mitted bit is set. DME also needs to verify whether the 

kernel modules and user-level executables come from 

trust set. According to the description in Section 4.3, 

TAM can capture the path information of them so 

DME can match the path information in trust_inte_file. 

If they do not match, the access permitted bit is set. 

Then DME checks whether the opening bit is set. If 

it is set and the permit access bit is set too, it indicates 

that some protected data is load into the memory and at 

the same time the integrity of system is broken, DME 

then sends memory protected instruction to SCT.  

In order to minimize performance impact, we take a 

new measurement only if a target file has not been 

measured or it might have been changed since last 

measurement in trust_inte_file. So we use caching to 

reduce performance overhead. 

 

5. System Evaluation 
 

In this section, we first demonstrate the integrity 

protection capability of our implementation, and then 

analyze its performance overhead.  

 

5.1. Security 
 

Due to space limit we present a simple experiment 

to demonstrate our system's capability of dynamically 

detecting the integrity change of programs defined in 

an authority’s trustset and protecting the authority’s 

sensitive data.  

 

[root@localhost disk_monitor_edit5]# ./monitor
**********env_check(dom_id)**********

**********parse_config(dom_conf)**********
Image :/root/guest/vm-ubuntu.img
ea24521cbaf6febb9f0f06349a986508  /etc/init.d/rc
e3756487011471f7753d5d94ce4b6af4  /etc/init.d/rc.local
6687b5585f865da7e7875b1d9cfff4a0  /etc/passwd
b59ea6ac3a1ad8c0527ec94f73bafca0  /etc/profile

    
 Fig. 3. Detecting the integrity change of programs. 

As shown in Fig.3, when the integrity of the file 

/etc/profile which is included in an authority’s trust set 

does not match the hash value in the trust set which is 

defined by the ordinary user the authority. Our imple-

mentation detects this change and protects the sensitive 

data of the authority. The output is shown in Fig. 4. 

 

[root@localhost-120 root]# ls -l
ls: cannot access protect.txt: Input/output error
total 0
-????????? ? ? ? ?            ? protect.txt
[root@localhost-120 root]# rm -rf protect.txt 
rm: cannot remove `protect.txt': Input/output 
error
[root@localhost-120 root]# 

 
Fig. 4. Protecting sensitive data of an authority. 

 

5.2. Performance 
 

Our prototype system runs on a 2.33 GHz Intel Core 

Duo processor with 2 MB L2 cache, 2 GB RAM, and 

80 GB 7200 RPM disk. The metrics include the latency 

of disk I/O and system call tracing. We use notation 

CHECK to represent the disk I/O with our design 

which needs time to make decision, while use UN-

CHECK to represent the case in a common Xen system 

without our design. M_HASH denotes file reading 

operation with the file’s hash value measured. Mea-

surements are made using the Linux time command. 

The script is executed in different file size. The size of 

sampled files varies from 1KB to 10MB for each mode. 

Table 1 presents the experiment results. 

 We test the performance of system call tracing by 

selected benchmarks which perform a standard series 

of tests provided by Linux web servers, database serv-

ers, and CPU-intensive applications. We also measure 

the efficiency of file compression and decompression 

using Linux kernel source. The size of linux-

2.6.18.8.tar.gz is 58.6MB. 

 
Table 1. The overhead of disk I/O (ms) 

  1K 16K 128K 1M 10M 

R_UNCHECK 7.7 17.8 107.8 862.4 10171.4 

R_CHECK 8.7 21.8 139.6 864.2 12731.4 

M_HASH 8.7  22.1 144.7 923.2 16322.2 

W_UNCHECK 545.1 1173.2 5033.9 10580.2 16000.9 

W_CHECK 547.2 1181.4 5097.9 10068.2 17623.9 

 
Table 1 show that the Disk I/O performance over-

head can be negligible. Most of Hash measurement is 

executed asynchronously with regard to actual disk I/O. 

The asynchrony created by the use of a FIFO allows 

DME, the most performance-intensive component of 
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the architecture, to execute in parallel with actual disk 

operations. 

Fig.5 presents the performance of system calls trac-

ing. The results show that our implementation adds 

extra latency to system calls. Latency-sensitive bench-

marks, such as web server benchmark, incur a relative-

ly high performance cost. The latency is mainly raised 

by the notification of TAM. A full in-hypervisor im-

plementation would have much lower latency. In addi-

tion, system calls which require I/O access are not af-

fected by the extra latency in our current implementa-

tion. 

 

 
Fig. 5. Performance of system call tracing. 

 

6. Conclusions and Future Work  
 

In this paper, we have presented the design and im-

plementation of a virtualization-based integrity protec-

tion approach which permits an authority to bind his 

sensitive data with integrity requirements. Our ap-

proach can guarantee that the sensitive data specified 

by an authority can only be accessed by programs in an 

environment that the authority trusts. This approach is 

applicable to multi-layer software environment where 

an authority of the upper software can maintain the 

security of the software when the integrity of underly-

ing software components is broken. Experimental re-

sults show that the design is effective and the overhead 

is acceptable. 

The main feature of our solution is that it can en-

hance the security of an ordinary commercial platform 

with the same capabilities provided by IBM4785 secu-

rity coprocessor. Our solution not only measures and 

reports the integrity of a system, but also protects the 

sensitive data when the system’s integrity is compro-

mised. The approach can be applied in cloud or grid 

computing environments with multiple independent 

authorities to protect their sensitive data and to main-

tain the integrity of an entire system.  
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