

 1

Building Dynamic Integrity Protection for Multiple Independent Authorities

in Virtualization-based Infrastructure

Ge Cheng

1
, Hai Jin

1
, Deqing Zou

1
, Xinwen Zhang

2
, Min Li

1
, Chen Yu

1
 and Guofu Xiang

1

1
Services Computing Technology and System Lab

Cluster and Grid Computing Lab

School of Computer Science and Technology

Huazhong University of Science and Technology

Wuhan, 430074, China

hjin@hust.edu.cn
2
Samsung Information Systems America, San Jose, CA USA

xinwen.z@samsung.com

Abstract

In grid and cloud computing infrastructures, the in-

tegrity of a computing platform is a critical security

requirement in order to provide secure and honest

computing environments to service providers and re-

source consumers. However, due to the fact that soft-

ware components running on a single platform are

usually provided and maintained by different authori-

ties which are potentially untrusted to each other, the

problem to monitor and protect runtime system integri-

ty become very challenging and has not been well ad-

dressed yet. In this paper, we present a virtualization

based dynamic integrity protection method which en-

sures that only appropriate authorities can control

over their components without interfering with other

component providers or authorities. In our solution,

integrity requirements defined by the authorities of

upper components (e.g., service middleware and appli-

cations) are respected by preventing the underlying

components (e.g., operating system) from exposing

their sensitive data, which can be caused by update of

the underlying components or other malicious actions.

We implement our solution on Xen-based platform, and

our evaluation results show that the solution is effec-

tive for integrity protection with acceptable perfor-

mance overhead.

1. Introduction

In grid and cloud computing infrastructures, the op-

erating system, service middleware, and applications

deployed on a typical computing platform are provided

and maintained by different authorities, which may not

trust each other. For example, in a grid or cloud plat-

form, there are normally three different software levels

controlled by different authorities: (1) resource provid-

ers including the owners of computational nodes or

other physical resources; (2) solution producers includ-

ing the owners of software solutions and/or databases

which are deployed on physical resources; and (3) us-

ers including the owners of applications running on a

solution producer’s product. The integrity of such plat-

form can not only be threatened by malicious attacks,

such as defects, Trojan horses, and viruses, but also by

the update of components from multiple independent

authorities. While the first type of threats is relatively

easy to eliminate with such as widely-deployed anti-

virus software, the latter becomes very challenging.

Specifically, it mandates that after a component is up-

dated, the authorities of other components still can trust

the updated code and data, and consequently the beha-

viors of the updated component. From another point of

view, a computing system in grid and cloud computing

environments should be trusted by a remote client or

user such that, for example, its declared quality of ser-

vice is preserved, or user’s valuable or privacy-

sensitive data on clouds are protected from other enti-

ties including cloud service providers.

By “trusted” here we mean that a component is au-

thentic: the integrity of its code and data is protected, it

can only be updated by its authority, and then its beha-

vior is predictable. In collaborative distributed systems,

it is mandatory for a remote platform to provide its

integrity status in a trustworthy way to others in order

to detect and prevent applications from being deployed

on untrusted even hostile platforms. For this purpose it

is very important to verify if the platform is a known-

good implementation and is running with a known-

 2

good configuration. Trusted Computing Group (TCG)

has specified a small and low-cost Trusted Platform

Module (TPM) [1] hardware component to enhance the

security of desktop and portable computers. Various

mechanisms have been developed to use such hardware

to generate a proof of a system’s integrity, such as re-

mote attestation and authenticated boot [2][3]. Other

approaches have been proposed to extend integrity

measurement and verification up to application level

[4][5][8]. These approaches provide a way to start with

a small trusted computing base (TCB) including TPM

and operating system (OS) kernel, and try to build a

proof for the whole system by measuring each piece of

software components according to the sequence of

platform booting and application loading.

Unfortunately, previously proposed TCG-like inte-

grity measurement and attestation mechanisms have

some shortcomings which make them unpractical: first,

traditional approaches lack the ability to protect sensi-

tive information when a system’s integrity is broken

during runtime, which is only featured by some expen-

sive trusted hardware such as IBM 4758 secure copro-

cessor [9]; secondly, by extending the integrity mea-

surement and verification to application level, these

approaches has a large TCB including whole OS [4][5],

and they are not transparent to the OS and require

modifications of OS kernel; and consequently, as a

usual general-purpose OS is very large and complex,

these approaches are frequently error-prone and vul-

nerable.

In our work we leverage the advantage of virtualiza-

tion technology to address above problem. The authori-

ties of the upper components are permitted to provide

their protection strategies for their sensitive data. For

example, in cloud computing, the application environ-

ment including operating system and other necessary

middleware may be provided by solution producers

(authority of underlying components). We should per-

mit the users of this solution (authors of upper compo-

nent) to protect their sensitive data. We ensure that

secrets belonging to an authority are only accessed in

appropriate environment that the authority trusts,

through monitoring the changes of software compo-

nents in virtual machines (VMs) or domains, and dy-

namically checking the integrity of the corresponding

components according to the strategies defined by their

authorities and controlling the access to the disk and

memory. Our solution is transparent to platform OS as

it is implemented in virtual machine monitor (VMM)

layer.

In this paper, we present a formal security founda-

tion for integrity requirements in multi-authority com-

puting environments based on a trust dependency con-

cept. We then illustrate our implementation which con-

sists of modules for integrity measurement, monitoring,

and access control in Xen. We leverage hardware-

enhanced virtualization extensions to offer fast system

call tracing and strong memory context protection.

The remainder of this paper is organized as follows.

Section 2 presents related work on platform integrity

protection. In section 3 we formally analyze the inte-

grity protection requirements for the authorities of up-

per components on a platform, which builds the theo-

retical foundation of our work. We describe our im-

plementation in Xen hypervisor in Section 4. Section 5

analyzes the effectiveness and runtime performance of

our implementation. We conclude this paper in Section

6.

2. Related Work

The IBM 4758 security coprocessor [10] imple-

ments both secure boot and authenticated boot, albeit

in a restricted environment. It promises secure boot

guarantees by verifying all partitions of the whole sys-

tem before activating them. By enforcing signature

verification on executables before loading them into

the system, it further protects the security of sensitive

data when the predefined integrity of the system is

broken. A mechanism called outgoing authentication [2]

enables attestation that links each subsequent layer to

its predecessor. Smith and Weingart [6] discussed how

to ensure security deployment and the correctness of

software updating, which relies on the security co-

processor in multi-authority environments. High design

and development cost prevents it from being widely

applied, and it’s difficult to support large-scale com-

mercial applications.

TCG has proposed an open interface for hardware

TPM which provides cryptographic functionalities and

protected storage [1]. TPM enables the verification of

static platform configurations, both in terms of content

and loading order, by collecting a sequence of hashes

over target codes. Researchers have examined how to

use TPM to prove that a platform has booted with a

valid OS with trusted BIOS and OS loader [4][11].

IMA [4] is a scheme to extend the TCG specified

measurements to programs in application layer. Donald

et al. [5] discussed how to convert a business Linux

system into trusted virtual computing platform with

TPM and ensure its trusted environment through inte-

grity check. However, both approaches need modifying

OS, which limits their application, e.g., on Linux plat-

forms. Another major issue of TCG and IMA is that

they only have load-time integrity measurement thus

no runtime integrity guarantee.

Terra [7] is a trusted computing architecture built

on a trusted VMM that authenticates software running

in a VM for challenging parties. Terra measures the

trusted VMM on the partition block level. Thus, on one

 3

hand, Terra produces about 20 MB of measurement

values (i.e., hashes) when attesting a 4 GB VM parti-

tion. On the other hand, it is difficult to interpret vary-

ing measurement values. Our system selectively meas-

ures those parts of a system that contribute to dynamic

runtime system integrity; it does so on a high level that

is rich in semantics and enables remote parties to in-

terpret varying measurements on file level.

3. Formal Foundations

In this section, we analyze how to protect the sensi-

tive data of upper components according to their inte-

grity protection requirements, considering the existing

of multiple independent authorities on a single plat-

form. We start with a simple and abstract model for

program execution and then present the basic concepts

and principles related to trusted state. Our analysis in

influenced by the outgoing authentication problem [2].

3.1. Program Dependency

Assumption A computing environment has exactly

one memory place to hold software and the memory is

untampered by outside. The computing environment

cleans all memory states when it is restarted. We de-

note the environment which satisfies the above as-

sumption as CE& .

Authority An authority can authorize updating or

loading a program p in CE& .

As aforementioned, the computing environments we

face force us to partition the code space in CE& into

three layers: OS layer, service provider layer, and ap-

plication layer. Software in different layers within

CE& are typically controlled by different, mutually

untrusted authorities. So we need to tolerate malicious

authorities including those of OS and bootstrap. Under

this scenario we consider a system state as the collec-

tion of the content of memory and CPU registers. The

instructions and data can be affected by former loaded

programs.

Entity A program p, including code and data, is

loaded and executed inside computing environment

CE& at a particular moment.

A system state is not determined by one entity; on

the contrary it is determined by the entities come from

all the software levels. For this reason we need to ex-

plore what happens to a particular platform: not only

long-term action sequences, but also specific instants

along that sequence.

History and Run A history is a finite sequence of

computations for a particular computing environment.

A run is an unbounded sequence of computations for a

particular computing environment. HR means histo-

ry H is a prefix of run R.

When a program p is loaded in run R, the system

state is changed, and R becomes R'. So we can say enti-

ty e corresponds to a series of procedures which are

loaded into the memory in a particular sequence. We

refer to S as the system state, and at a particular mo-

ment the system state RS can be denoted by the set of

all entities which run in CE& , that is,

}ee,e{S n21R  . We note that p belongs to an au-

thority, and the authority might authorize the compu-

ting environment CE& to load p to change the state.

The system state is determined by an entity set in

run R, and the entities interact with each other. Howev-

er, the relationship between them is complex and some

entities have the ability to read or write other entities.

Dependency Function Let E be the set of all enti-

ties in CE& , , for Ee,e  21 , if 1e can read/write the

data of 2e , then)e(Depe data 12 ; if 1e can write/control

the code of 2e , then)e(Depe code 12 , where Dep

represents the union of Depdata and Depcode on E.

Naturally, we have the following deduction.









Transitive)e(Dep)e(Depthen),e(Depeif

Idempotent)e(Depe

1212

11

Relation Dep depends on run R. Let R be the

transitive closure of Dep. For entity e in run R, we de-

fine }fe:f{)e(Dep
R

R  .

For entity e in run R,)e (DepR lists all the entities

in CE& that can subvert the correct operations of entity

e in run R. As mentioned above, an entity's action can

be possibly damaged by other entities. We need some

notion of trust. Usually, an authority Au has some ideas

of which applications it might trust and of which ones

it does not trust.

Trustset For an authority Au, let Trustset (Au) de-

note the set of entities that Au trusts.

3.2. Integrity Protection Requirement

We use C to denote a system configuration which

consists of relevant properties, including a vector of

conditions for each authority: its trust set, authority

status, code contents, and protected data. A system

state consists of a program running sequence and pro-

 4

grams permitted to run in CE& . We denote this by

ENC& .

Suppose Au is an application authority in a valid

configuration C. For)Au(Trustset0&ENC  , 0&ENC

denotes a state that the protected data of authority Au

has its initial contents, but no program in 0&ENC

writes to the protected data since these contents have

been initialized. i&ENC denotes an updated system

state when program ip is loaded.

Authority Au

Trusts distrusts

Security destroy Security preserve

Programs
loading action

Trustset(Au) Distrustset(Au)

Programs
loading action

Programs
loading action

Fig. 1. An authority stops trusting a computing en-
vironment when a loaded program doesn’t belong
to trust set.

Let  i0 p,p be a valid program loading se-

quence, which have been loaded into a system in con-

figuration C. If kp (0 ≤ k ≤ i) is the first program in

this sequence such that)Au(Trustsetk&ENC  is true,

then the contents of the protected data are destroyed or

the system returns to 1k&ENC  , as illustrated in Fig. 1.

If this is satisfied, then only programs loaded before

kENC& can directly access the protected data. In

particular, Au may stop trusting a system state when

transition from 1&ENC k to kENC& includes a

loading of any code in any underlying layer which Au

does not trust.

3.3. Trust Validation

Since entity e interacts with other entities in the

same CE& which depends on)e(DepR , a desired

integrity monitoring mechanism in VMM should de-

termine the trust of)e(DepR .

The question is how to identify an entity and how to

determine the changes of the entity from the virtual

layer. It is very difficult to monitor the changes of the

whole memory to achieve this. An alternative method

is called as "load time integrate measurement" which

identify an entity by checking the hash value of the

corresponding program when the program is loading

into the memory [3][4][9][13]. In this paper, we as-

sume that code measurements are sufficient to describe

the changes of an entity. Thus, self-changing code can

be evaluated because the self-changing ability of code

is reflected in the measurement and can be taken into

account in verification.

Trust State For entity e, run R is trusted by authori-

ty Au only if)Au(TrustseteDepR )(.

In order to determine whether

)Au(TrustseteDepR )(after p is loaded into R and

R transits into R', the primary function of integrity

monitoring in VMM is to trace the entity. We note that

the entity is determined by the sequence of loaded pro-

grams. Let trace (p, R, C) denote the collection of

loaded entity hash value which is provided by VMM

when the authority Au loads p in run R.

Validating Trust State Validating a trust state is a

mechanism that determines whether CE& is trusted to

authority Au when p is loaded in run R, according to

Trustset (Au) and the collection of loaded entity cre-

dentials Trace (p,R,C).

The algorithm to validate a trust state is determined

by the collection of loaded entity credentials Trace

(p,R,C) and Trustset (Au). Naturally, Trustset (Au) is

associated with the application requirement of authori-

ty Au. Therefore for those entities trusted by Au they

vary with Au with different selections.

Validation by VMM is reliable and complete, if and

only if for any entity e, Trustset (Au), and any history

H and run R where H R, the following is true:

)Au(trustset)e(Dep))C,R,p(Trace,Au(alidate R v

4. Implementation

Our solution is built on hardware virtualization ex-

tensions such as Intel VT [14] and AMD SVM [15]. In

this section, we discuss our implementation on Xen

HVM DomU based on Intel VT. We first give an over-

view of our implementation, followed by the descrip-

tion of measurement and protection of sensitive data in

disk by hooking disk I/O. We then show the mechan-

ism to trace program loading and protect memory sen-

sitive data. At the end of this section we describe how

to validate the integrity of a system and make access

control decisions.

4.1. Implementation Overview

According to the formal model described in pre-

vious section, in order to protect sensitive data speci-

fied by an authority when the integrity of its trust set is

 5

broken, we need to monitor the process of program

loading, verify whether loaded programs belong to the

corresponding authority’s trust set, and examine the

integrity of the loaded programs.

We leverage virtualization technology to fulfill the

above requirements. As shown in Fig. 2, all measure-

ment operations and access control of disk files are

achieved by hooking disk I/O operations. Monitoring

loaded programs and protecting sensitive data in mem-

ory are implemented by intercepting corresponding

system calls.

We leverage Blktap architecture, X86 fast system

call entry mechanism, and Xen memory management

subsystem to achieve the measurement, monitoring and

access control. Our implementation includes a set of

functional modules: trace module (TAM), system call

tracer (SCT), and decision-making engine (DME).

TAM collects the information of disk operations and

measures the trust set and controls accesses to the disk.

SCT collects and filters system call arguments and

provides memory protection. DME makes decision of

measurements or access control according to informa-

tion sent by TAM and SCT.

Xen

VMExit

System call
tracer

VMCS

PV-on-HVM
driver

Backend
driver

Device
driver

Tap FIFO Hash(block X)

compare

Decision making Engine

Tapdisk
Driver

Trace module

Domain 0

DomainU
(full virtulization)

T r u s t S e t a n d
protected data

Hardware(CPU +virtualization extensions)

Fig. 2. VMM based integrity protection architecture.

4.2. Measurement and Disk Access Control

Blktap is a user-mode driver which directly manag-

es disk activity with relatively small performance cost

[12]. TAM intercepts file operations in the user-mode

of Dom0 when a disk data is processed by the tapdisk

driver of Blktap.

TAM does not block disk reading operations, but

only send operation parameters (include the starting

sector location and the number of sectors) to DME

which makes access or measurement decisions accord-

ing to these parameters. According to the decision from

DME, TAM makes one the following three types of

actions: (1) measurement operation -- TAM copies

the buffer of disk reading operations to the measure-

ment buffer, or invokes Blktap asynchronous I/O oper-

ations according to the measurement parameters from

DME to read the specified data to the measurement

buffer. At the same time, TAM returns disk reading

operations and invokes a hash function to take the

measurement. When this function returns, TAM sub-

mits the hash value to DME; (2) normal operation --

TAM does not take any action and the reading opera-

tion continues; (3) deny operation -- TAM cleans the

file buffer and returns a reading error.

For any disk writing operation, TAM blocks it,

sends the arguments of the operation to DME, and then

enforces DME decision: permits write operation or not.

4.3. Monitoring and Memory Access Control

Our implementation monitors system state at the

following two stages:

Booting Stage In the booting stage a monitored VM,

the function of BIOS is offered by the VMM but it

does not usually directly load the OS. Instead, it only

loads a portion of a boot loader residing in MBR into

the memory and transfers the control to the loaded

code. So TAM must measure the boot loader and the

OS image. We achieve this by intercepting the disk

data flow in the booting stage before it is processed by

the tapdisk driver, and measuring all the data received

by DME.

Runtime Stage During runtime, we dynamically

monitor which programs are loaded and where the pro-

tected data are loaded into the memory. System calls

are intercepted using X86 fast system call entry me-

chanism. X86 fast system call is generally used on

Windows XP and Linux kernel 2.6. The SYSENTER

instruction triggers the transition from the user mode to

the kernel mode. The kernel entry address is specified

by two special registers: SYSENTER_CS_MSR and

SYSENTER_EIP_MSR. Whenever user-mode applica-

tions require system services, the service number and

parameters are transferred into the kernel, and then the

instruction SYSENTER executes.

In our implementation, the value of register SY-

SENTER_EIP_MSR is set to a magic address which

leads to page fault every time by SCT. Whenever a

system call in the monitored VM is invoked, a page

fault occurs at the special address. When page fault

occurs and the page fault linear address is equal to the

magic address, it indicates that the system call has

happened, and its parameters related to the current

process are gathered to record reading/writing opera-

tions. Ultimately, the real entry address of a system call

 6

is set in the EIP register, and the handler executes in

the monitored VM.

It is dispensable to inspect all system calls and their

arguments. In fact, we focus on system calls for file

operations and loading modules and applications, such

as read, write, int_module, execve, and fork. Modules

are dynamically loaded into kernel space through in-

smod. Applications replace the current execution code

via the system call execve. The arguments of these sys-

tem calls may include the relative pathname of execut-

able files. The absolute pathname can be resolved ac-

cording to the task_struct structure of the current

process. After that, the pathname is transferred to DME.

If the protected data is loaded into the memory, ac-

cessing to the data is controlled by SCT. The most im-

portant thing is the data and the location of the data.

Through intercepting read system call, we can obtain

such information in real time. From the arguments of

read system call, the file descriptor and buffer address

are easily obtained. Similarly, the absolute pathname

can be analyzed through the file descriptor and the

task_struct structure of current process. This informa-

tion is passed to DME.

To control the access to the protected data in the

memory, we leverage Xen’s shadow paging mechan-

ism. This technique maintains two kinds of page tables

for each VM: guest page tables (GPTs), which are con-

trolled by the guest, and shadow page tables (SPTs),

which are controlled by the hypervisor. Xen controls

the actual machine frames used by each VM, while

also provides each guest OS the illusion that it has full

control of the memory. To achieve the memory access

control for protected data, we need to control the prop-

agation of entries from GPTs to SPTs and Xen’s page

fault handler.

We note that we can trace the page information that

the protected data is stored with protected page tables

(PPTs) created by SCT. SCT populates the PPTs with

references to the physical pages corresponding to the

linear address space of the protected data. Once the

access requirement to the protected data in memory

needs to be controlled, SCT removes references to the

program's protected pages from the SPTs and flushes

the TLBs. Due to this setup, access to code/data from

the SPTs to the PPTs or vice versa leads to page-faults

that invoke SCT in the hypervisor. This technique only

provides page-level protection, which is problematic if

a page contains protected and accessible regions at the

same time. We need to provide byte-level protection by

modifying Xen’s page fault handler. Each time a page

fault occurs due to a failed access operation, we check

the target’s virtual address, which is stored in the CR2

CPU register. Next, we check the protection list to see

if the target address requires protection. If yes, then a

page fault exception is propagated to the guest OS to

prevent the access attempt; if not, then the guest at-

tempts to access a non-protected region of a frame that

contains a protected region.

4.4. Decision-making Engine

DME processes the life cycle of an authority’s pro-

tected data according to information sent by TAM,

SCT, and the trust set defined by the authority. DME

supports the authority to describe its trust set and pro-

tected data in higher-level file system--oriented view,

by specifying which directories and files belong to the

trust set or which files are protected data, and 160 bit

hash values are used to identify the integrity of these

programs.

At the VMM layer, most of the operations captured

by TAM and SCT are low-level operations, which are

closely related to specific system architecture, while

the trust set and protected data are described with high-

er level semantics. DME translates the easy-to-manage

higher-level representations into a raw physical opera-

tion. Specific semantic information translation is close-

ly related to guest OS and selected file systems. DME

builds three structures called trust_inte_file, prote_file

and mem_pro_file for this purpose. The first two record

the translated results according to the authority’s trust

set and protection data, and the third records the mem-

ory address of the protected data. All the files and di-

rectories of the first two structures have a block node

including all the blocks which the directories and the

files have occupied.

When a target VM boots, DME firstly compares the

hash value of the boot loader and OS kernel image

with the values in trust_inte_file. If any of them does

not match, it means the boot loader or Os kernel image

is not satisfied with the authority’s requirement. The

access permit bit of the prote_file is set. After initiali-

zation, for each change DME reads a new record from

the tap FIFO sent by TAM. Next, the record’s block

number is hashed into the trust_inte_file and prote_file.

If the record's block number is found in the prote_file,

it indicates that this disk I/O operation is accessing the

protected data. DME then checks the access permitted

bit. If the bit is set, which means the authority expected

trusted environment is broken, the access requirement

should be denied. DME sends a deny operation instruc-

tion to TAM. Otherwise, if the access permitted bit is

not set, DME checks whether the measurement buffer

is empty. Because loaded kernel modules and pro-

grams are measured asynchronously with file reading

operations, DME must wait until all the measurements

are finished. If the protected data is allowed to access,

for a reading operation, DME sets an opening bit to

indicate the protected data is to be loaded into memory.

For a writing operation, DME records the block with

 7

the change of the protected data after the writing opera-

tion is completed.

If the block numbers are matched in trust_inte_file,

which means the disk I/O operation is accessing the

trust set. For a reading operation, if the file has never

been measured before or has been changed, DME

sends the measurement instruction (including the entire

block this fill occupied) to TAM. The hash value is

compared with that in trust_inte_file. If the hash value

hits in trust_inte_file, it indicates that the loaded data

and program are satisfied with the requirements of the

authority. On the contrary, if it misses, the access per-

mitted bit is set. DME also needs to verify whether the

kernel modules and user-level executables come from

trust set. According to the description in Section 4.3,

TAM can capture the path information of them so

DME can match the path information in trust_inte_file.

If they do not match, the access permitted bit is set.

Then DME checks whether the opening bit is set. If

it is set and the permit access bit is set too, it indicates

that some protected data is load into the memory and at

the same time the integrity of system is broken, DME

then sends memory protected instruction to SCT.

In order to minimize performance impact, we take a

new measurement only if a target file has not been

measured or it might have been changed since last

measurement in trust_inte_file. So we use caching to

reduce performance overhead.

5. System Evaluation

In this section, we first demonstrate the integrity

protection capability of our implementation, and then

analyze its performance overhead.

5.1. Security

Due to space limit we present a simple experiment

to demonstrate our system's capability of dynamically

detecting the integrity change of programs defined in

an authority’s trustset and protecting the authority’s

sensitive data.

[root@localhost disk_monitor_edit5]# ./monitor
**********env_check(dom_id)**********

**********parse_config(dom_conf)**********
Image :/root/guest/vm-ubuntu.img
ea24521cbaf6febb9f0f06349a986508 /etc/init.d/rc
e3756487011471f7753d5d94ce4b6af4 /etc/init.d/rc.local
6687b5585f865da7e7875b1d9cfff4a0 /etc/passwd
b59ea6ac3a1ad8c0527ec94f73bafca0 /etc/profile

 Fig. 3. Detecting the integrity change of programs.

As shown in Fig.3, when the integrity of the file

/etc/profile which is included in an authority’s trust set

does not match the hash value in the trust set which is

defined by the ordinary user the authority. Our imple-

mentation detects this change and protects the sensitive

data of the authority. The output is shown in Fig. 4.

[root@localhost-120 root]# ls -l
ls: cannot access protect.txt: Input/output error
total 0
-????????? ? ? ? ? ? protect.txt
[root@localhost-120 root]# rm -rf protect.txt
rm: cannot remove `protect.txt': Input/output
error
[root@localhost-120 root]#

Fig. 4. Protecting sensitive data of an authority.

5.2. Performance

Our prototype system runs on a 2.33 GHz Intel Core

Duo processor with 2 MB L2 cache, 2 GB RAM, and

80 GB 7200 RPM disk. The metrics include the latency

of disk I/O and system call tracing. We use notation

CHECK to represent the disk I/O with our design

which needs time to make decision, while use UN-

CHECK to represent the case in a common Xen system

without our design. M_HASH denotes file reading

operation with the file’s hash value measured. Mea-

surements are made using the Linux time command.

The script is executed in different file size. The size of

sampled files varies from 1KB to 10MB for each mode.

Table 1 presents the experiment results.

 We test the performance of system call tracing by

selected benchmarks which perform a standard series

of tests provided by Linux web servers, database serv-

ers, and CPU-intensive applications. We also measure

the efficiency of file compression and decompression

using Linux kernel source. The size of linux-

2.6.18.8.tar.gz is 58.6MB.

Table 1. The overhead of disk I/O (ms)

 1K 16K 128K 1M 10M

R_UNCHECK 7.7 17.8 107.8 862.4 10171.4

R_CHECK 8.7 21.8 139.6 864.2 12731.4

M_HASH 8.7 22.1 144.7 923.2 16322.2

W_UNCHECK 545.1 1173.2 5033.9 10580.2 16000.9

W_CHECK 547.2 1181.4 5097.9 10068.2 17623.9

Table 1 show that the Disk I/O performance over-

head can be negligible. Most of Hash measurement is

executed asynchronously with regard to actual disk I/O.

The asynchrony created by the use of a FIFO allows

DME, the most performance-intensive component of

 8

the architecture, to execute in parallel with actual disk

operations.

Fig.5 presents the performance of system calls trac-

ing. The results show that our implementation adds

extra latency to system calls. Latency-sensitive bench-

marks, such as web server benchmark, incur a relative-

ly high performance cost. The latency is mainly raised

by the notification of TAM. A full in-hypervisor im-

plementation would have much lower latency. In addi-

tion, system calls which require I/O access are not af-

fected by the extra latency in our current implementa-

tion.

Fig. 5. Performance of system call tracing.

6. Conclusions and Future Work

In this paper, we have presented the design and im-

plementation of a virtualization-based integrity protec-

tion approach which permits an authority to bind his

sensitive data with integrity requirements. Our ap-

proach can guarantee that the sensitive data specified

by an authority can only be accessed by programs in an

environment that the authority trusts. This approach is

applicable to multi-layer software environment where

an authority of the upper software can maintain the

security of the software when the integrity of underly-

ing software components is broken. Experimental re-

sults show that the design is effective and the overhead

is acceptable.

The main feature of our solution is that it can en-

hance the security of an ordinary commercial platform

with the same capabilities provided by IBM4785 secu-

rity coprocessor. Our solution not only measures and

reports the integrity of a system, but also protects the

sensitive data when the system’s integrity is compro-

mised. The approach can be applied in cloud or grid

computing environments with multiple independent

authorities to protect their sensitive data and to main-

tain the integrity of an entire system.

7. References

[1] Trusted Computing Group (TCG).

https://www.trustedcomputinggroup.org/, 2003.

[2] M. Ceccato, M.D. Preda, J. Nagra, C. Collberg, P. Tonel-

la, and S.W. Smith, Outbound authentication for programm-

able secure coprocessors, In: Proceedings of the 7th Euro-

pean Symposium on Research in Computer Security, London,

UK, 2002, pages 72-89.

[3] H. Maruyama, F. Seliger, and N. Nagaratnam et al.

Trusted platform on demand, Technical Report RT0564,

IBM TRL, 2004.

[4] R. Sailer, X.L. Zhang, T. Jaeger, and L.V.Doorn, Design

and implementation of TCG-based integrity measurement

architecture, In: Proceedings of the 13th USENIX Security

Symposium, August, 2004, San Diego, CA, USA, 2004,

pages 223-238.

[5] R.M. Donald, S.W. Smith, J. Marchesini, and O. Wild,

Bear: An Open-Source Virtual Secure Coprocessor based on

TCPA, Technical Report TR 2003-471, Department of Com-

puter Science, Dartmouth College, August 2003.

[6] S.W. Smith, and S. Weingart, Building a High Perfor-

mance, Programmable, Secure Coprocessor, Computer Net-

work, 1999, pages 831-860.

[7] T. Garfinkel, B. Pfaff, P.J. Chow, P.M. Rosenblum, and

P.D. Boneh, Terra: a virtual machine-based platform for

trusted computing, In: Proceedings of the nineteenth ACM

symposium Operating systems principles, NY, USA 2003,

pages 193-206.

[8] T. Jaeger, R. Sailer, and U. Shankar, PRIMA: policy

reduced integrity measurement architecture, In: Proceedings

of the eleventh ACM symposium on Access control models

and technologies, NY, USA, 2006, pages 19-28.

[9] T.F. Lomac, Low water-mark integrity protection for cots

environments, In: Proceedings of the 2000 IEEE Symposium

on Security and Privacy, Washington, DC, USA, 2000, pages

230-245.

[10] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L.V. Doorn,

S.W. Smith, and S. Weingart, Building the IBM 4758 Secure

Coprocessor, IEEE Computer, 34(10), 2001, pages 57-66.

[11] J. Zhan, H.G. Zhang, Trusted Computing Enabled

Access Control for Virtual Organizations, Computational

Intelligence and Security Workshops, 2007, pages 490-493.

[12] Warfield, Virtually persistent data, In: Xen Developer’s

Summit (Fall 2006), 2006.

[13] P. England, B.W. Lampson, J. Manferdelli, M. Peinado,

and B. Willman, A trusted open platform, IEEE Computer,

36(7), 2003.pages 55–62.

[14] Intel Virtualization Technology. http://www.intel.com

/technology/virtualization.

[15] Advanced Micro Devices. AMD64 virtualization: Se-

cure virtual machine architecture reference manual. AMD

Publication no. 33047 rev. 3.01 May 2005.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4425422
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4425422
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4425422

