
Supporting Ad-hoc Collaboration with Group-based
RBAC Model (Invited Paper)

Qi Li∗, Xinwen Zhang†, Sihan Qing∗ Mingwei Xu‡
∗Institute of Software, Chinese Academy of Sciences, Beijing 100080, China

Beijing ZhongkeAnsheng Corporation of Information Technology, Beijing 100080, China
Graduate School of Chinese Academy of Sciences, Beijing 100049, China

Email: liqi01@tsinghua.org.cn; qsihan@ercist.iscas.ac.cn
†Department of Information and Software Engineering, George Mason University, Fairfax, Virginia 22030, USA

Email: xzhang6@gmu.edu
‡Department of Computer Science, Tsinghua University, Beijing 100084, China

Email: xmw@csnet1.cs.tsinghua.edu.cn

Abstract— With the increasing accessibility of information
and data, Role-Based Access Control (RBAC) has become a
popular technique for security and privacy purposes. However,
trusted collaboration between different groups in large corporate
Intranets is still an unresolved problem. The challenge is how
to extend existing access control model for efficient security
management and administration to allow trusted collaboration
between different groups. In this paper, we propose a group-based
RBAC model (GB-RBAC) for this purpose. In particular, virtual
group is proposed in our model to allow secure information and
resource sharing in multi-group collaboration environments. All
the members of a virtual group build trust relation between
themselves and are authorized to join the collaborative work.
The scheme and strategies provided in this paper meet the re-
quirements of security, autonomy, and privacy for collaborations.
As a result, our scheme provides an easy way to employ RBAC
policies to secure ad-hoc collaboration.

I. I NTRODUCTION

Role-based Access Control(RBAC) [6] has emerged as a
security technique for variant applications, and is the most
attractive solution in intra-domain environments. However,
with the development of these applications and the increas-
ing information and data sharing between applications and
domains, there are many security demands for collaborative
work between different domains, and the original RBAC model
cannot provide efficient authorization management in these
environments.

The problem of collaboration in multi-domain environments
is proposed by Gonget al. [1], and this work devotes to
the solution of policy composition in distributed systems. Re-
cently, several research efforts have been devoted to the topic
of interoperation in multi-domain environments [7], [2], [4],
[3]. In [3], Kapadiaet al. propose a dynamic role translation
model, and serval security issues are provided. Shafiqet al. [7],
Piromrun et al. [4] and Joshiet al. [2] propose a series of
secure interoperation schemes. In [2], Joshiet al. propose an
XML based RBAC to specify multidomain policies. In [7],
[4], solutions are proposed based on the Generalized Temporal
Role Based Access Control Model (GTRBAC). In [7], Shafiq
et al.analyze three types of violations when integrating RBAC

policies: user-specific separation of duty (SoD) violation, role-
specific SoD violation, and role-assignment violation. For
example, a role-assignment violation happens when a user of
a domain is allowed to access a role even though the user
is not directly assigned to the role or any of the roles that
are senior to the role in the role hierarchy of the domain. In
addition, Piromrunet al. transform local GTRBAC policy to
facilitate inter-domain interoperations [4]. These approaches
use bottom-up approach to composite RBAC policies and have
to address many problems when emerging polices, such as role
covert promotion1 and all kind of violations above mentioned.
Toloneet al. [8] discuss access control requirements in collab-
orative systems and analyze existing access models including
RBAC in collaborative environments.

In this paper, we propose a permission-driven collaboration
scheme which utilizes the concept of virtual group in an
advanced RBAC model called Group-based RBAC model
(GB-RBAC). In this scheme, direct role mapping mechanism
is eliminated for collaborations, thus many problems above
mentioned disappear. With a novel administrative model of
GB-RBAC, our scheme is an top-down approach to address
the ad-hoc collaboration issue in distrusted environments and
it also avoids the problem of SoD violations when integrating
RBAC policies.

The paper is organized as follows. In Section II, a brief
description of GB-RBAC and corresponding administrative
model is presented. Section 3 explains the ad-hoc collaboration
scheme with GB-RBAC, and Section 4 concludes this paper
and presents some future work.

II. T HE GB-RBAC MODEL

The GB-RBAC model incorporates the component of groups
into the RBAC96 [6] model and provides decentralized role
administration. GB-RBAC indirectly imposes access control
on a user’s action after this user is authenticated and assigned
to a set of roles by default. Figure 2 shows the components of

1The covert promotion problem appears when a user crosses group bound-
aries and returns to a local group with a role senior to his original roles in
the group [3] .



a GB-RBAC model. The concepts of users (U), roles (R), role
hierarchy (RH), permissions (P), permission-role assignment
(PA), and sessions (S) are identical to the original RBAC96
model [6]. Besides these, a GB-RBAC model includes a set of
groups (G). Each group is assigned with a set of roles (group-
role assignment or GA). A user can belong to one or more
groups, which is represented as the user-group mapping (UM).
In addition, we propose two layers of roles which are referred
as system-level roles (SR) and group-level roles (GR).

UM

GA

SUA

GUA

RH

R

ROLES

U

USERS
PA

UM: USER MAPPING

GA: GROUP ASSIGNMENT

RH: ROLE HIERARCHY

GUA: Group-level USER

ASSIGNMENT

SUA: System-level USER

ASSIGNMENT

PA: PERMISSION

ASSIGNMENT

G

GROUPS

S

SESSIONS

CONSTRAINTS

GR

SR

PA

CONSTRAINTS

P

PERMISSIONS

Fig. 1. GB-RBAC model

The formal definitions of individual components in GB-
RBAC are defined as follows.

Definition 1: A GB-RBAC model has the following com-
ponents:

• U , P , SR, GR, S, and G (users, permissions, system-
level roles, group-level roles, sessions, and groups, re-
spectively).

• R = SR ∪GR, whereSR ∩GR = ø
• PA ⊆ P × R, a many-to-many permission to role

assignment relation.
• UM ⊆ U × G, a many-to-many user to group mapping

relation. This relation shows that a user can be mapped
into many different groups.

• GA ⊆ G×R , a many-to-many group to role assignment
relation.

• SUA ⊆ U × SR, system-level user-role assignment.
• GUA ⊆ U ×GR, group-level user-role assignment, and

(u, r) ∈ GUA only if ((u, g) ∈ UM) ∧ ((g, r) ∈ GA).
• UA = SUA ∪ GUA, a many-to-many user-role assign-

ment relation.
• RH ⊆ R × R, a partial order on R called the role

hierarchy or role dominance relation. For any two roles

r1 andr2, r1 ≥ r2 means thatr1 has partial relation over
r2.

• user : S → U , a function mapping each sessions to a
single user.user(s) is constant withins.

• permissions : R → 2P , a function mapping a role to a
set of assigned permissions.

• roles : S → 2R, a function mapping a session to a set
of roles, androles(s) ⊆ {r|(∃r′ ≥ r)[(user(s), r′) ∈
UA]}, which may change within sessions, and session
s has the permissions

⋃
r∈roles(s){p|(∃r′′ ≤ r)[(p, r′′) ∈

PA]}
Through the concept of group in Definition 1, we introduce

the concept of default group role set (Dset).
Definition 2: The default role set of a groupDset : G →

2R is a subset ofR, and∀u, r, (u, g) ∈ UM∧r ∈ DSet(g) →
(u, r) ∈ GUA. That is, a user who is mapped to a group
obtains all the roles in the default role set of the group
automatically.

In GB-RBAC, we propose two layers of roles through the
group. In this way, a user assigned to some system-level roles
(SR) can be assigned some group-level roles (GR) if he is
affiliated with some groups. The user assigned to SR and
GR gets different scopes of permissions. Besides the user-role
assignment in the system scope, which is similar to the user-
role assignment in URA97 [5], there is another type of user-
role assignment which happens in group scope. Specifically, as
UM associates users with groups and GA associates roles to
groups, a group administrator can assign a user in the UM
to a role in the GA, which is called group-level user-role
assignment (GUA), while the previous one is called system-
level user-role assignment (SUA). In another word, GUA
serves as the mechanism through which a role can be assigned
to a user because the user belongs to a group and the role is
assigned to the group, and then the user holds the permissions
to access resources defined with the group-level role. In
addition, GB-RBAC providesDset through which a new user-
role assignment mechanism is realized to reduce administrative
tasks. In this way, a new member of a group can be assigned
some default roles without administrator’s involvement, and
group administrators can assign other explicit roles to group
members based on roles inDset. A GB-RBAC model also can
have constraints defined on many aspects shown in Figure 2.
Besides the constraints on SUA, PA, RH, and sessions which
are similar to those in RBAC96, GB-RBAC introduces new
constraints on UM, GA, and GUA. This paper does not cover
detailed specifications of constraints in GB-RBAC.

Two-level administration models referred as system-level
and group-level administration model, respectively, are pro-
posed to manage the relations defined in GB-RBAC. For
these two administration levels, two types of administrative
roles are defined in the administration model, called system-
level administrative roles (SAR) and group-level administra-
tive roles (GAR). These administrative roles also can form role
hierarchies, respectively, similar to that of the regular roles in
GB-RBAC. For simplicity we assume thatSAR∩GAR = ø.
The notion of prerequisite condition in different types of



assignments is the key of our administrative model. There
are three types of prerequisite conditions: user prerequisite
conditions, permission prerequisite conditions, and group pre-
requisite conditions.

Definition 3: A user prerequisite conditionis defined as a
boolean expression using the usual∧ and∨ operators on terms
of the formx andx , wherex is a regular role (i.e.,x ∈ R)
or a group (i.g.,x ∈ G). A prerequisite condition is evaluated
for a useru by interpretingx to be true if any of the follows
is true:

• if x ∈ R, ∃x′ ≥ x, (u, x′) ∈ UA;
• if x ∈ G, (u, x) ∈ UM .

and interpretingx to be true if any of the follows is true:

• if x ∈ R, ∀x′ ≥ x, (u, x′) /∈ UA;
• if x ∈ G, (u, x) /∈ UM .

For a given set of roles R and G, letCRu denote all possible
user prerequisite conditions that can be formed.

A user prerequisite condition tests a user’s membership
of role(s) and group(s). As the membership of a role tests
both SUA and GUA, the prerequisite condition define above
is at least as expressive as that in URA97 [5]. Similarly, a
permission prerequisite condition can be defined to test if a
permission is assigned to a role or not. The set of all possible
permission prerequisite conditions is denoted asCRp.

Definition 4: A group prerequisite conditionis defined as
a boolean expression using the usual∧ and ∨ operators on
terms of the formx and x , wherex is a regular role (i.e.,
x ∈ R). A prerequisite condition is evaluated for a groupg
by interpretingx to be true if∃x′ ≥ x, (g, x′) ∈ GA, and
interpretingx to be true if∀x′ ≥ x, (g, x′) /∈ GA. For a given
set of roles R, letCRg denote all possible group prerequisite
conditions that can be formed.

A group prerequisite condition checks the GA relation to
test the membership/nonmemberships of a group, which is
used in the administration of group-role assignment.

Definition 5: System-level administrative grant model in
GB-RBAC

• user-role assignment in SUA is controlled by means of
the relationcan assign SUA ⊆ SAR× CRu × 2R.

• permission-role assignment in SPA is controlled by the
relationcan assignp PA ⊆ SAR× CRp × 2R

• user-group mapping in UM is controlled by means of the
relationcan assign UM ⊆ SAR× CRu × 2G.

• group-role assignment in GA is controlled by means of
the relationcan assign GA ⊆ SAR× CRg × 2R.

Definition 6: Group-level administrative grant model in
GB-RBAC

• user-role assignment in GUA is controlled by the relation
can assign GUA ⊆ GAR× CRu × 2R.

Specifically, a relation in above two definitions has three
parameters(x,y,{z}), which means that a member ofx can
assign a user/permission/group to be a member of role in
role range{z} if the user/permission/group satisfies the cor-
responding prerequisite conditiony. Note that in a GB-RBAC
model, users (e.g., user accounts), roles and permissions are

TABLE I

ADMINISTRATION CONTROL RULES

Type Admin. Rrereq. Condition Group
Role /Role Range

can assign UM E-SSO ER1 {@PRO1}
can assignp PA E-SSO PL1 ∧ QE1 [PE1, PE1]
can assign GUA PM @PRO1∧ QE1 {PE1}

created by the system administrators2, and group administra-
tors can manage their relations in the group level.

As an example, consider a set of administration rules defined
in the organization as Table I shows. We put an ’@’ in front
of the group names to distinguish with role names. A group
(PRO1) is created to develop a group level administration
domain. The roles are created as shown in the Figure 2: the
figure above the dashed line presents the system level roles;
the figure below the dashed line presents the group level roles.
These two levels of roles both contain two types of roles: the
normal roles such as resAA in the system level roles, PL1
in the group-level roles, and the administrative roles such as
S-SSO in the system-level roles, GD in the group-level roles.
Role hierarchy also exists among these roles in Figure 2. For
example, there is a role hierarchy between the two system
level roles: a junior-most role resAA and a senior-most role
resAO. Between them, there are two other incomparable roles,
resAD and resAM.

Now let us consider that Alice is a member of the system ad-
ministrative role E-SSO, and Bob is a member of the role ED.
According to rulecan assign UM (E-SSO,ER1,{@PRO1}),
Alice can assign Bob to group PRO1. Alice also can assign
permission from the role PL1 assigned to PE1 since the rules
can assignp PA(E-SSO,PL1∧QE1, [PE1, PE1]). Due to
the space limitation, we skip the example of system-level
role assignment rule which is similar with URA97 [5]. Now
we change the scope to group level administrative rules. We
assume Carol is a member of PM and Bob is a member of
group PRO1, Carol can assign Bob to PE1 if Bob is not a
member of QE1, according tocan assign GUA(PM,@PRO1
∧QE1, {PE1}) 3.

The revocation rules in GB-RBAC is controlled by
can revoke relations.

Definition 7: In system-level administration revocation
model,

• user-role revocation in SUA is controlled by means of the
relationcan revoke SUA ⊆ SAR× 2R.

• permission-role revocation in PA is controlled by means
of the relationcan revokep PA ⊆ SAR× 2R.

• user-group unmapping in UM is controlled by means of
the relationcan revoke UM ⊆ SAR× 2G.

• group-role revocation in GA is controlled by means of
the relationcan revoke GA ⊆ SAR× 2R.

2For simplicity, the administration model introduced in this paper does not
include corresponding rules to create users, roles, and permissions, as well as
role hierarchy administrations.

3The rules on GA is an application-specific issue, and this paper do not
cover it.



Engineering SSO

(E-SSO)

Senior SSO

(S-SSO)

resA Access

(resAA)

resA

Dissemination

(resAD)

resA Owner

(resAO)

resA

Modification

(resAM)

System Level Role

Group Level Role

Group PRO1 Group PRO2 Group PRO3

Engineer 1

(ER1)

Production

Engineer 1

(PE1)

Project Leader 1

(PL1)

Production

Manager

(PM)

Group

Director

(GD)

Quality

Manager

(QM)

Quality

Engineer 1

(QE1)

Fig. 2. Different level of roles in GB-RBAC

Definition 8: In group-level administration revocation
model,

• The user-role revocation in GUA is controlled according
to the relationcan revoke GUA ⊆ GAR× 2R.

Specifically, there also are five types ofcan revoke(x, z),
which means an administrative member of role x can revoke
a user, a member of permission or group for role (or group) z.
Due to the space limitation, we skip the example of system-
level role revocation rule which is similar with URA97 [5].
Let Alice be a member of E-SSO, and Bob be a member
group PRO1 and role PE1. With rulecan revoke UM (E-
SSO,@PRO1), Alice is authorized to revoke membership of
Bob from group PRO1. Through the rulecan revokep PA(E-
SSO, [ER1, PL1]), Alice can revoke permissions from any
role range ER1 and PL1. Now we change the scope to group
level administrative rules. The rulecan revoke GUA(PM,
(ER1,PL1)) indicates that Carol who is a member of PM can
revoke Bob from PE1.

TABLE II

REVOCATION CONTROL RULES

Type Admin. Role Group/Role Range
can revoke UM E-SSO {@PRO1}
can revokep PA E-SSO [ER1, PL1]
can revoke GUA PM (ER1, PL1)

The GB-RBAC model and corresponding administrative
model we discussed above are the fundamental work for our
secure collaboration scheme. Our model not only simplifies
the administrative tasks by the two level administrative model,
but also provides a flexible administration for some dynamic
application. For example, a serial of Video IP conferences

are held in the scope of a group. Based on the permissions
illustrated in Table III, the members of PL1, PE1, QE1 and
ER1 can join this conference, and the members of PL1, PE1
and QE1 can speak in the conference. The member of PL1 not
only has the permission to host this conference, but also can
administrate GUA and change the these assignment through
the group administrative rules above.

TABLE III

EXAMPLE OF ROLE ASSIGNMENT

Role Permission Role Permission
PL1 conf1 host PL2 conf2 host
PE1 conf1 speak (P1) PE2 conf2 speak

prog1upload (P2) prog2upload
QE1 conf1 speak QE2 conf2 speak (P3)

prog1 report prog2 report (P4)
ER1 conf1 join ER2 conf2 join

III. A D-HOC COLLABORATION SCHEME IN GB-RBAC

This section first identifies the generic access control re-
quirements for ad-hoc collaborations, and then presents our
solution with GB-RBAC.

A. Ad-hoc Collaboration Scheme

We first identify two important features of ad-hoc collabora-
tions which determine access control requirements. In this pa-
per, a group identifies an autonomous domain. A collaboration
scheme should enable management autonomy in individual
groups and information exchangeability between groups.

Previous work result in many violations/conflicts [7], [3]
when a collaboration between different groups happens. Most
of previous work implement collaborative through direct role
map relations between different groups, where violations or
problems happen such as user-specific SoD violation, role-
specific SoD violation, role assignment violation [7] and role
promotion [3]. In our work, we propose the concept of virtual
group, and roles which are involved in collaborative work are
exported into a virtual group from their original groups. In this
way, most of violations/problems are eliminated such as the
SoD violations mentioned above, and some constraints such
as induced SoD are disposed at user-role assignment stage.
However, our scheme have the following conflicts: conflicts
of user names, role names and permission names; conflicts of
permissions of roles in different groups. We analyze and solve
these conflicts in the later of this section.

B. Collaboration Grant and Revocation in GB-RBAC

In order to support ad-hoc collaboration with GB-RBAC,
we propose a special group: virtual group (VG). A VG has
the similar features as common groups except that it only
contains the links of the group-level components (roles and
permissions) exported from the collaborative groups. Figure 3
illustrates application of VG.

In this paper, we focus on the ad-hoc collaboration admin-
istration in the group level administration model. Actually,
the system-level administrators can also administrate collab-
orations. If the system-level administrators are involved in



ER1

PE1 QE1

PL1

ED

ER2

PE2 QE2

PL2

resAA

resAO

PD

Group PRO1 Group PRO2
System-level

Role

Group-level

Role

Group-level

Role

Set of roles

exported to VG

resAD

Set of roles

exported to VG

Virtual Group(VG)

Fig. 3. Collaboration between groups with GB-RBAC

collaborative work, the procedure is simpler and it is more
like an intra-domain work. So we discuss the scenario that
the work only involves group-level administrators. In this
paper, the scheme only involves group-level administrators.
Collaboration building procedure is implemented as following
steps: 1) A collaboration request is sent to the collaborative
groups by an administrator of a group (called the VG founder),
and the response is sent back to the founder; 2) The ad-
ministrators of all the collaborative groups build VG using
ColGrant Algorithm; 3) The VG administrators are elected
from the collaborative group administrators. For simplicity, in
this paper we assume that all the collaborative group admin-
istrators are the VG’s administrators; 4) User-role assignment
can be performed by the VG administrators by the user-role
administration model in Section 2. 5) All the members of
VG can start the collaborative work, and some collaboration
modification can be realized using ColUpdate Algorithm. 6)
The collaborative work finishes, and the administrators of
normal groups who leave the VG last destroy the VG.

In a collaboration between groups, group-level permissions
and roles can be exported into the virtual group. In Figure 3,
PRO1 exports{ER1,PE1,QE1,PL1} to VG, and PRO2 exports
{ER2,PE2,PL2} to VG. In this way, VG contains the links
of roles {ER1,ER2,PE1,QE1,PE2,PL1,PL2} and the links of
corresponding permissions. In this way, all the members
assigned some specific roles in VG can act as appropriate
roles in collaborative work respectively no matter where they
come from.

For a group level collaboration scheme, there are three cases
we should consider. Before we analyzing these three cases,
we give the definition of role conflict which may exist when
roles in different groups are exported to a virtual group, and
the definition of role naming mechanism which is used in the
process of building role collaboration.

Definition 9: Role rj conflicts with ri in a virtual
group V G if ∃p1, p2, p3, p4 ∈ P, (p1, p2) ⊆
permissions(ri) ∧ (p3, p4) ⊆ permissions(rj) ∧

linked(ri, V Gy)∧¬linked(rj , V G)∧♦(p1, p3)∧¬♦(p2, p4),
where linked(r, V G) is a predicate that tests whether
r has been exported intoV G, and ♦ denotes that two
permissions can be obtained by a user through roleri andrj

simultaneously.
Conflict betweenri and rj happens if there exist two

permissions ofri andrj can be acquired by a user while two
permissions can not be acquired by the user simultaneously,
e.g., according to SoD constraints. For example, as illustrated
in Figure 4(c), P1 and P2 are permissions contained in role
QE2, P3 and P4 are contained in role PE1 (The details of per-
mission can be found in Table III). Although P1(conf1speak)
and P3(conf2speak) can simultaneously achieved by a user
(that is, the user can speak both at conference1 and conference
2), P2 and P4 must be exclusively achieved by the user because
the user should not simultaneously have the permissions to
perform the program1 upload operation and program2 report
operation, according to the organization’s policy. Based on the
Definition 9, there exists role conflict.

If a role conflict defined in Definition 9 exists, we need split
role rj into two parts, e.g., by creating two roles and assigning
P2 and P4 of QE2 to these two roles, respectively. In order to
simplify the role collaboration scheme, a naming mechanism
is defined as follows.

Definition 10: When exporting the components of a collab-
orative group into a virtual group,

• if a name conflict exists, the new name of the role or
permission is its original name plus the collaborative
group name;

• if a role conflict exists, the new name of the conflicting
role is its original name plus the serial number of every
part after dividing the role.

For example, if a name conflict exists when QE1 from PRO1
is exported into VG, we name the role QE1PRO1. If a role
conflict exists, we divide a conflicted role into two parts. The
QE2 illustrated in Figure 4(c) conflicts with the role PE1 which
is already export to VG. Now we split QE2 and the name of



every part of QE2 is named as QE21 and QE22.
In general, we consider three cases when roles and permis-

sions are exported:
(1) Roles which can be directly exported into VG;
(2) Roles which can be partly exported into VG; That is, the

subset of permissions acquired by the roles can be exported.
(3) Roles which should be wholly exported into VG. How-

ever, some role conflicts exist between these roles and existing
roles in VG, and the set of permissions acquired by these roles
should be exported individually.

Figure 4 illustrates the scenario where QE2 of PRO2 is
exported to VG in different cases. In the first case, we simply
export all permissions of QE2 to VG, and we also can directly
export QE2. In the second case, only subset of permissions of
QE2 can be exported to VG. Specifically, we need to split
the permissions of QE2, and export the part with permission
P1 to VG. In the third case, QE2 and PE1 conflicts in VG.
Through the Definition 9, we should split the permissions of
QE2 into the subsets P1 and P2. We then need to create two
new roles QE21 and QE22 and add that roles to the set of P1
and P2. After that, QE21 and QE22 are be exported to VG,
respectively, and P1 and P2 also can be exported to VG.

All users and permissions in a virtual group do not contain
any genuine information. Actually, they are only link infor-
mation which denotes which component comes from which
group. However, a role in a virtual group is assigned with
permissions of its linked role. The names of the components
in virtual group directly use or derive from those of the original
components of collaborative groups.

P1 P2

QE2QE2

Virtual Group Group PRO2

P2 P1

(a) All Export

P1 P2

QE2 QE2
Virtual Group Group PRO2

P1

(b) Partial Export

P1 P2

QE22 QE21

Group PRO2

P2 P1

PE1

P4 P3

QE2

(c) Export in Presence of Role Conflict

Fig. 4. Role export scheme in GB-RBAC

Next, we present three algorithms which are used to build

a virtual group, update the components of a virtual group,
and destroy a virtual group, respectively. These algorithms
consider three cases mentioned above when exporting roles
and permissions of different groups to a virtual group. After
a virtual group is established, assigning users to roles in the
group can be performed by the group administrators following
the user-role administration model presented in Section 2. So
in this section we focus on the details of exportation of roles
and permissions.

ColGrant algorithm shown in Figure 5 describes the main
steps to build a virtual group among collaborative groups. In
the process of collaboration building, one of the administra-
tors 4 of the VG founder group creates a virtual group name
with the necessary parameters, including the names of other
collaborative groups. The algorithms starts by exporting the
founder group’s roles and permissions to the VG. Two cases
are considered here: If all permissions included in the group
roles need to be exported, the administrator directly exports
the roles and the corresponding permissions by usingrole −
link(r, V Gy) function; If only a subset of the permissions
need to be exported, the algorithm first creates a role link in
the context of the virtual group usingcreaterole function, and
then fetches permissions included in the roles of the group.
Throughinsert(r, p) function, the links of the corresponding
permissions are added intor if the test succeeds in the
exportable permissions usingexport− permission function.
If all the permissions are inserted into the new role link, the
link is attached to VG throughlink−role function. After that,
the algorithm achieves the updatedDset and assigns users to
the virtual group. This process makes sure that the virtual
group is created and the components of the initial group is
exported to the virtual group. Following similar process, the
administrators of other participant group can export necessary
roles and permissions to the virtual group. In each step we
check whether roles in the original group have identical names
with those in the virtual group. If there is any role name
conflict, we change the role name usingname − change
function and use the modified name as the name of role link.
Now we consider the three cases aforementioned and export
roles in a sound way. We have already mentioned the first two
cases in the first step. In the third case, we create two new
role links usingcreaterole function and insert the links of the
permissions into the corresponding role links. After attaching
the two role links to VG, we evaluateDset of the virtual
group, which is the union of theDsets of all the collaborative
groups.

Now we consider some examples about ColGrant algorithm
with Figure 4. In the first state, we assume that the adminis-
trator of PRO1 creates the virtual group (VG), and exports
all the roles of ER1, PE1, QE1 and PL1 and corresponding
permissions to VG. Because we achieve the permissions of
roles throughpermissions(r), these export procedures are
implemented by the role-link function. We assume thatDset

4The capability to initialize a collaboration is a group-level administrative
permission, which is not specified in this paper.



ColGrant Algorithm
1) Dsettmp ← Gx.Dset
2) if VGy = ø
3) VGy ← creategroup()
4) VGy = createVG();
5) for each role ri ∈ Gx.Rset

6) if all-export(permissions(ri))
7) role-link(ri,VGy)
8) else if part-export(permissions(ri))
9) rnew ← createrole()
10) for each pi ∈ permissions (r)
11) if export-permissions(pi)
12) insert(pi,rnew)
13) link-role(rnew,VGy)
14) if ri ∈Gx.DSet
15) Dsettmp ←Dsettmp∪rnew - ri
16) VGy.Dset←VGy.Dset∪ Dsettmp

17) else
18) for each role ri ∈Gx.Rset

19) if name-conflict(ri,VGy)
20) ri ← name-change(ri)
21)-30) similar with step 6)-15), we do not repeat it again
31) else if permission-conflict(ri, VGy)
32) permissionscon ← conflict-permissions(ri, VGy)
33) rnew ← createrole()
34) if export-permissions(permissionscon)
35) insert(permissionscon,rnew)
36) insert(permissions(ri)-permissionscon, rres)
37) link-role(rnew,VGy)
38) link-role(rcon, VGy)
39) if ri ∈ Gx.DSet
40) Dsettmp ← Dsettmp∪ rnew∪ rres - ri
41) VGy.Dset← VGy.Dset∪ Dsettmp

Fig. 5. ColGrant algorithm

in PRO1 is{ER1}, and we unite this set intoDset of VG.
So Dset of VG is {ER1}. In the second stage, PRO2 starts
to join VG using the algorithm. Because there exist no name
conflict and role conflict with the roles in current VG, we
directly export the roles{ER2,PE2,PL2} and corresponding
permissions to VG. We assume thatDset of PRO2 is{ER2,
PE2}, and we also unite this set intoDset of VG and the
value ofDset is {ER1,ER2,PE2}. With these steps, a simple
process of virtual group building is finished. The adminis-
trators of PRO1 and PRO2 become the administrators of the
virtual group, and these administrators can assign roles to
users throughcan assign GUA in group level administrative
model discussed in Section 2. In this way, the users in the
virtual group can be authorized with permissions and start the
collaborative work with each other.

We present two algorithms to update the components of
a virtual group (ColUpdate) (see Figure 6) and delete a
virtual group (ColRevo) (see Figure 7). Because the process
to add/delete a component into/from a virtual group is similar
to that in ColGrant, we do not present these issues in the
ColUpdate algorithm. In ColUpdate algorithm, we use a flag to
distinguish the different cases of role export. If the process of a
role update, we unlink the role and re-export the updated role.
In the ColRevo algorithm, we also need a flag to distinguish
the three different cases. If a role is directly exported into a

ColUpdate Algorithm
1) if action = add
2) similar with ColGrant Algorithm
3) else if action = del
4) similar with ColRevo Algorithm
5) else if action = mod
6) Initial Flag← 0;
7) if Gx.Rset 6= ø
8) for each role ri ∈Gx.Rset

9) rt ← name-change(ri)
13) if FindRole(rt) = false
14) rt ← ri
15) if FindRole(rt) = false
16) Flag← 1
17) else
18) rnew, rres ← name-tranform(rt)
19) Flag← 2
20) if permission-conflict(rt, VGy)
21) permissionscon ← conflict-permissions(rt, VGy)
22) if Flag = 2
23) permission-update(rnew,permissionscon)
24) permission-update(rres,

permissions(ri)-permissionscon)
25) else
26) role-unlink(rt,VGy)
27) rnew ← createrole()
28) insert(permissionscon,rnew)
29) insert(permissions(ri)- permissionscon, rres)
30) if (export-permissions(permissionscon)
31) link-role(rnew,VGy)
32) link-role(rcon, VGy)
33) else
34) if Flag = 2
35) role-unlink(rnew,VGy)
36) role-unlink(rres,VGy)
37) role-link(rt,VGy)
38) else
39) permission-update(rt,permissions(r))
40) if r ∈Gx.Dset
41) update the role name in Gx.Dset
42) update VGy.Dset using Gx.Dset

Fig. 6. ColUpdate algorithm.

virtual group, we delete the role link. However, if the role
is split into two roles when exported to the virtual group,
we should transform the role name and delete the role links.
If there exists no component in a virtual group, it can be
destroyed. Again, revoking users from the roles in a virtual
group is ignored here.

Note that a role link in a VG should be deleted and the role
should be re-exported when the role export case are different in
the different stages in the process of ColUpdate. For example,
we should consider the case that the permissions of a role
are entirely exported into VG and role conflicts happen in
ColUpdate.

We summary the main advantages of our scheme by com-
paring the previous work as follows: (1) Our collaboration
scheme avoids infiltration and covert promotion problem [3];
(2) We propose a top-bottom approach to merge RBAC poli-
cies of different groups, thus less constraints are considered.
Our top-bottom approach use a uniform naming mechanism



ColRevo Algorithm
1) Gx.Rset 6= ø
2) for each role ri ∈Rset

3) rtmp ← name-change(r)
7) if FindRole(ri) = false
8) rtmp ← ri
9) if FindRole(rt) = false
10) Flag← 1
11) else if
12) rnew, rres ← name-trnaform(r)
13) Flag← 2
14) if Flag = 2
15) role-unlink(rnew,VGy)
16) role-unlink(rres,VGy)
17) else
18) role-unlink(rtmp,VGy)
19) if users(VGy) = ø∧ roles=(VGy) = ø
20) deleteVG()

Fig. 7. ColRevo algorithm.

and two levels of roles to construct collaboration policies. In
this way, the violations in previous work are eliminated in
our scheme, and all constraints are leaved to be considered
at user-role assignment stage. (3) We use virtual group to
avoid direct role mapping, thus avoid many problems when
integrating RBAC policies. In addition, the number limit of
collaborative groups [4] is eliminated. (4) The permission-
driven mechanism in our scheme simply reduces the conflicts
of permissions.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose an ad-hoc collaboration scheme
in multi-group environment based on a group-based RBAC
model. The scheme proposes a component of virtual group
to enable secure collaboration between different groups. We
present three algorithms to transform components from col-
laborative groups to virtual groups and allow them to access
shared resources and information. In this way, Our scheme
provides an easy and secure solution to support ad-hoc col-
laboration.

Several aspects need further study in our scheme. First
of all, constraints for a virtual group need to be explored.
Moreover, the proposed scheme needs to be extended to
integrate advanced mechanisms and constraints to facilitate
overall policy administration.

ACKNOWLEDGMENT

The work of S. Qing was supported by the Beijing Nat-
ural Science Foundation under Grant No. 4052016; the Na-
tional Natural Science Foundation of China under Grant No.
60573042 and the National Grand Fundamental Research 973
Program of China under Grant No.G1999035802.

REFERENCES

[1] L. Gong and X. Qian. Computational issues is secure interoperation.
IEEE Transactions on Software and Engineering, 22(1):43–52, January
1996.

[2] J. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor. Access control language
for multidomain environments.IEEE Internet Computing, pages 40–50,
Novermber-December 2004.

[3] A. Kapadia, J. AI-Muhtdai, R. Campbell, and D. Mickunas. IRBAC
2000: Secure interoperability using dynamic role translation. InTechnical
Report: UIUCDCS-R-2000-2162, 2000.

[4] S. Piromruen and J. Joshi. An RBAC framework for time constrained
secure interoperation in multi-domain environments. InProceedings
of 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems(WORDS’05), pages 36–48, 2005.

[5] R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for
role-based administration of role.ACM Transactions on Information and
Systems Security, 2(1):105–135, February 1999.

[6] R. Sandhu, E. Coyne, H. Reinstein, , and C.Youman. Role-based access
control model.IEEE Computer, 29(2):38–47, February 1996.

[7] B. Shafiq, J. Joshi, E. Bertino, and A. Ghafoor. Secure interoperation in a
multidomain environment employing RBAC poilcies.IEEE Transactions
on Knowledge and Date Engineering, 17(11):1557–1577, Novermber
2005.

[8] W. Tolone, G. Ahn, T. Pai, and S. Hong. Access control in collaborative
systems.ACM Computing Surveys, 37(1):29–41, May 2005.


