
Towards a Group-based RBAC Model and
Decentralized User-Role Administration

Qi Li 1,2, Mingwei Xu 1,2, Xinwen Zhang 3

1Department of Computer Science, Tsinghua University, Beijing 100084, China
2Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

3Samsung Information Systems America, San Jose, CA, 95134, USA
{liqi,xmw}@csnet1.cs.tsinghua.edu.cn; xinwen.z@samsung.com

Abstract— Role-based Access Control (RBAC) has been widely de-
ployed in many distributed systems in recent years. However, in
many large-scale enterprise environments, it is difficult to manage
RBAC because of the huge number of users and roles, and complex
interrelationships between them. Moreover, with the development of
information and communication technologies, many temporal and ad
hoc collaborations between groups and departments are emerging, which
require dynamic user-role and permission-role assignments. In these
scenarios it is infeasible, if not impossible, for few security officers to
administrate the assignment for various applications. In this paper, we
propose a novel RBAC model for decentralized and distributed systems.
As one of the main contributions, we also propose a decentralized
administration model to address the management issues in traditional
RBAC systems, Our model can be used for group-based applications with
dynamic assignments where typically local (group-level) administrators
take charge of the dynamic assignments. In this way, many administrative
tasks for different applications can spread over many different local
administrators, and a fine-grained administration model of RBAC based
on the local administration policies is realized. As a proof-of-concept
system, we implemented a secure Spread prototype based on our proposed
model to show the feasibility in the real applications.

I. INTRODUCTION

The past decade has been seeing the emergence and wide use
of many e-commerce and e-government systems, Internet-based ser-
vices are becoming more and more important. Especially, with the
development of information and communication technologies, many
temporal and ad hoc collaborations between groups and departments
are emerging. To widely deploy these systems, an important concern
is the information security problem. To give a practical solution,
researchers have designed and implemented many access control
systems. Among them, Role-based Access Control (RBAC) is the
most attractive solution with the property of “policy-neutral” in
the sense that by using roles and constraints, a wide range of
security policies can be expressed, including Discretionary Access
Control (DAC), Mandatory Access Control (MAC), and User-specific
Access Control (USAC) [2], [5]. Because the numbers of roles and
users in an RBAC system vary from tens to thousands in large
enterprise systems, the management becomes an important issue.
Many researchers provide various administrative models for RBAC to
provide administration convenience and management efficiency [4],
[3], [11], [14], [9]. Besides these models, some reference models for
RBAC are proposed, such as the role graph model to implement the
administration of role-role hierarchy [8] and the group graph model
to provide group-role assignment [10].

However, these administration models mentioned above share the
same weaknesses: (1) it is difficult to manage RBAC components,
especially with hundreds or thousands of users, roles, and their
interrelationships, since in general only a small team of security
officers and individual department administrators are delegated to
manage these components; (2) the problem becomes worse with
dynamic user-role and permission-role assignments in large-scale

enterprise environments, where various group-based applications and
systems emerge [7]. For example, different video conferences always
need different users in a group to participate, so there must be many
administrative tasks for administrators to dynamically modify role
and permission assignments for video conferences. It is impossible
and infeasible for few local administrators to administrate these as-
signments. Therefore, the management issue of RBAC is an important
factor which directly restricts its deployment and usage.

Although some previous research work use partly decentralized
administration for RBAC, they are not flexible to use in dynamic
assignment environments. The main point is that the administration is
still under the control of an administration domain which consists of a
few administrators. Our motivation behind this issue is to simplify the
administration thus enhance the practicability of RBAC in dynamic
environments. In this paper, we propose a truly decentralized and
group-based RBAC (GB-RBAC) model by introducing the concept
of groups and modifying the user-role assignment model based on
Sandhu’s work [9], [14]. The GB-RBAC model retains the main
features of RBAC, and adds a default user-role assignment which
is enabled without administrator’s involvement. At the same time, a
group administrator can assign other explicit roles to a group member
based on local administrative policies in a fine-grained manner instead
of system administrators. Hence, fine-grained user-role assignment is
proposed in our model. Based on our advanced model, we provide
a new user authorization mechanism and a two-level administration
model to facilitate RBAC administrative issues. In this way, our model
supports decentralized management in a simple and efficient way. For
example, in group collaboration systems [7], group administrators
can add or modify assignments to meet the application and local
administration requirements without global administrators’ involve-
ment. It is a flexible administration mechanism for dynamic user-
role assignment. Moreover, the decentralized administration model
we proposed provides tunable group-level administration controlled
by system-level administration. Therefore, not only is user-role as-
signment for system administrator greatly simplified, but the principle
of the duty of separation is also embodied. With these features,
our administration model satisfies the requirement of autonomy
administration for RBAC, which is not solved completely by previous
work because of centralized administrative domain with few system-
level administrators, and thus supports ad hoc collaboration between
different departments/groups. In addition, we develop an authoriza-
tion framework based on the GB-RBAC model and the prototype of
the model shows the feasibility in the real distributed applications.

This paper is organized as follows. Section 2 summarizes previous
work in this field and the difference from our approach. Section
3 introduces our proposed GB-RBAC model. Section 4 presents
the administrative strategy which focuses on user-role assignment
aspect. The implemented prototype system with proposed scheme is

The 28th International Conference on Distributed Computing Systems Workshops

1545-0678/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.Workshops.2008.26

441

described in Section 5. Section 6 concludes this paper.

II. RELATED WORK

Sandhu et al define a set of RBAC models [15], [14]. After-
wards, Ferraiolo et al propose the NIST standard of RBAC [6].
Different architectures for RBAC services on the web are proposed
in [12]. In these RBAC models, however, static user-role association
is used, which is tedious to configure every user-role assignment.
Moreover, in the user-role administration model known as URA97
of ARBAC97 [14], multiple steps are needed to assign a user to
a role because the prerequisite conditions of user-role assignment
relations in URA97 are defined with regular roles, which form a
role hierarchy [14]. As a result, it is difficult to administrate the
policies when the model is deployed in a large enterprise system
because it has many groups or departments. Our GB-RBAC provides
a novel user authorization mechanism though DSet and a group-
level administration model. In this way, we do not need many steps
to assign many roles to a user, thus effectively reduce the steps
of assignments and duplicated user-role information. Moreover, our
administration model easily supports another fine-grained user-role
assignment besides previous administration model, because some
parts of administration tasks can be performed by group adminis-
trators based on the local administration policies.

ARBAC02 [9] addresses the multiple user-role assignments and
duplicated information problems by defining user-role relations based
on existing organization structure information as user pools and
permission pools, such as user’s position from human resource
department and permissions from IT department, instead of the
regular roles. The limitation of this model is that roles in a user pool
must have partial order relation. It results great constraints on user-
role assignment in a situation where there are many diverse discrete
roles. Another weakness in ARBAC’02 is that it requires predefined
user pools (OS-U) and permission pools (OS-P), and this introduces
complex tasks for administrators. To solve these problems, we add
the concept of groups into the existing RBAC model. A group can be
registered into proper role set and a user can be assigned to roles from
the role set. As a result, there are less complicated requirements and
user-role assignment becomes simpler. Because of this, our approach
significantly improves the administration of the system, especially in
large enterprise and web-based applications.

III. THE GB-RBAC MODEL

This section first provides the overview of our proposed model,
and then presents a formal description.

A. Overview of GB-RBAC

The GB-RBAC model proposed in this paper introduces the con-
cept of group, through which user-role assignment is implicitly and
explicitly conducted, which overcomes the weakness in most previous
work aforementioned. The essential difference between groups and
roles is that a group is a collection of users who have the similar
security attributes, while a role is a collection of permissions1 [13].

Figure 1 demonstrates all the components in GB-RBAC model
and how it works. Besides those in previous RBAC model, GB-
RBAC introduce two new components: groups and group leaders
(administrators). A group, as mentioned above, is a collection of
users and a group administrator is a user with the group admin-
istrative role, with which GB-RBAC model supports decentralized

1Although a role is considered as a set of users and permissions in
RBAC [13], for user-role administration purpose, we consider a role as a
set of permissions here.

resource

operations
perm

ssions

group

System Administrator
Common User
Group Leader

roles
group

Fig. 1. Overview of a GB-RBAC system

administrations. In Figure 1, there are two types of lines: the solid
lines denote data information flow and the dashed lines denote
management information flow. The dashed lines among the groups,
roles, permissions, and operations are also not seen in previous
models. Actually these dashed lines illustrate a type of administration
model. As shown in Figure 1, two levels of user administrations
can be provided in a GB-RBAC system. The first is the system-
level administration associated with centralized control over user-
role assignment, that is denotes by the dashed lines whose start
point is the node of the system administrator. The second is the
group level administration associated with decentralized control over
user-role assignment, which is denoted by the dashed lines whose
start point is the node of group leaders. In the rest of this paper,
the two terms, system-level administration model and group-level
administration model, refer respectively to these two administrative
approaches.

B. Model Description

GB-RBAC indirectly imposes access control on a user’s action
after this user is authenticated and assigned to a set of roles implicitly
or explicitly. Figure 2 shows the components in a GB-RBAC model.
The concepts of users (U), roles (R), role hierarchy (RH), permissions
(P), permission-role assignment (PA), and sessions (S) are identical to
those in the original RBAC96 model [15]. Besides these, a GB-RBAC
model includes a set of groups (G). Each group is assigned with a set
of roles (group-role assignment or GA). A user can belong to one or
more groups, which is represented as the user-group mapping (UM).

UM

GA

System-level
UA

Group-level
UA

RH

USERS

ROLES

P
PERMISSI-

ONS

U

USERS

R

ROLES

PA

UM: USER MAPPING
GA: GROUP ASSIGNMENT

RH: ROLE HIERARCHY
UA: USER ASSIGNMENT

PA: PERMISSION
ASSIGNMENT

G

GROUPS

GROUPS

S
SESSIONS

CONSTRAINTS

Fig. 2. GB-RBAC model

Besides the user-role assignment in system scope which is similar

442

to the user-role assignment in URA97 [14], there is another type of
user-role assignment which happens in group scope. Specifically, as
UM associates users with groups and GA associates roles to groups,
a group administrator can assign a user in the UM to a role in the
GA, which is called group-level user-role assignment (GUA), while
the original one is called system-level user-role assignment (SUA).
In another word, GUA serves as the mechanism through which a role
can be assigned to a user because the user has a mapping relation with
a group and the role is assigned to the group, and then the user holds
the permissions to access resources defined with the role. Through
the mechanism of mapping users to groups (UM) and assigning role
to groups (GA), a new concept of default group roles set (DSet) is
introduced in GB-RABC, which indicates the set of roles assigned
to a group by default.

The formal definitions of individual components in GB-RBAC are
presented in the remainder of this section.

Definition 1: A GB-RBAC model has the following components:
• U , P , R, S, and G (users, permissions, roles, sessions, and

groups, respectively).
• PA ⊆ P × R, a many-to-many permission to role assignment

relation.
• UM ⊆ U×G, a many-to-many user to group mapping relation.

This relation shows that a user can be mapped into many
different groups.

• GA ⊆ G × R , a many-to-many group to role assignment
relation.

• SUA ⊆ U × R, system-level user-role assignment.
• GUA ⊆ U ×R, group-level user-role assignment, and (u, r) ∈

GUA only if there is a group g and (u, g) ∈ UM∧(g, r) ∈ GA.
• UA = SUA ∪ GUA, a many-to-many user-role assignment

relation.
• user : S → U , a function mapping each session s to a single

user. user(s) is constant within s.
• permissions : R → 2P , a function mapping a role to a set of

assigned permissions.
• RH ⊆ R×R, a partial order on R called the role hierarchy or

role dominance relation. For any two roles r1 and r2, r1 ≥ r2

means that r1 has partial relation over r2.
• roles : S → 2R, a function mapping a session to a set of roles,

and roles(s) ⊆ {r|(∃r′ ≥ r)[(user(s), r′) ∈ UA]}, which
may change within session s, and session s has the permissions⋃

r∈roles(s){p|(∃r′′ ≤ r)[(p, r′′) ∈ PA]}
Similar to that in RBAC96, GB-RBAC does not require each role

to be assigned to at least one permission and each user to be assigned
to at least one role. Also, GB-RBAC does not require each user to
be mapped to at least one group.

Through the concept of group in Definition 1, we introduce the
concept of default group role set.

Definition 2: The default role set of a group DSet : G → 2R is a
subset of R, and ∀u, r, g, (u, g) ∈ UM ∧ r ∈ DSet(g) → (u, r) ∈
GUA. That is, a user who is mapped to a group obtains all the roles
in the default role set of the group automatically.

The procedure to determine the permissions of a user in GB-RBAC
is described as follows. When a user logins a system or starts an
application, a session is created and a subset of the assigned roles of
the user is activated. The set of assigned roles of a user includes the
user’s directly assigned roles (through SUA), the roles in the DSet of
the group that the user is registered, and the roles that are assigned
by group-level administrators (through GUA). The user obtains all
the permissions assigned to these roles through PA. Users can also
change the activated roles in a session within his assigned roles. The

session can be terminated by the user or by the system, e.g., because
of a long idle duration. For simplicity in this paper we assume that
in a single session a user cannot change his group membership.

From the formal description of the model, we can see that the
use of roles in DSet of a group does not take effect when the
roles in the set are defined and there is no permission assigned
to them. In addition, as each user in the group is assigned to a
set of roles by default, user-role assignment can be changed by
the administrative roles including the system administrative users
and group administrative users. The detailed administration model
is described in Section 4.

IV. GB-RBAC ADMINISTRATION MODEL

This section first gives an overview of user-role administration in
GB-RBAC, then describes the formal model, and then discusses its
advantages over traditional administration models. Due to space limit
we focus on the use-role assignment while revocation is not included
in this paper.

A. Overview

The success of an access control system is heavily dependent upon
its administration, especially when the number of users and roles are
on a scale of thousands. Managing the access control components
and their inter-relationships is an important and formidable task.
Compared with previous RBAC models, our model introduces some
extra administration tasks, such as group-role assignment and user-
group mapping. The administration model of user-group mapping
(UM) is to classify the users into different groups and it is the duty
of the system-level administration model. The group-role assignment
(GA) is a novel mechanism for RBAC and this assignment is
similar to the user-role assignment to some extent, which is in
charged by system-level administrators. Besides these, the DSet of
a group is another administrative task that can affect the permission
propagation in the model. The management of DSet of a group can
be implemented in both administration levels. However, we consider
it in group-level administration since one of the motivation of the
model is to provide group-level autonomy administration, such that
a group administrator has the permission to assign users to the roles
in GA relation.

For these two administration levels, two types of administrative
roles are defined in the administration model, called system-level ad-
ministrative roles (SAR) and group-level administrative roles (GAR).
These administrative roles also can form role hierarchies, respectively,
similar to that of the regular roles in GB-RBAC. For simplicity we
assume that SAR ∩ GAR = ø. A user of a system administrative
role (or simply, a system administrator) can assign a user to a group
(through UM), but a user of a group administrative role (or simply,
a group administrator) can determine which role the user can be
assigned to. In this way, a type of separation of duty in different levels
of administration is provided. In addition, UM can be managed by
a administration model simpler than GA, and it does not add much
complexity into the administration model of GB-RBAC.

As Figure 3 shows, two level administration models respectively
referred as system-level and group-level administration model are
proposed to address all kinds of components defined in the GB-RBAC
definitions. Our administration model in this paper focuses on user-
role assignment, so the administration model proposed in this paper
will address these components in GB-RBAC: GA, UM, SUA, GUA,
and DSet.

Specifically, system-level administration model has three types of
administrative controls enforced on GA, UM, SUA , respectively,

443

while group-level administration model has two types of administra-
tive controls enforced on GUA and DSet, respectively. Note that we
do not address the administration of UA since it can be implemented
by the administration of SUA and GUA through the Definition 1.
Also note that as the controls on the DSet of a group defines the
default role set of the group members, it implicitly manages the user-
role assignment since a user of the group has the memberships of
the roles in DSet automatically. For example, in a temporal group
telephone conference, a role with common permission of connecting
the virtual conference room is defined in the DSet, which is assigned
to all users in the group by default. As a group’s DSet is very
application-specific, we do not explicitly define the rules to manage
DSet in this paper.

Different layers of administration controls provide administration
autonomy mechanism such that local administrators of a group can
assign a member of the group to some different roles if some assign-
ment conditions are satisfied (introduced shortly). It is another flexible
mechanism to administrate UA besides the mechanism provided by
DSet to deduce the administration tasks in first level administration
model.

Different level administration models have different responsibili-
ties: administration of GB-RBAC components with centralized con-
trol over users is in the system-level administration model, and admin-
istration in the group view is in the group-level administration model.
Figure 4 shows the scope of these two-level administrations. The
system level model operates in system scope to assign/revoke roles
to/from users, assign/revoke roles to/from groups, and map/unmap
user to/from groups, while the group level model operates in group
scope to assign/revoke roles to/from users, including defining roles
in DSet. For sake of simplicity we do not consider permission-role
and role-role assignments in this paper.

P
PERMISSIONS

U

USERS

System-level
Administration

R

ROLES

Group-level
Administration

G

GROUPS

PREREQUISITE
CONDITIONS

Fig. 3. GB-RBAC Administration Model

B. GB-RBAC Grant Model

1) User and Group Prerequisite Conditions: The notion of prereq-
uisite condition is a key concept of our decentralized administrative
model. Figure 4 illustrate the components of prerequisite conditions
that can be defined.

Definition 3: A user prerequisite condition is defined as a boolean
expression using the usual ∧ and ∨ operators on terms of the form x
and x , where x is a regular role (i.e., x ∈ R) or a group (i.g., x ∈ G).
A prerequisite condition is evaluated for a user u by interpreting x
to be true if any of the follows is true:

• if x ∈ R,∃x′ ≥ x, (u, x′) ∈ UA;
• if x ∈ G, (u, x) ∈ UM .

and interpreting x to be true if any of the follows is true:

• if x ∈ R,∀x′ ≥ x, (u, x′) /∈ UA;

• if x ∈ G, (u, x) /∈ UM .

For a given set of roles R and G, let CRu denote all possible user
prerequisite conditions that can be formed.

A user prerequisite condition can test a user’s membership of
role(s) and group(s). Note that a user’s membership of a group is
more than the combination of his memberships of the roles in the
DSet of the group, as a group administrator can assign the user to
some other roles in the group. Thus, the test of group membership
not only provides simplified administration but also an abstract of the
user’s role in group level.

As the membership of a role tests both SUA and GUA, the
prerequisite condition defined above is at least as expressive as that
in URA97 [14].

Definition 4: A group prerequisite condition is defined as a
boolean expression using the usual ∧ and ∨ operators on terms
of the form x and x , where x is a regular role (i.e., x ∈ R). A
prerequisite condition is evaluated for a group g by interpreting x to
be true if ∃x′ ≥ x, (g, x′) ∈ GA, and interpreting x to be true if
∀x′ ≥ x, (g, x′) /∈ GA. For a given set of roles R, let CRg denote
all possible group prerequisite conditions that can be formed.

A group prerequisite condition checks the GA relation to test the
memberships/nonm-emberships of a group in roles, which is used in
the administration of group-role assignment.

2) User-role Assignment: Authorizations on user-role assignment
in these two levels are controlled by the following rules.

Definition 5: In system-level administration model,

• user-role assignment in SUA is controlled by means of the
relation can assign SUA ⊆ SAR × CRu × 2R.

• user-group mapping in UM is controlled by means of the relation
can assign UM ⊆ SAR × CRu × 2G.

• group-role assignment in GA is controlled by means of the
relation can assign GA ⊆ SAR × CRg × 2R.

Definition 6: The user-role assignment in GUA is controlled by
the relation can assign GUA ⊆ GAR × CRu × 2R.

Specifically, a relation can assign SUA(x, y, {z}) or
can assign GUA(x, y, {z}) means that a member of the system
or group administrative role x (or an administrative role senior
to x) can assign a user to be a member of a role in role range
{z} if the user satisfies the prerequisite condition y; a relation
can assign UM(x, y, {z}) means that a member of the system
administrative role x (or an administrative role senior to x) can
assign a user to be a member of a group in {z} if the user satisfies the
prerequisite conditions y; and a relation can assign GA(x, y, {z})
means that a member of the system administrative role x (or an
administrative role senior to x) can assign a group to a role in role
range {z} if the group satisfies the prerequisite conditions y.

Suppose a short-term project is launched in an organization and a
temporal group (PRO1) is created to develop it. Corresponding roles
are created as shown in the left circle in Figure 4, and group and
system administrative role hierarchy in Figure 5. We explain how to
assign users to the roles to fulfill the project development by system
and group administrators collaboratively. A set of administration rules
are defined in the organization as Table I shows. We put an ‘@’ in
front of the group names to distinguish with role names.

Consider Alice is a member of the system administrative role
E-SSO, and Bob is a member of the role ED. According to rule
can assign UM(E-SSO, ED, {@PRO1}), Alice can assign Bob
to group PRO1. At the same time, according to the rule can assign
GA (E-SSO, , [ER1, PL1]), Alice also can assign any roles

between ER1 and PL1 to group PRO1 since there is no condition

444

Engineer 1
(ER1)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Project Leader 1
(PL1)

Engineering Department
(ED)

Employee (E)

Fig. 4. Example role hierarchy

Production
Manager

(PM)

Group
Director

(GD)

Quality
Manager

(QM)

Engineering SSO
(E-SSO)

Senior SSO
(S-SSO)

Fig. 5. Example administrative role hierarchy

specified. By assigning a role to a group, Alice enables that an ad-
ministrative role in the group can assign users to this role, according
to the local (group-level) policies defined as can assign GUA rules.
In this example, suppose Alice assigns ER1, PE1, QE1, and PL1
to PRO1, and Carol is a member of PM in PRO1. According to
can assign GUA (PM, @PRO1 ∧ QE1, {PE1}), Carol can
assign Bob to PE1 if Bob is not a member of QE1; and according to
can assign GUA(GD, @PRO1, PL1), if Carol is also a member
of GD in PRO1, then Bob can be assigned to PL1 by Carol. Note
that Alice can selectively assign roles to PRO1 in the role range,
or revoke the group-role assignment as discussed shortly. Thus an
adjustable group-level role range is achieved with our model.

An assumption in the administration model is that a system
administrator is trusted not to assign roles to conflicting groups. For
example, in above case, if role range [ER1, PL1] has been assigned
to PRO1, Alice and other administrators should not assign any of the
role in this range to other group 2 (say PRO2), otherwise a user from
PRO2 can have permissions in PRO1, e.g., to read/write sensitive
data, which is not allowed in general. This assumption is also used
in traditional RBAC administration models, e.g., administrators are
trusted not to assign two conflict roles to a single user.

Note that the example rules defined here is not a complete set of
rules to admin a system. For simplicity we ignore some administration
components such as to assign ER1 in the DSet of PRO1.

C. Advantages of Two-level Administration Model

We summary the main advantages of our administration model by
comparing it with ARBAC97 as follows.

2In this paper we do not consider group hierarchy in the model. If a group
belongs to another group, then a role can be assigned to both of them.

Type Admin. Rrereq. Condition Group
Role /Role Range

can assign UM E-SSO ED {@PRO1}
can assign GA E-SSO [ER1, PL1]
can assign GUA PM @PRO1 ∧ QE1 {PE1}
can assign GUA QM @PRO1 ∧ PE1 {QE1}
can assign GUA GD @PRO1 {PL1}

TABLE I
EXAMPLES OF ADMINISTRATION CONTROL RULES

1) Simplified User-role Assignment for System Administrators In
our model, an administrator only needs to specify the role range
of a group through GA relations. After that, group administra-
tors take charge of the user-role assignment in this local role
range. This significantly simplifies the management task by
delegating administrative permissions from centralized system-
level administrators to decentralized group-level administrators,
especially for dynamic and ad hoc collaborative applications.

2) Flexible Administration for Dynamic User-role Assignment
Group-level administration can flexibly support dynamic user
participation in group-based applications, as group-level ad-
ministrators typically can easily obtain user activities. With
pure system-level administration like that in traditional RBAC
models, it is tedious to manage user-role assignment in dynamic
environments.

3) Fine-grained User-role Assignment By enabling GUA, our
model supports fine-grained user-role assignment in group
level. Typically, a group administrator has more contextual
information about local security requirements in the group and
the users’ skills, thus user-role assignment in this level provides
fine-grained and context-aware authorization.

4) Tunable Group-level Administrations A system-level admin-
istrator can change the role assignment of a group, thus
change the roles that a group administrator can assign users
to. This greatly provides flexible and controlled group-level
administrative permissions.

V. PROTOTYPE AND PERFORMANCE EVALUATION

To show the feasibility and performance of our GB-RBAC model,
we implement a secure Spread prototype system, which enables
different group of members to start secure communication with
others.

The access control mechanism in Spread controls which user in
a group is able to communicate with other members of the group
in which way. Typically, the enhanced secure Spread provides the
following functions:

• A management module is implemented in the context of groups
in Spread, and administrators (hosts) of a group can manage the
session, e.g. a administrator can drop a group member’s session
dynamically.

• A access control framework is realized to control users’ com-
munication. In addition, in order to improve performance of the
access control mechanism, all the permission information is kept
in users’ session after users are authorized.

The Spread service in our prototype provides a platform from
different groups to communicate collaboratively. The core building
block of the service is the group communication system Spread [1].
The prototype architecture is similar to the general architecture
proposed in previous section. Specially, the policy service is built
based on Sun’s XACML [16].

445

Three machines are involved in the experiments: Spread server,
authorization server and client platform. The Spread server is builded
on a Linux-2.6.12 machine which has Pentium IV 1.7 GHz CPU and
640MB memory, and uses Spread 3.0, and the authorization server
are in Java 1.4.2 and working in Windows XP machine which has
Pentium M 1.7 GHz and 512MB memory. The user platform used
in the prototype system is built on a Fedora-2.5.9 machine which
has Centrino 1.3GHz CPU and 512MB memory. The message are
transferred through Socket among these three machines.

As a GB-RBAC decision is dynamically determined by subject,
object, action attributes and group that subjects belong to, the
performance of the system should be considered. Since the overhead
of the system is introduced in first user authorization, time variation
for all type the operations in Spread are same. So we only discussed
the performance of join events.

The performance of join events in user platform is presented in
Figure 6(a) which illustrates the performance with concurrent 40 join
events. The process time in different types of join events, with access
control (AC) and without AC, is increasing with more concurrent
join events (The time increase in join events is caused by different
join place in key tree). The largest process time of join event with
AC is about 380 msec, and the average is about 68 msec. Since
the time for policy process is very small (less than 100 usec)and
permission query in Spread server is stable (about 10 msec), the
main overhead is introduced by the socket connections among three
different platforms3. In addition, time variety in different join events
in Figure 6(a) is caused by TGDH-based session key negotiationand
the time to join spread sessions also varies when no access control
is enforced (illustrated in Figure 6(b)).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5 10 15 20 25 30 35 40

T
im

e
(u

s)

Group Member(#number)

Performance Data in Client with 40 Group members

with AC
without AC

(a) Performance result with 40 join events

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40

T
im

e
(u

s)

Group Member(#number)

Performance Data in Client without AC

without AC

(b) Performance result without AC

Fig. 6. Performance results in user platform

3In real applications, the authorization server and Spread server may be
deployed in one machine and the overhead will be greatly reduced.

VI. CONCLUSION

In this paper, we present an advanced RBAC model called GB-
RBAC and its user-role administration. The main advantage of the
model is convenience and flexibility for administration under large-
scale environments. Our model does not need to be used in a highly
central controlled environment, and provides two levels of adminis-
tration models for user-role assignment and reduces the complexity of
the administration of RBAC systems. Moreover, user-role assignment
in the group-level administration model provides a flexible way
to meet the requirements of group-level collaboration, i.g., users
from different groups form a virtual group for communication. The
prototype of the authorization framework based on GB-RBAC shows
the feasibility in the real distributed applications. As the future
work, based on the GB-RBAC model, small permission pools can
be implemented in the group-level administration model.

ACKNOWLEDGMENT

This work is supported by the Natural Science Foundation of China
(No. 90604024),the Key Project of Chinese Ministry of Education
(No. 106012), NCET and HI-Tech Research and Development Pro-
gram of China (863) (2007AA01Z2A2).

REFERENCES

[1] Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik. Secure spread:
An integrated architecture for secure group communication. IEEE
Transactions on Dependable and Secure Computing, 2(3):248–261, July
2005.

[2] D. Clark and D. Wilson. A comparison of commercial and military
computer security policies. In Proceeding of IEEE symposium on
Computer Security and Privacy, pages 184–194, 1987.

[3] J. Crampton. Understanding and developing role-based administrative
models. In Proceedings of 12th ACM Conference on Computer and
Communications Security, pages 158–167, 2005.

[4] J. Crampton and G. Loizou. Administrative scope: A foundation for
role-based administrative models. ACM Transactions on Information
and Systems Security, 6(2):201–231, May 2003.

[5] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings
of 15th National Computer Security Conference, pages 241–248, 1992.

[6] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli.
Proposed NIST standard for role-based access control. ACM Transac-
tions on Information and Systems Security, 4(3):224–274, August 2001.

[7] C. Nita-Rotaru and N. Li. A framework for role-based access control
in group communication systems. In Proceedings of International
Workshop on Security and Parallel and Distributed Systems, 2004.

[8] M. Nyanchama and S. Osborn. The role graph model and conflict of
interest. ACM Transactions on Information and Systems Security, 2(1):3–
33, February 1999.

[9] S. Oh, R. Sandhu, and X. Zhang. An effective role administration model
using organization structure. ACM Transactions on Information and
System Security, 9(2):113–137, May 2006.

[10] S. Osborn and Y. Guo. Modeling users in role-based access control.
In Proceedings of 5th ACM Workshop on Role-Based Access Control,
pages 31–38, 2000.

[11] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based
access control policies. ACM Transactions on Information and Systems
Security, 3(2):85–106, May 2000.

[12] J. Park, R. Sandhu, and G.J. Ahn. Role-based access control on the
web. ACM Transactions on Information and Systems Security, 4(1):37–
71, February 2001.

[13] R. Sandhu. Role versus group. In Proceeding of 1st ACM Workshop on
Role-Based Access Control, pages 1–12, 1995.

[14] R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model
for role-based administration of role. ACM Transactions on Information
and Systems Security, 2(1):105–135, February 1999.

[15] R. Sandhu, E. Coyne, H. Reinstein, , and C.Youman. Role-based access
control model. IEEE Computer, 29(2):38–47, February 1996.

[16] Sun’s XACML. http://sunxacml.sourceforge.net/.

446

