
A Security-Enhanced One-Time Payment Scheme for Credit Card

Yingjiu Li
School of Information Systems

Singapore Management University
469 Bukit Timah Road, Singapore 259756

yjli@smu.edu.sg

Xinwen Zhang
Lab for Information Security Technology

George Mason University
Fairfax, VA 22030, USA

xzhang6@gmu.edu

Abstract

Traditional credit card payment is not secure as semi-
secret credit card numbers are repetitively used. One-time
transaction numbers have been recently proposed to en-
hance the security in credit card payment. Following this
idea, we use a hash function in generation of one-time credit
card numbers: The next one-time number is computed by
hashing the current one-time number with a secret that is
known only by card holder and issuer. Compared with re-
lated work, our scheme places less burden on credit card
issuers, and can be easily deployed in both on-line and off-
line payment scenarios.

1. Introduction

Millions of dollars loss each year because of credit
card fraud has exposed the security weaknesses in tradi-
tional credit card processing system. In such system, cus-
tomers (i.e., credit card holders) repetitively use fixed credit
card numbers in all transactions. Because such numbers
are “sticky”, it is relatively easy for some attackers to steal
them. Some common ways are:

• Shoulder surfing: An attacker watches a customer from
a nearby location as the customer punches in his credit
card number or listens in on the conversation if the cus-
tomer gives his credit card number over the telephone
to a hotel or car rental company.

• Dumpster diving: An attacker goes through a cus-
tomer’s garbage cans or a communal dumpster or trash
bin to obtain copies of credit card statements or other
records that bear the customer’s identifying informa-
tion.

• Packet intercepting: An attacker sniffs e-commerce
packets during on-line credit card payment. In some
cases, the attacker does not need to break down the
possibly encrypted on-line payment packets (e.g., over

Secure Socket Layer), but fools the customer into
thinking that he/she is visiting an intended site but ac-
tually the attacker’s spoofing site.

• Database stealing: To encourage easier purchas-
ing, many merchants (who provide services to cus-
tomers) choose to store credit card numbers in on-
line databases. Recent news reported that attackers
broke into merchants’ sites and stole databases of mil-
lions of credit card numbers [1].

Not only does the credit card fraud cause money loss, but
also significant worry among customers (especially about
on-line transactions). According to a recent study conducted
by Opinion Research Corporation, the danger of digital
identity theft stimulates even more worry than the war in
Iraq [4].

1.1. Related Work

A variety of secure payment systems have been proposed
so far to thwart credit card fraud. For practical use, a system
should satisfy a set of criteria include: (i)Ease of deploy-
ment: A system can be deployed (even scaled up) with few
additional requirements on current infrastructure and com-
munication protocols; (ii) Ease of use: Customers have no
difficulties in all payment scenarios; (iii) Security: A system
should address the real security concerns in current credit
card payment system and overcome customers’ psycholog-
ical fear due to credit card fraud. The security may not be
perfect, but should be good enough to be user-friendly and
business-driven [7].

Among hundreds of solutions [3], Secure Electronic
Transactions (SET) protocol (http://www.setco.org/set.html)
was designed to protect credit card information in on-line
environment. Unfortunately, SET never succeeded in the
marketplace because of its high overhead and PKI (i.e., pub-
lic key infrastructure) requirement.

A successful and widely used solution is credit card pay-
ment over Secure Socket Layer (SSL). SSL [2] provides en-
cryption mechanism as well as server authentication for on

line transactions. While a flawless implementation would
thwart packet intercepting and server spoofing, SSL solu-
tion has no effect on shoulder surfing, dumpster diving and
database stealing.

Recently, the concept of one-time credit card transaction
numbers (CCTs) (also called disposable numbers, single-
use numbers, nonces, or tokens in the literature) has been
proposed in design of secure payment systems. CCTs are
used once in credit card transactions, thus releasing cus-
tomer concerns that the numbers might be learned by some
attackers.

Most of the existing solutions (e.g., American Express’
Private Payments [5] and Shamir’s SecureClick [8]) require
CCTs be generated on-line, from secure interactions be-
tween customers and card issuers, during or shortly before
credit card transactions. The card issuers associate the CCTs
with the customers in stored databases for verification pur-
pose.

As indicated by Rubin and Wright [6], these solutions
augment a credit card transaction with an additional connec-
tion between a customer and a card issuer. The customer-
card issuer communication must be secured, typically by
SSL (otherwise CCTs can be learned by someone in the
middle before their use). With a large number of customers
connecting to a card issuer (or its server) with SSL simulta-
neously, the performance of the server will become a bottle-
neck: customers may have to wait long time for CCTs be-
fore or during purchase. Such a centralized solution with
SSL does not fit the scalability of credit card service. In
general, a server with pure function of collecting credit card
numbers from customers is dangerous because it is vulner-
able to single point failure, web site spoof, and DNS redi-
rection.

We also note that these solutions are mainly for web pay-
ment. In other payment scenarios such as payment over tele-
phone and for on-site shopping, it is not always possible for
customers to interact with card issuers. To facilitate pay-
ment, many existing one-time solutions allow customers to
use fixed credit card numbers in these scenarios as in tra-
ditional credit card payment. However, such “mixed” sys-
tems are subject to existing attacks such as shoulder surf-
ing, dumpster diving, and database stealing.

To bring a remedy to these problems, Rubin and Wright
[6] proposed an off-line scheme for generating CCTs (called
limited-use credit card numbers or tokens in their paper),
without requiring interactions between customers and card
issuers in transactions. In their scheme, a card issuer and a
customer share a long-term secret key. Before each trans-
action, the customer generates a CCT by encrypting a set
of possible restrictions that describe the purchase in terms
of expense, time, merchant and etc. The customer then
sends his CCT and his identifying information to a mer-
chant who in turn sends the CCT to the card issuer for ver-

ification. Upon receiving these, the card issuer locates the
long term secret key according to the identifying informa-
tion, decrypts the CCT, and verifies the purchase.

This solution releases card issuers from on-line SSL con-
nections in CCT generation; however, it burdens them with
decryption process, which is expensive especially when
there are many customers and restrictions. For practical use
of this solution, a customer must have access to a com-
puter or specific device that has encryption capability. The
whole process of generating CCTs takes time and requires
well-designed user interface to allow a possibly large num-
ber of interesting settings of restrictions to be selected and
encrypted. In addition, a transaction time-stamp must be in-
cluded in the encryption process otherwise a generated CCT
may not be unique. In some application scenarios, the re-
quirement on encryption devices may not be affordable.

1.2. Our Solution

In our solution, we use hash rather than encryption for
off-line generation of CCTs. Each CCT is generated by
hashing its previous CCT and a secret on customer side.
The secret is a binary string that is embedded into a cus-
tomer’s physical card by a card issuer.

A small chip (smart chip) is embedded into each credit
card for hash computations and for storage of a past CCT.
To facilitate credit card transactions, smart card readers are
needed (in most scenarios) to empower CCT generation.

To process a transaction, a customer simply in-
serts his/her chipped card into a smart card reader. A new
CCT is computed by the smart chip and transferred (e.g.,
through SSL) to a merchant who in turn transfers (e.g.,
through SSL) the CCT to a related card issuer for verifi-
cation. Once the CCT reaches the card issuer, the CCT is
verified if it matches the hash value computed from a pre-
viously verified CCT and the secret of that customer.
Because of the existence of delayed verifications, a cus-
tomer’s CCTs may not arrive in the same order as they
are generated; therefore, the card issuer needs to main-
tain a queue of CCTs for correct verification. Our study
shows that the average length of the queue is small. Conse-
quently, the time and space complexity for CCT verification
increases little compared with traditional credit card pay-
ment.

Compared with Rubin and Wright’s off-line scheme, our
scheme places much less burdens on a card issuer because
hash computation is simple, fast and usually much cheaper
than encryption and decryption. Also a customer is not re-
quired to have access to application support for encrypting
transaction times and among many restrictions. From cus-
tomer’s view, the whole process is as convenient as in tradi-
tional credit card payment provided that chipped cards and
smart card readers are available.

As technology evolves, chipped cards and smart card
readers become cheap; thus, they can be made publicly
available. As an example, American Express’ issues its
chipped Blue cards and distributes free smart card readers.

In terms of security, our solution sticks to pure one-
time payment. Unlike “mixed systems,” our scheme is se-
cure against all common credit card frauds as described by
shoulder surfing, dumpster diving, packet intercepting and
database stealing.

1.3. Organization

The rest of the paper is organized as follows. Section 2
describes our customer payment scheme in different pay-
ment scenarios. Section 3 presents our verification scheme
with a system simulation and complexity analysis. Section
4 analyzes the security of our scheme against various at-
tacks. Section 5 concludes the paper.

2. Customer Payment Scheme

2.1. Credit Card

A traditional credit card consists of a semi-secret credit
card number and other information such as a name and an
expiration date. In our scheme, a credit card consists of
two additional elements: (i) a secret (i.e., a 1024 bits bi-
nary string) that never leaves the physical card and never
changes; (ii) a CCT (e.g., a 128 bits binary string) that will
be used in a single credit card transaction. In the physical
card is embedded a small chip that stores the secret and the
CCT.

When the credit card is issued by a card issuer to a cus-
tomer, an initial CCT is stored in the card (therefore, the
card issuer knows the secret and the initial CCT for that cus-
tomer). For each transaction that the customer processes, a
new CCT is computed from its previous CCT and the secret
by a cryptographic hash function H (e.g., SHA or MD5):

Tnew = H(Tcur||S) (1)

where Tnew is the new CCT that will be used in a new trans-
action, Tcur is the CCT that has been used in the previ-
ous transaction, S is the secret, and || denotes concatena-
tion. After the new transaction, Tnew is stored in the card in
place of Tcur (in order to perform the next transaction).

On the customer side, a series of CCTs are generated in
continual credit card transactions. On the card issuer side,
the same series can be computed and verified. We discuss
this in details in section 3.

2.2. Smart Card Reader

We need a smart card reader to perform the hash compu-
tation of equation 1 and update CCT for a new transaction.

A processing chip is embedded in a credit card for the hash
computation; the smart card reader provides electric power
to perform the computation and update CCT. The smart card
reader is a public facility; it should be available either on the
site where a customer’s transaction is processed, or in a cus-
tomer’s hand. To encourage the use of new technology, card
issuers may give away free smart card readers to customers
as in American Express Private Payments system. The smart
card readers may also be integrated into some popular de-
vices such as PDAs, laptops, keyboards and cell phones.

2.3. Payment Scenarios

We now present a payment scheme in different payment
scenarios. We assume that smart card readers are always
available either on merchants’ sites or in customers’ hands.
Due to space limit, we leave out discussions on payment
without smart card readers as well as other implementa-
tion options such as payment with personal identification
number, recurring payment, and payment fitting into exist-
ing standard for credit cards.

First consider on-site payment scenario where a cus-
tomer performs a transaction on a merchant’s site (e.g., at a
food store) where smart card readers are available. The cus-
tomer only needs to insert his credit card into a smart card
reader to process a transaction. A new CCT is generated
and then transferred to corresponding card issuer for verifi-
cation. Once the transaction is verified, the merchant is no-
tified by the card issuer and the on-site smart card reader
writes back1 the new CCT in place of the old one in the
physical card.

Then consider web payment scenario where a customer
uses his credit card at an e-commerce web site (e.g., at Ama-
zon.com). The customer first gets his CCT updated using
a smart card reader, which is connected to his computer.
Then the new CCT and other information (e.g., name and
address) are transferred directly to the e-commerce applica-
tion and web site (in most cases by SSL). In the case that the
smart card reader is not connected to the computer, the cus-
tomer needs read out the new CCT (e.g., in digits) from the
smart card reader and type it into the e-commerce interface
on internet.

The last category of payment scenarios includes phone
payment, fax payment, and email payment where credit card
information is given out by telephones, faxes, and emails
(e.g., for hotel reservation). With a smart card reader in
hand, the customer can easily update his CCT and use it
the same way as in traditional credit card payment.

1 Actually the writing back is performed by the smart chip empowered
by the smart card reader.

3. Verification Scheme

In this section, we present how a card issuer verifies a se-
ries of CCTs used in credit card transactions. By credit card
transaction we mean that a customer sends a CCT to a mer-
chant and vice versa, and by verification the merchant sends
the CCT to a related card issuer and vice versa. Different
verification scenarios can be classified into two categories:
• Instant verification: a merchant verifies a CCT in-

stantly (e.g., on-site shopping).
• Delayed verification: a merchant delays the verifica-

tion of a CCT for a certain period of time (e.g., in ho-
tel reservation).

Because of the existence of delayed verifications, the or-
der of CCTs in verification is not the same as the order in
credit card transactions. The following example illustrates
our verification scheme.
Example 1 Consider four CCTs T0, T1, T2, T3 ordered
by the time when corresponding transactions are pro-
cessed, where T1 = H(T0||S), T2 = H(T1||S) and
T3 = H(T2||S). Assume that T0 has been verified by a
card issuer most recently.

If all three transactions T1, T2 and T3 are in instant verifi-
cation scenario, then the CCTs arrived for verification have
the same order as that of their transaction times. The card is-
suer simply computes the hash chain and verifies them one
by one.

Now assume that T1 and T2 are in delayed verifica-
tion scenario and that the CCTs arrive in the order of
(T3, T2, T1). Our scheme verifies them by the following
procedure:

1. When T3 arrives, the card issuer compares it with
T1, which is computed by H(T0||S). Because they do
not match, a verification queue Q is used to store T1

for future verification. The card issuer then computes
T2 = H(T1||S) from T1 and compares it with the ar-
rived CCT. Because they do not match either, T2 is
also inserted into Q for future verification. Finally the
card issuer computes T3 = H(T2||S) from T2 and it
matches the arrived CCT.

2. When T2 arrives, the card issuer compares it with the
CCTs in the verification queue Q, which consists of
(T2, T1) at this time. The arrived CCT matches T2 in
Q and thus verified. T2 is then deleted from Q.

3. When T1 arrives, it is verified the same way as T2.

3.1. Verification Algorithm

Figure 1 presents a verification algorithm2 that verifies a
customer’s CCTs in transactions. At the beginning (lines 1

2 The algorithm is described in a way for clear exposition rather than
efficiency.

and 2 in figure 1), the current CCT is the initial CCT and
the verification queue is empty. The initial CCT is embed-
ded in the credit card which is issued to the customer. Both
the card issuer and the customer possess the initial CCT, the
customer’s identifying information, and the secret. When
the customer processes a new transaction, a new CCT is
generated from the previous one and the secret embedded
in his card; with some delay or without delay, the new CCT,
as well as the customer’s identifying information, is sent
to a related card issuer for verification. Note that the algo-
rithm in figure 1 only presents the verification procedure
for a single customer. In multi-customer case, the card is-
suer identifies a customer using the customer’s identifying
information as his/her index. The customer’s identifying in-
formation could be his/her name and address (as used in
traditional web payment), or his/her fixed 16 digits “actual”
credit card number. In the latter case, CCTs are used in com-
bination of the “actual” credit card number in transactions.

The card issuer verifies CCTs one by one. If a CCT is in
delayed verification, a later CCT is verified first and the de-
layed CCT is put into the verification queue. Later, the de-
layed CCT gets verified by matching one of the CCTs in
the queue (line 4); the matched CCT is then deleted from
the queue3. If a CCT is verified before any of its “later”
CCTs, it will not be found in the queue. In such case, the
card issuer generates n “future” CCTs starting from the cur-
rent one and checks if the arrived CCT matches one of them
(lines 5 to 11). We call parameter n extending limit.

If the arrived CCT matches one of the “future” CCTs
starting from the current one (lines 7 to 10), the matched
CCT is used to replace the current one. Those “future”
CCTs that are before the matched one in the hash chain are
then put into the queue for future verification.

If the arrived CCT does not match any of the n “future”
CCTs (lines 11 and 12), the algorithm returns “CCT not ver-
ified”. If some CCTs are not verified m times during certain
period of time, the verification process is blocked. We call
parameter m blocking limit.

The use of the two parameters n and m is to thwart cer-
tain types of attacks and to tolerate delays and errors in CCT
verification. On the one hand, if n is infinite, any random
CCT will be verified, leading to no security. On the other
hand, if n = 1, the scheme tolerates no delays in CCT ver-
ification. Similarly, if m is infinite, the scheme permits in-
finite times of tries of CCTs from an attacker, eventually
leading to success of a random try. In the case of m = 1,
the scheme tolerates no errors (i.e., no retries) in CCT veri-
fication.

The selection of extending limit n should be careful. The
reason is that a small n may lead to false denial of true

3 Besides the queue, both the card issuer and the merchant may need
to store some recent transactions for issuing statements or answering
inquiries.

// 1. arrived credit card information includes personal identifying information C and a CCT T ;
// 2. C is used as an index to find the corresponding customer;
// 3. the following only shows the verification of CCT for a particular customer;
// 4. the card issuer knows the secret S and the initial CCT T0;
// 5. two parameters: extending limit n (see line 6) and blocking limit m (see line 12)

1) current CCT Tcur = T0 // T0 is the initial CCT
2) verification queue Q = ∅ // initiate a queue for a particular customer

3) foreach arrived CCT T that is to be verified do
4) if T matches one CCT in Q then delete it from Q and return CCT verified
5) else // if T does not match any CCT in Q
6) generate n new CCTs T1, . . . Tn where T1 = H(Tcur||S), . . . Tn = H(Tn−1||S)
7) if T matches Tk (1 ≤ k ≤ n)
8) Tcur ← Tk

9) insert CCTs T1, . . . , Tk−1 into Q
10) return CCT verified
11) else return CCT not verified // T does not match any in Ti

12) verification process is blocked if CCTs are not verified m times during certain period of time

Figure 1. Verification Algorithm

CCTs. Let us return back to example 1. If n = 2 and
the CCTs arrive in the order of (T3, T2, T1) for verifica-
tion, then T3 will not be verified because T3 matches nei-
ther T1 = H(T0||S) nor T2 = H(T1||S). In other words,
T3 arrives too “early” compared with the most recently ver-
ified T0. Fortunately, the false denial rate can be made ex-
tremely low (to zero) with not-so-large n (e.g., n = 15 is
large enough to yield zero false denial rate in our simula-
tion). Please refer to the following section 3.2 for details.

In reality, most of the delayed payments seldom take
more than several weeks, and the majority of the pay-
ments are instant payments rather than delayed ones. Conse-
quently, the average length of the verification queue is small
(see following section 3.2). However, queue overflow attack
may occur in some extreme cases. For example, a spoofed
merchant who cooperates with a malicious customer may
repetitively send the card issuer the n-th CCT from the cur-
rent one; after some time, the queue becomes too long for
the limited computing sources. To thwart such attack, the
card issuer is suggested to implement one of the following
queueing policies: (i) control the maximal length of veri-
fication queue (i.e., put size constraint); (ii) delete CCTs
from the queue that are too old (i.e., put time constraint);
(iii) block the queues that increase too fast (i.e., put speed
constraint); (iv) combine the above policies. The queueing
policies should be implemented in such a way that the nor-
mal verification process is not affected or affected little.

3.2. System Simulation

A simulation is implemented to examine the relationship
between a verification queue and the combination of the fol-

lowing factors: (i) the model for payment; (ii) the model for
verification; and (iii) extending limit n. We examine (i) the
average length of a verification queue and (ii) false denial
rate (i.e., the probability that a legitimate CCT is not veri-
fied) in different cases. Note that the blocking limit m has
no effect on the verification queue.

In our simulation, a customer’s payment is modelled by
Poisson process; that is, the time between two payment
transactions is exponentially distributed. We use µp to de-
note the mean of the exponential distribution, which is the
average time between two credit card payment transactions
by the same customer. A delayed verification is also mod-
elled by Poisson process; that is, the time between a trans-
action time and its verification time is exponentially dis-
tributed. We use µv to denote the average delayed time. For
each customer, we use r to denote the fraction of the de-
layed verifications in all transactions.

Parameter Meaning Default value
µp the average time between two 6 hours

credit card payment transactions
µv the average delayed time in 24 hours

the delayed payment scenario
r the fraction of the delayed 30%

verifications in all transactions
n extending limit 10

Figure 2. Parameters in our simulation.

Figure 2 lists the parameters and their default values in
our simulation. We compute the average length of the veri-
fication queue during 1000 days of credit card use for each

Queue Length with Varying Average Time
between Payment Transactions (r=30%, n=10)

0
2
4
6
8

10
12

6 12 24 48 96

Average Time Between Transations (µ_p)

A
ve

ra
g

e
Q

u
eu

e
L

en
g

th
µ_v=12

µ_v=24

µ_v=48

µ_v=96

Figure 3. Queue Length with Varying Average
Time between Payment Transactions

Queue Length with Varying Average Delayed
Time (r=30%, n=10)

0
2
4
6
8

10
12

12 24 48 96

Average Delayed Time (µ_v)

A
ve

ra
g

e
Q

u
eu

e
L

en
g

th

µ_p=6

µ_p=12

µ_p=24

µ_p=48

Figure 4. Queue Length with Varying Average
Delayed Time

customer. The time period of 1000 days for credit card use
is long enough such that the average length of the queue
for a single customer is typical for all customers. In the de-
fault case, the fraction of the delayed verifications is 30%
(r = 0.3); four transactions are processed on average by
a customer each day (µp = 6 hours); the average delayed
time for delayed verifications is 24 hours (µv = 24 hours);
and the extending limit is ten (n = 10). We conduct indi-
vidual sets of experiments that vary these parameters from
their default values.

Figure 3 shows the average queue length with different
average times between transactions. We see that the longer
the time period between transactions, the shorter the length
of the verification queue. The reason is that, with larger µp,
fewer delayed verifications are inserted into the queue over
a fixed period of time. On the other hand, with longer de-
layed time in verification, more delayed verifications are
inserted into the queue. This results in longer verification
queues as shown in figure 4. In both figures, the longest
queue length is about ten in the case of 96 hours of delayed

Average Queue Length with Varying Fraction of
Delayed Verifications (µ_v=24, n=10)

0

0.5

1

1.5

2

0.1 0.3 0.5 0.7 0.9

Fraction of Delayed Verifications (r)

A
ve

ra
g

e
Q

u
eu

e
L

en
g

th µ_p=6

µ_p=12

µ_p=24

Figure 5. Average Queue Length with Varying
Fraction of Delayed Verifications

False Denials in 1000 Days with Varying
Extending Limits (µ_p=6, r=30%)

0

50

100

150

200

5 10 15

Extending Limit (n)

N
u

m
b

er
 o

f
F

al
se

D

en
ia

ls µ_v=24

µ_v=48

µ_v=96

Figure 6. False Alarms with Varying Extension
Limits

verification and 6 hours of transaction span; in other cases,
the average length of the queue is less than four.

The ratio of delayed verifications in total transactions
has light influence on the queue length as shown in Fig-
ure 5. Specifically, a small number of delayed verifications
(r < 0.5) change the order of credit card transactions in
a similar way as a large number of delayed verifications
(r > 0.5) do. The rough reason behind this trend is that if
most verifications are in delayed scenarios, by chance many
pairs of them are still in the same order as their transaction
times. This can be illustrated by an extreme example where
all verifications are delayed with the same period of time
and the queue length will be always zero. A theoretic anal-
ysis on this remains an interesting topic for further study.

To prevent attacks such as online-guess attacks on one
time transaction numbers, we use the extending limit to re-
strict the extension of the verification queue. Recall that in
our algorithm, if a transaction arrives earlier than some of
its previous transactions, the verification queue will be ex-
tended and the CCTs for those previous transactions will
be put into the queue for future verification. The extend-

ing limit is used as a system parameter to control how many
transactions a CCT can skip, and it is important in security
analysis (see section 4). Basically, the smaller the extending
limit, the harder for an attacker to try a forged CCT, and the
securer the system. However, the side effect is that if a valid
transaction arrives too “early” (i.e., too many of its previous
transactions are verified late) in an extreme case, its verifi-
cation may require an extension beyond the extending limit;
then a false denial occurs. In our simulation, we investigate
the number of false denials during 1000 days of credit card
use. In figure 6, we see that the total number of false de-
nials drops dramatically with slightly larger extending lim-
its and that an extending limit of fifteen is large enough to
yield zero false denial rate in all cases.

In practice, we may have various ways to tradeoff be-
tween false denial rate and security while selecting the
extending limit. For example, the extending limit can be
customer-specific — different extending limits are used for
different customers based on customer profiles or payment
history. The extending limit can also be multi-level or dy-
namic — the extending limit are tuned to different levels to
guarantee low false denial rates and ensure certain levels of
security. In terms of security, section 4 shall show that the
security is affected linearly by the extending limit while it
can be enhanced exponentially with longer CCTs and se-
crets.

3.3. Complexity

With the average length of the verification queue, we can
compare the time and space complexity of our verification
algorithm with that in traditional credit card payment. In tra-
ditional credit card payment, a customer uses a fixed credit
card number for all transactions and the card issuer veri-
fies the payment by checking that number. If the verifica-
tion queue is used in this case, the length of the queue will
be always zero.

Let L be the average length of the verification queue in
our scheme. On average, our algorithm requires L compar-
isons between an arrived CCT and those in the queue and an
additional one between the CCT and the hash value of the
current CCT. Therefore, the time and space complexity of
our algorithm is L + 1 times of that in traditional payment.
Because the average length of the queue is not large (in our
simulation, the average length of the queue is close to zero
in many cases and less than 10 in the worst case), the incre-
ment of space and time complexity in our verification algo-
rithm is limited. Such limited increment is affordable con-
sidering the fast development of computer hardware that has
been described by Moore’s law.

4. Security Analysis

In our scheme, customers do not worry that their “ac-
tual” credit card numbers or identifying information may
be learned by an attacker because such information is use-
less in payment without one-time CCTs. In the following,
we only investigate the security issues when some CCTs
are known by an attacker. Unless otherwise stated, we as-
sume that the attacker has no access to a physical credit card
nor the card-resident secret.

First assume that the attacker knows a single CCT. Since
the attacker does not know the secret, he may choose a ran-
dom secret and compute a CCT from the known one. The
probability that the computed CCT T can be verified is

max(
(|Q| + n)

2|S| ,
(|Q| + n)

10|T |)

where | · | denotes the length of Q, S, or T . The length of Q
is constrained by a queueing policy. In default we assume
that S is in binary form and T in digits. Recall that our al-
gorithm permits at most m CCTs to be tried in verification;
the probability of success of this attack is

max(
m(|Q| + n)

2|S| ,
m(|Q| + n)

10|T |)

This probability can be made exponentially low by increas-
ing the length of the secret and/or the CCT. Also note that
even if the attacker gets a valid CCT somehow (e.g., purely
by chance), it is still useless unless that CCT has not been
used in legal transactions by the time the attacker gets it.

Another scenario is that the attacker knows more than
one CCTs. Assume that the attacker knows two consecu-
tive CCTs T1 and T2. The attacker attempts to know secret
S by trying all possible values until the following is attained

T2 = H(T1||S) (2)

The average number of tries (until equation 2 is attained) is:

2|S| + 1
2

· min(1,
10|T |

2|S|)

If 2|S| ≥ 10|T |, the average number of tries is between
10|T |

2 and 10|T |+1
2 ; otherwise the average number of tries

is 2|S|+1
2 . This attack can be thwarted by selecting long se-

cret and/or CCTs (e.g., |S| = 128 bits and |T | = 10 digits
are good enough in most cases) such that attaining equa-
tion 2 is computationally difficult. In addition, even if the
attacker finds a secret such that equation 2 is attained, the
probability that this secret is the customer’s real secret is

min(1,
10|T |

2|S|)

Again this probability can be made exponentially low by se-
lecting long secret. Another even-if is that the attacker may

get the correct secret somehow, it is still useless unless the
attacker obtains the current CCT or a not-so-old one in order
to compute a valid CCT that can be verified. Since our al-
gorithm permits at most m(n+ |Q|) tries, the attacker must
obtain a CCT that is no older than m(n+ |Q|) from the cur-
rent CCT if the attacker tries CCTs sequentially.

Now assume that the attacker knows M customers’ “ac-
tual” credit card numbers and possibly their identifying in-
formation as described in database stealing scenario. With
those information, the attacker tries a random CCT for each
customer and hopes at least one try would succeed. The
probability of success of this attack is

M · (n + |Q|)
10|T |

If the attacker tries m CCTs for each customer (before gets
blocked), the probability is

M · m(n + |Q|)
10|T |

This attack can be thwarted by selecting long CCTs such
that the probability is low unless M is extraordinarily large.
In the case that the attacker manipulates to know a large
number of “actual” credit card numbers such that one try
would succeed, it may take too long time because on aver-
age the attacker has to try M+1

2 customer accounts (and for
each account try m CCTs) in order to find the “right” one.

Finally, assume that the attacker obtains a valid CCT
somehow and gets the CCT verified in an illegal transac-
tion. The victim customer will be aware of the credit card
fraud as soon as one of his legal payments is abnormally re-
fused or one of his delayed payments cannot be verified (no
need to wait for credit card statement as in traditional pay-
ment). The refused legal payment will be at most n transac-
tions away from the verified illegal payment due to the ex-
tending limit. Early awareness of credit card fraud on the
customer side will help reduce the loss of money.

In terms of security, our scheme, like anything else, is
not perfect4. Particularly, a successful denial of service at-
tack on the issuer’s computing system is ruinous, but this is
true for any other one-time payment systems, even for the
traditional payment. Consequently, the card issuer’s system
should be very well protected, and it has been done so nowa-
days.

Due to transmission error or network disconnection, a
CCT may not reach merchant site and/or card issuer site. In
this case the merchant does not receive any transaction re-
quest, or he/she cannot verify the CCT with the card issuer.
Consequently, the transaction is not confirmed. The smart
card reader on the customer side thus discards the CCT and

4 According to [7], perfect security is not realistic for business. “Good
enough [security] is good enough.”

drops current transaction request. This will not influence fu-
ture transactions.

Another possible attack is replay attack, where an at-
tacker intercepts a CCT during transmission and quickly
sends it to a merchant, hoping that the intercepted CCT can
be verified by the card issuer before the legal one. Such at-
tack can be thwarted by using SSL in transmission. In ad-
dition, our system is securer than traditional payment since
the intercepted CCT is not always useful, but only in the
case that the legal CCT is verified later than the intercepted
one.

There are other attacks that can be mounted from smart
card readers (note that a smart card reader has no write capa-
bility even though it empowers a smart chip to compute and
update CCTs). A malicious operation from smart card read-
ers may release CCTs or other secret information stored in
smart chips; it may also result in denial of service by gener-
ating false CCTs which cannot be verified by card issuers.
This is a common problem associated with most smart card
systems. The security of smart card readers is out of the
range of this paper.

5. Conclusion

We have presented a security enhancement scheme for
one-time credit card payment that is suitable for practical
use. In this scheme, one-time transaction numbers are gen-
erated by a hash function from previous transaction num-
bers and shared secrets between card holders and issuers.
The hardware requirements (i.e., smart card readers and
physical credit cards embedded with micro chips) can be
easily satisfied. The scheme is applicable in both on-line
and off-line payment scenarios. Our simulation showed that
only small extra burdens are placed on card issuers.

References

[1] Editorial. Security is in the smart cards. In eWeek, page 30,
March 3, 2003.

[2] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL protocol.
http://wp.netscape.com/eng/ssl3/ssl-toc.html.

[3] Payment mechanisms designed for the Internet.
http://ntrg.cs.tcd.ie/mepeirce/Project/oninternet.html.

[4] R. Jaques. Identity theft worse than Iraq war.
http://www.vnunet.com/News/1140291.

[5] Private Payments locked with smart chip. http://home4. amer-
icanexpress.com/blue/privatepayments/splash.asp.

[6] A. D. Rubin and R. N. Wright. Off-line generation of limited-
use credit card numbers. In Proceedings of Financial Cryp-
tography, pages 196–209, 2001.

[7] R. Sandhu. Good-enough security. IEEE Internet Computing,
7(1):66–68, 2003.

[8] A. Shamir. Secureclick: A web payment system with dispos-
able credit card numbers. In Proceedings of Financial Cryp-
tography, pages 232–242, 2001.

