Available online at www.sciencedirect.com

sc.ence@o.“u@

Electronic Commerce Research and Applications 4 (2005) 413-426

Electronic

Commerce Research

and Applications

ELSEVIER

www.elsevier.com/locate/ecra

Securing credit card transactions with one-time
payment scheme ™

. .. - a . b
Yingjiu Li **, Xinwen Zhang
& School of Information Systems, Singapore Management University, 80 Stamford Road, Singapore 178902
® Lab for Information Security Technology, George Mason University, Fairfax, VA 22030, USA

Received 5 October 2004; received in revised form 7 January 2005; accepted 1 June 2005
Available online 21 July 2005

Abstract

Traditional credit card payment is not secure against credit card frauds because an attacker can easily know a semi-
secret credit card number that is repetitively used. Recently one-time transaction number has been proposed by some
researchers and credit card companies to enhance the security in credit card payment. Following this idea, we present a
practical security enhancement scheme for one-time credit card payment. In our scheme, a hash function is used in gen-
eration of one-time credit card numbers with a secret only known to the card holder and issuer. Compared with related
work, our scheme places less burden on credit card issuers, and can be easily deployed in on-line or off-line payment
scenarios. Analysis and simulation show that the time and space complexity is affordable to the card issuer with desired
security features.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Credit card transaction; Credit card fraud; Security

1. Introduction

Credit card frauds have caused millions of dol-

* A preliminary version of this paper appeared in the 14th
International Workshop on Research Issues on Data Engineer-
ing: Web Services for E-Commerce and E-Government Appli-
cations, pages 40-47, Boston, USA, March 2004.

* Corresponding author. Tel.: +65 6828 0913; fax: +65 6828
0919.

E-mail addresses: yjli@smu.edu.sg (Y. Li), xzhangb@gmu.
edu (X. Zhang).

lars loss each year and exposed the security weak-
nesses in traditional credit card processing system
[2]. In such system, a customer (i.e., credit card
holder) repetitively uses a fixed credit card number
as well as personal identifying information in all
transactions. Because this credit card number is
“sticky”, it is relatively easy for an attacker to steal

1567-4223/$ - see front matter © 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.elerap.2005.06.002

mailto:yjli@smu.edu.sg
mailto:xzhang6@gmu.

414 Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426

it with intention to commit illegal activities. Some
common ways to commit credit card fraud include:

o Shoulder surfing: An attacker watches a cus-
tomer from a nearby location as the customer
punches in his credit card number. If the cus-
tomer is giving his credit card number over
the phone (e.g., to a hotel or car rental com-
pany), the attacker may listen to the conversa-
tion so as to get credit card information.

e Dumpster diving: An attacker goes through a
customer’s garbage cans or trash bins to obtain
copies of credit card statements.

e Packet intercepting: An attacker sniffs some
e-commerce packets during on-line credit card
payment. In some cases, the attacker does not
need to break down the possibly encrypted
packets (e.g., over Secure Socket Layer), but
fools the customer into thinking that he or she
is visiting an intended site but actually the
attacker’s spoofing one.

e Database stealing: To encourage purchasing,
many merchants (who provide services to cus-
tomers) choose to store their customers’ credit
card information in online databases. Recent
news reported that attackers could break into
merchants’ web sites and steal millions of credit
card numbers [1].

Not only does the credit card fraud cause mil-
lions of dollars loss each year, but also causes sig-
nificant worry among customers. According to a
recent study conducted by Opinion Research Cor-
poration, it causes more worry than the war in
Iraq in terms its impacts on customers’ awareness
of security issues [5].

1.1. Evaluation criteria

Many efforts have been made so far to thwart
credit card fraud. Before we look into them, we
summarize the evaluation criteria that has been
proposed by Shamir [10], Rubin and Wright [7]
for secure credit card payment.

e Ease of deployment: The system should be easy
to deploy in real-world settings. There should
be few additional requirements on current

infrastructure and communication protocols.
Card issuers should be able to handle most of
the deployment tasks, without placing unrea-
sonable burdens on merchants and customers.
Even for the card issuers, the additional require-
ments on equipment should be tolerable com-
pared with the benefits obtained from security
enhancement.

e Ease of use: The importance of ease of use can-
not be overstated since it is the customers who
use the payment system. The customers should
feel convenient in all payment scenarios.

e Security: A secure payment system should
address real security concerns thus overcome
customers’ psychological fear due to credit card
fraud. The security of the system may not be
perfect, but it should be good enough to protect
customers in all payment scenarios.

1.2. Related work

A previous effort to thwarting credit card fraud
led to the development of Secure Electronic Trans-
actions (SET) protocol [9]. SET was designed to
protect credit card information from various at-
tacks in on-line environment. Unfortunately,
SET never succeeded in the marketplace because
of its high overhead and additional requirement
of public key infrastructure (PKI).

Among hundreds of other solutions [4] that
have been proposed (most of them failed or remain
untested), credit card payment over Secure Socket
Layer (SSL) is the only one that is widely used in
e-commerce nowadays. SSL [3] provides encryp-
tion channel to transmit credit card numbers; it
also provides server authentication to identify
merchants. While a flawless implementation of
SSL thwarts packet intercepting, it has no effect
on other credit card frauds such as shoulder surf-
ing, dumpster diving and database stealing.

In terms of those evaluation criteria mentioned
in Section 1.1, SET addresses the security concerns
but fails to satisfy the requirements on ease of
deployment and ease of use. On the other hand,
SSL solution satisfies the requirements on ease of
deployment and ease of use; however, it does not
address the security concerns in all scenarios.

Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426 415

Recently, the concept of one-time credit card
transaction number (also called disposable number,
single-use number, nonce, or token) has been pro-
posed. One-time credit card transaction number,
CCT for short, is designed for single use. After
its use, it does not matter whether it is learned
by attackers.

Most of the existing solutions (e.g., American
Express’ Private Payments [6] and Shamir’s
SecureClick [10]) require CCTs be generated on-
line; that is, during or shortly before a credit card
transaction, a customer must have an on-line se-
cure interaction with the card issuer so as to get
a CCT. The card issuer associates the CCT with
the customer in a stored database and therefore
can verify it when an involving merchant sends
the CCT for clearance.

As indicated by Rubin and Wright [7], these
solutions augment traditional credit card transac-
tion with an additional connection between
customer and server (card issuer). The customer—
server communication must be secured, typically
by SSL; otherwise CCT can be learned by an at-
tacker in the middle of or before its use. With a
large number of customers connecting to the ser-
ver with SSL simultaneously, the performance of
the server will become a critical problem. In such
case, the customers have to be patient while wait-
ing for CCTs. In addition, such centralized solu-
tion with SSL does not scale well. A server with
pure function of collecting credit card numbers is
dangerous due to vulnerabilities such as single
point failure, web site spoof, and DNS redirection.

We also note that these solutions are mainly de-
signed for web payment. In other payment scenar-
ios such as on-site shopping and telephone
payment, it may not be always possible for a cus-
tomer to interact with credit card issuer. To facil-
itate payment, many existing one-time solutions
allow customers to use fixed credit card numbers
as in traditional credit card payment. However,
such “mixed” system is subject to existing attacks
such as shoulder surfing, dumpster diving, and
database stealing.

To bring a remedy to these problems, Rubin and
Wright [7] proposed an off-line scheme for generat-
ing CCTs (called limited-use credit card numbers
or tokens), without requiring the interaction

between customer and card issuer. In their scheme,
card issuer and customer share a long-term secret
key. Before each transaction, the customer gener-
ates a CCT by encrypting a set of possible restric-
tions. The restrictions describe the purchase in
terms of expense, time, merchant and etc. The cus-
tomer then sends his CCT and identifying informa-
tion to the card issuer (through a merchant) for
verification. Upon receiving these, the card issuer
locates the long term secret key according to the
identifying information, decrypts the CCT, and
verifies the purchase.

This solution does not require an interaction be-
tween customer and card issuer before each trans-
action; however, it requires well designed user
interface on the customer side to help the selection
of restrictions for encryption. It also burdens the
server with decryption process and restriction
management. In addition, it is not very clear how
to apply standard encryption functions such as
AES in this case if the CCTs are restricted to at
most 16 digit credit card numbers [7].

In order to use this payment scheme, a cus-
tomer must have access to a computer or specific
device that can encrypt restrictions. A transaction
time-stamp must be included in the encryption
otherwise a generated CCT may not be unique.
Certainly this requires application support. This
scheme may be suitable for web payment; it may
not be affordable in other payment scenarios.

1.3. Our solution

In our solution, we use hashing rather than
encryption for off-line generation of CCTs. Each
CCT is generated by hashing its previous CCT
and a shared secret. The secret is a binary string
known to the card issuer and is embedded into a
customer’s physical card.

A small chip is embedded into each credit card
so as to perform the hash computation and store
the previous CCT. To facilitate credit card trans-
actions, a smart card reader is needed in most sce-
narios to empower the generation of a CCT. Note
that the hash computation is simple; the tech-
niques for producing chipped cards and smart card
readers are mature and cheap. The smart card
readers can be made publicly available (similar to

416 Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426

American Express’ chipped Blue cards and free-
distributed smart card readers).

On the customer side, what a customer needs to
do is to insert his physical card into any smart card
reader, and transmit a generated CCT to a mer-
chant. The hash computation involved is simple
and fast and no interaction between the customer
and the card issuer is required. The whole process
is as convenient as in traditional credit card pay-
ment provided that chipped cards and smart card
readers are available.

Once a CCT (possibly with a customer’s identi-
fying information) reaches the card issuer for
clearance, the CCT is verified if it matches a hash
value computed from a previously verified CCT
and the secret of that customer. Because of the
existence of delayed verifications, a customer’s
CCTs may not arrive in the same order as they
are generated; therefore, the card issuer needs to
maintain a queue of CCTs for correct verification.
Our study shows that the average length of the
queue is small. Consequently, the time and space
complexity for CCT verification increases little
compared with traditional credit card payment.

Compared with Rubin and Wright’s off-line
scheme, our scheme places less burdens on the card
issuer because the hash computation can be easily
customized to generate fixed-length (e.g., 16 digits)
CCTs. Also customers are not required to have
application support for encrypting transaction time
stamps and selecting among many restrictions.

In terms of security, our solution sticks to the
concept of one-time payment idea. Unlike “mixed
systems’’, our scheme is secure against most com-
mon credit card frauds such as shoulder surfing,
dumpster diving, packet intercepting and database
stealing.

1.4. Organization

The rest of the paper is organized as follows.
Section 2 describes our customer payment scheme
in various payment scenarios. Section 3 presents
our verification scheme including verification algo-
rithm, system simulation, and complexity analysis.
In Section 4, we analyze the security aspects of our
scheme. Section 5 discusses several implementa-
tion options and compares our scheme with PKI-

based approach. Finally, Section 6 concludes the
paper.

2. Customer payment scheme

In this section, we describe customer payment
scheme in different payment scenarios. For conve-
nience, Fig. 1 gives the notation that will be used in
this paper.

2.1. Credit card

Traditional credit card consists of a fixed credit
card number and other information such as name
and expiration date. In our scheme, the credit card
consists of two additional elements: (i) a secret
(i.e., binary string) that never leaves the physical
card and never changes; (ii) a one-time transaction
number (CCT) that will be used in a single credit
card transaction. The physical card is embedded
with a small chip that stores both secret and CCT.

When a credit card is issued, an initial CCT is
stored in the card (therefore, the card issuer knows
the secret and the initial CCT for each customer).
For each transaction to be processed, a new CCT
is computed from the previous CCT and the secret
using a cryptographic hash function #:

Tnew:%(Tcur”S)v (1)

where Ty 1s the new CCT that will be used in a
new transaction, 7., is the CCT that has been
used in the previous transaction, S is the secret,
and || denotes concatenation. After the new trans-
action, Teyw 1s stored in the card in place of T, (in
order to perform the next transaction).

C Actual credit card number

T One-time credit card transaction number (CCT)

T.ur CCT that has been used in the previous customer transaction
Thew CCT that will be used in the new customer transaction

S Card-resident secret

Q Card issuer’s verification queue

n Extending limit

m Blocking limit

Fig. 1. Notation.

Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426 417

On the customer side, a series of CCTs is gener-
ated in continual credit card transactions. On the
card issuer side, the same series can be computed
and verified. We discuss this in details in Section 3.

2.2. Smart card reader

We need a smart card reader to perform the
hash computation and update CCT for new trans-
action. For this purpose, a processing chip is
embedded in credit card, and a smart card reader
is needed to provide electric power to perform
the computation and to update CCTs. Smart card
readers are public facilities, which should be avail-
able either on shopping sites, or in customers’
hands. To encourage the use of new technology,
card issuers may give away free smart card readers
to customers. Smart card readers can also be inte-
grated into some popular devices such as PDAs,
laptops, keyboards and cell phones.

2.3. Payment scenarios

We now present customer payment scheme in
different payment scenarios. Assume that smart
card readers are always available either on mer-
chant sites or in customers’ hands. The discussion
on the payment without smart card readers will be
given in Section 5.

First consider on-site payment scenario where a
customer performs a transaction on a merchant’s
site (e.g., at a food store). In this case, the mer-
chant must have smart card readers available.
The customer only needs to insert his credit card
into a smart card reader so as to process a transac-
tion. A new CCT is generated and transmitted to
corresponding card issuer for verification. Once
the transaction is verified, the merchant is notified
by the card issuer and the on-site smart card reader
writes back the new CCT in place of the old one in
the physical card.

Then consider web payment scenario where a
customer uses his credit card at an e-commerce
web site (e.g., at Amazon.com). The customer first
gets his CCT updated using a smart card reader,
which is connected to his computer. Then the
new CCT and other information are transmitted
directly to the e-commerce web site (in most cases

by SSL). In the case that the smart card reader is
not connected to the computer, the customer needs
to read out the new CCT from the smart card
reader and type it into the e-commerce interface
on internet.

The last category of payment scenarios includes
phone payment, fax payment, and email payment
where credit card information is given out by tele-
phones, faxes, and emails (e.g., for hotel reserva-
tion). With a smart card reader in hand, the
customer can easily update his CCT and use
it the same way as in traditional credit card
payment.

3. Verification scheme

In this section, we explain how a card issuer ver-
ifies a series of CCTs used in credit card transac-
tions. By credit card transaction we mean that a
customer sends a CCT to a merchant and vice
versa, and by verification a merchant sends a
CCT to a card issuer and vice versa. The verifica-
tion scenarios can be classified into two categories:

e Instant verification: a merchant verifies CCT
instantly (e.g., on-site shopping).

e Delayed verification: a merchant delays the ver-
ification of the CCT for a certain period of time
(e.g., hotel reservation).

Because of the existence of delayed verifica-
tions, the order of CCTs in verification is not nec-
essarily the same as the order in credit card
transactions. The following example illustrates
our verification scheme.

Example 1. Consider four CCTs Ty, T, T», T
ordered by the time when corresponding transac-
tions are processed, where T, = #(To||S), T» =
A (T1||S) and T3 = H#(T||S). Assume that T; has
been verified by the card issuer most recently.

If all three transactions T, 7> and T3 are in
instant verification scenario, then the CCTs that
arrive for verification have the same order as that of
their transaction times. The card issuer simply
computes the hash chain and verifies them one by
one.

418 Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426

Verification Algorithm

/I 1. Arrived credit card information includes an actual credit number C' and a CCT 7.

/I'TL. C'is used as an index to find the corresponding customer.

// 111. The following only shows the verification of CCT for a particular customer.

// TV. The card issuer knows the secret S and the initial CCT Tj.

/I'V. Two parameters: extending limit n (see line 6) and blocking limit m (see line 12).

1) current CCT Ty, = Tp

2) verification queue Q = §)

3) foreach arrived CCT T that is to be verified do

/I Tj is the initial CCT

// initiate a queue for a particular customer

4) if T matches one CCT in @ then delete it from @ and return CCT verified

5) else //if T does not match any CCT in @
6) generate n new CCTs T, ... T, where T} = H(Teur||S), ... T = H(Tp-1]|S)
/I n is a parameter called extending limit
7 if T matches Tj, (1 < k < n)
8) Teur — Ti,
9) insert CCTs 71, ..., Tj—1 into Q
10) return CCT verified
11) else return CCT not verified // T does not match any in T;
12) verification process is blocked if CCTs are not verified m times during certain period of time

/l'm is a parameter called blocking limit

Fig. 2. Verification algorithm.

Now assume that 77 and 7, are in delayed
verification scenario and that the CCTs arrive
in the order of (73, T,, T)) for verification.
Our scheme verifies them by the following
procedure:

1. When Tj; arrives, the card issuer compares it
with T, which is computed by #(Ty||S).
Because they do not match, a wverification
queue Q is used to store T for future verifica-
tion. The «card issuer then computes
T, = #(T,||S) from T, and compares it with
the arrived CCT. Because they do not match
either, 7> is also inserted into Q for future
verification. Finally, the card issuer computes
Ty =#(T,||S) from T, and it matches the
arrived CCT.

2. When T, arrives, the card issuer compares it
with the CCTs in the verification queue O,
which consists of (7>, 7)) at this time. The
arrived CCT matches 7, in Q and thus verified.
T, is then deleted from Q.

3. When T arrives, it is verified the same way as 7>.

3.1. Verification algorithm

Fig. 2 presents a verification algorithm that
verifies customer’s CCTs in transactions. At
the beginning (lines 1 and 2 in Fig. 2), the cur-
rent CCT is the initial CCT and the verification
queue is empty. The initial CCT is embedded in
credit card which is issued to customer. Both
card issuer and customer possess an initial

Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426 419

CCT, the actual credit card number, and the
shared secret. When a customer initiates a new
transaction, a new CCT is generated from the
previous one and the secret. The new CCT
and the actual credit card number are sent
to the card issuer for verification. The actual
credit card number serves as an index for the
involving customer. Note that the algorithm
only presents the verification procedure for a
single customer.

The card issuer verifies CCTs one by one. If a
CCT is in delayed verification, a later CCT is ver-
ified first and the delayed CCT is put into verifica-
tion queue. Later, the delayed CCT gets verified by
matching one of the CCTs in the queue (line 4); the
matched CCT is then deleted from the queue.' If a
CCT is verified before any of its “later” CCTs, it
will not be found in the queue. In such case, the
card issuer generates n ‘“‘future” CCTs starting
from the current one and checks if the arrived
CCT matches one of them (lines 5-11). We call
parameter n extending limit.

If the arrived CCT matches one of the “future”
CCTs starting from the current one (lines 7-10),
the matched CCT is used to replace the current
one. Those “future” CCTs that are generated be-
fore the matched one are put into the queue for fu-
ture verification.

If the arrived CCT does not match any of the n
“future” CCTs (lines 11 and 12), the algorithm re-
turns “CCT not verified”. If some CCTs are not
verified m times during certain period of time,
the verification process is blocked. We call param-
eter m blocking limit.

The use of the two parameters n and m is to
thwart certain types of attacks and to tolerate de-
lays and errors in CCT verification. On the one
hand, if » is infinite, any random CCT will be ver-
ified, leading to no security. On the other hand, if
n =1, the scheme tolerates no delays in CCT ver-
ification. Similarly, if m is infinite, the scheme per-
mits infinite times of tries of CCTs from an
attacker, eventually leading to success of a random

! Besides the queue, both the card issuer and the merchant
may need to store some recent transactions for issuing
statements or answering inquiries.

try. In the case of m =1, the scheme tolerates no
errors (i.e., no retries) in CCT verification.

The selection of extending limit # should be care-
ful. The reason is that a small » may lead to false de-
nial of true CCTs. Let us return back to Example 1.
If n = 2 and the CCTs arrive in the order of (T3, T,
T)) for verification, then T3 will not be verified be-
cause 75 matches neither 7, = #(Ty||S) nor
Ty = #(T||S). In other words, T arrives too
“early” compared with the most recently verified
Ty. Fortunately, the false denial rate can be made
extremely low (to zero) with not-so-large n (e.g.,
n = 15is large enough to yield zero false denial rate
in our simulation). Please refer to Section 3.3 for
details.

In reality, most of the delayed payments seldom
take more than several weeks, and the majority of
the payments are instant payments rather than de-
layed ones. Consequently, the average length of
the verification queue is small (see Section 3.3).
However, queue overflow attack may occur in some
extreme cases. For example, a spoofed merchant
who cooperates with a malicious customer may
repetitively send a card issuer the nth CCT from
the current one; after some time, the queue be-
comes too long for the limited computing sources.
To thwart such attack, a card issuer is suggested to
implement one of the following queueing policies:
(1) control the maximal length of verification queue
(i.e., put size constraint); (ii) delete CCTs from the
queue that are too old (i.e., put time constraint);
(iii) block the queues that increase too fast (i.e.,
put speed constraint); (iv) combine the above pol-
icies. The queueing policies should be implemented
in such a way that the normal verification process
is not affected significantly.

3.2. The length of verification queue

One can compute the maximal length and the
average length of verification queue from a given
sequence of credit card transactions. If there is
no delay payment, the verification queue will
be always empty, otherwise delayed CCTs are
inserted into the queue for later verification.
The following example illustrates the relationship
between the length of queue and the delayed
payments.

420 Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426

Example 2. Consider ten sequential CCTs
To, - - ., Ty or- dered by the time when correspond-
ing transactions are processed. Assume that 7’s, 75,
T, Ty, Ta, Ty, Ts, T7, Ty, T are the order in which
these CCTs are verified and that 1, ..., fy are the
time when these CCTs are verified.

Let ¢; denote the length of the verification queue
when a payment is verified at time ¢;. According to
our verification scheme, the length of verification
queue changes in the following manner (see Fig. 3).

1. Before T is verified at time ¢, five delayed
CCTs Ty, ..., T4 are put into the verification
queue; that is, go = 5.

2. When a delayed T, is verified at time ¢t = 1, it is
eliminated from the queue; the length of the
queue is ¢ =¢qg— 1 =4.

3. Before Ty is verified at time ¢t =2, two more
delayed CCTs Ty and T5 are put into the queue,
leading to ¢, = ¢, +2 =6.

4. When the delayed CCTs T and T} are verified
at time # = 3 and ¢ = 4, respectively, the length
of the queue changes to ¢3=¢, — 1 =15 and
then 44 = (q3 — 1=4.

5. At time 1 =5, Ty is not delayed but next to Ty
which is the latest CCT that has been verified.
Therefore, the queue does not change (i.e.,
qs =qa =4).

6. After Ty is verified, the rest CCTs Ty, T7, T,
and T3 are all in delayed verification scenario.
Therefore, the length of verification queue
decreases to ¢¢ =3, g7 =2, ggs =1, and g9 = 0.

Time to t to tg ty ts t(‘, t7 tg tg
CCTvetified |T5 T, Ts T0 Ty To Ts Tr Tp T
Queue’slength |5 4 6 S5 4 4 3 2 1 0

Fig. 3. Verification queue in Example 2.

The maximum length of the queue is

max{qo, ..., g9} = g» = 6. The average length can
8
be computed by 72‘202 ‘;(;“ﬁ"). If ¢, =i, the average
: Z,-B: 9 _ 34
length is e =N 4.

From the above example, one can generalize the
following rules regarding the length of verification
queue.

e At any moment, the length of verification queue
is the number of delayed payments that have
not be verified.

e If a delayed CCT arrives, it decreases the queue
length by one. A delayed CCT is a CCT whose
transaction time is earlier than one of the CCTs
that have been verified.

e When a non-delayed CCT is verified, it increases
the queue by the gap (i.e., number of CCTs)
between the transaction time of the latest CCT
and the transaction time of the non-delayed
CCT.

3.3. System simulation

A simulation is implemented to examine the
relationship between the verification queue and
the combination of the following factors: (i) the
model for payment; (ii) the model for verifica-
tion; and (iii)) extending limit n. We examine
the average length of the verification queue
and the false denial rate in different cases. Note
that the blocking limit m has no effect on the
verification queue.

In our simulation, a customer’s payment is
modelled by Poisson process; that is, the time be-
tween two payment transactions is exponentially
distributed. We use p, to denote the mean of expo-
nential distribution, which is the average time

Parameter Meaning

Default value

hp the average time between two credit card payment transactions 6 hours
Iy the average delayed time in the delayed payment scenario 24 hours
r the fraction of the delayed verifications in all transactions 30%

n extending limit 10

Fig. 4. Parameters in our simulation.

Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426 421

between two credit card payment transactions by
the same customer. A delayed verification is also
modelled by Poisson process; that is, the time be-
tween a transaction time and its verification time
is exponentially distributed. We use u, to denote
the average delayed time. For each customer, we
use r to denote the fraction of the delayed verifica-
tions in all transactions.

Fig. 4 lists the parameters and their default val-
ues in our simulation. We compute the average
length of verification queue during 1000 days of
credit card use for each customer. The time period
of 1000 days is long enough such that the average
length of the queue for a single customer is typical
for all customers. In the default case, the fraction
of the delayed verifications is 30% (r = 0.3); four
transactions are processed on average by a cus-
tomer each day (u, = 6h); the average delayed
time for delayed verifications is 24 h (u, = 24 h);
and the extending limit is ten (n = 10). We conduct
individual sets of experiments by varying these
parameters from their default values.

Fig. 5 shows the average queue length with dif-
ferent average times between transactions. We see
that the longer the time period between transac-

Queue Length with Varying Average Time
between Payment Transactions (r=30%, n=10)

o
=2
@ 12
=
<F: 10 —e—pv=12
g2 ° e _v=24
ge —m—p_v=48
S 4 b
g™ ~ H_v=96
< 0 &\L ‘ - |

6 12 24 48 96

Average Time Between Transations (p_p)

Fig. 5. Queue length with varying average time between
payment transactions.

Queue Length with Varying Average Delayed

) Time (r=30%, n=10)
[} 12
5 < 10 > —e—_p=6
0B 8 —m—p_p=12
oc ¢ _|
g 3. H_p=24
> 2 / / —x—_p=48
< 0 P

12 24 48 96

Average Delayed Time (p_v)

Fig. 6. Queue length with varying average delayed time.

tions, the shorter the length of the verification
queue. The reason is that, with larger up, fewer de-
layed verifications are inserted into the queue over
a fixed period of time. On the other hand, with
longer delayed time in verification, more delayed
verifications are inserted into the queue. This re-
sults in longer verification queues as shown in
Fig. 6. In both figures, the longest queue length
is about ten; in other cases, the average length of
the queue is less than four.

The ratio of delayed verifications in total trans-
actions has light influence on the queue length as
shown in Fig. 7. In particular, a small number of
delayed verifications (r < 0.5) change the order of
credit card transactions in a similar way as a large
number of delayed verifications (r > 0.5) do. The
rough reason behind this trend is that if most ver-
ifications are in delayed scenarios, by chance many
pairs of them are still in the same order as their
transaction times. This can be illustrated by an ex-
treme example where all verifications are delayed
with the same period of time and the queue length
will be always zero. A theoretic analysis on this re-
mains an interesting topic for further study.

To prevent online-guess attacks, we use the
extending limit to restrict the extension of the veri-
fication queue. Recall that in our algorithm, if a
transaction arrives earlier than some of its previous
transactions, the verification queue will be extended
and the CCTs for those previous transactions will
be put into the queue for future verification. The
extending limit is used as a system parameter to
control how many transactions a CCT can skip,
and this is important in security analysis (see Sec-
tion 4). Basically, the smaller the extending limit,
the harder for an attacker to try a forged CCT,

Average Queue Length with Varying Fraction of
Delayed Verifications (p_v=24, n=10)

S
:u 2
<
15 s
= —e—|_p=6
[
0T) / \\ " p=12
£9 <~ ~ |
[0.5 y_p=24
s // \.\-
< 0+— T T T T —
0.1 0.3 0.5 0.7 0.9

Fraction of Delayed Verifications (r)

Fig. 7. Average queue length with varying fraction of delayed
verifications.

422 Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426

False Denials in 1000 Days with Varying
Extending Limits (p_p=6, r=30%)

[]
2 200
i
"6 0 150 —e—p_v=24
< Ny
a c 100 —m—p_v=48
'g 8 so H_v=96
3 _
2 0 — T
5 10 15

Extending Limit (n)

Fig. 8. False alarms with varying extension limits.

and the securer the system. However, the side effect
is that if a valid transaction arrives too “early” (i.e.,
too many of its previous transactions are verified
late), its verification may require an extension be-
yond the extending limit, which leads to false de-
nial. In our simulation, we investigate the number
of false denials during 1000 days of credit card
use. Fig. 8 shows that the total number of false deni-
als drops dramatically with slightly larger extend-
ing limits and that an extending limit of fifteen is
large enough to yield zero false denial rate in all
cases.

In practice, tradeoff can be made between the
false denial rate and the security when selecting
the extending limit. For example, the extending
limit can be customer-specific — different extending
limits are used for different customers based on
customer profiles or payment history. The extend-
ing limit can also be multi-level or dynamic — the
extending limit are tuned to different levels to
guarantee low false denial rates and ensure certain
levels of security.

3.4. Complexity

We compare the time and space complexity of
our verification algorithm with traditional credit
card payment. In traditional credit card payment,
a customer uses a fixed credit card number for all
transactions and the card issuer verifies a payment
by checking that number. If the verification queue
is used in such case, the length of the queue will be
always zero.

Let L be the average length of verification
queue in our scheme. On average, our algorithm
requires L comparisons between an arrived CCT
and those in the queue; an additional comparison

is needed between the CCT and the hash value
of the current CCT. The time and space complex-
ity of our algorithm is L + 1 times of that in tradi-
tional payment. Because the average length of the
queue is not large (in our simulation, the average
length of the queue is close to zero in most cases),
the increment of space and time complexity is
limited. Such limited increment is affordable con-
sidering the fast development of computer hard-
ware described by Moore’s law.

The trade-in of the complexity is the security
enhancement compared with traditional scheme.
Most credit card frauds are can be thwarted due
to the use of CCTs. On the other hand, our scheme
is convenient for use compared with other one-
time credit card number solutions. CCTs can be
generated easily on the customer side, and the cur-
rent protocols such as SSL for transmission of
credit card information can still be applied.

4. Security analysis

In our scheme, customers do not need to worry
about their actual credit card numbers or identify-
ing information being learned by an attacker be-
cause such information is useless in payment
without one-time CCTs. In the following, we
investigate the security issues when some CCTs
are known by an attacker. Unless otherwise stated,
we assume that the attacker has no access to a
physical credit card nor the card-resident secret
(Section 5 will discuss an implementation option
in case of card loss).

First assume that the attacker knows a single
CCT. Since the attacker does not know the secret,
he may choose a random secret and compute a
CCT from the known one. The probability that
the computed CCT T can be verified is

(10l +n) (10| +n)
max(BT o7)

where |- | denotes the length of Q, S, or 7. The
length of Q is constrained by a queueing policy.
In default we assume that S is in binary form
and T in digits. Recall that our algorithm permits
at most m CCTs to be tried in verification; the
probability of success of this attack is

Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426 423

m(|Q| +n) m(|Q| +n)
max(S 1ol)

This probability can be made exponentially low by
increasing the length of the secret and/or the CCT.
Also note that even if the attacker gets a valid
CCT somehow (e.g., purely by chance), it is still
useless unless that CCT has not been used in legal
transactions by the time the attacker gets it.

Another scenario is that the attacker knows
more than one CCTs. Assume that the attacker
knows two consecutive CCTs T, and T,. The at-
tacker attempts to know secret S by trying all pos-
sible values until the following is attained

Ts = #(T|S). 2)

The average number of tries (until Eq. (2) is at-
tained) is:

Pl 110‘”
3 - min ,W .

If 2151 > 1017, the average number of tries is be-

i 7 .
tween 19— and 15+ otherwise the average num-

ber of t21ries is 2\‘\%1 This attack can be thwarted
by selecting long secret and/or CCTs (e.g.,
|S| = 128 bits and |7] = 16 digits are good enough
in most cases) such that attaining Eq. (2) is compu-
tationally difficult. In addition, even if the attacker
finds a secret such that Eq. (2) is attained, the
probability that this secret is the customer’s real
secret is

. 107
min 1’W .

Again this probability can be made exponentially
low by selecting long secret. Another even-if is that
the attacker may get the correct secret somehow, it
is still useless unless the attacker obtains the cur-
rent CCT or a not-so-old one in order to compute
a valid CCT that can be verified. Since our algo-
rithm permits at most m(n + |Q|) tries, the attacker
must obtain a CCT that is no older than
m(n+|Q|) from the current CCT if the attacker
tries CCTs sequentially.

Now assume that the attacker knows M cus-
tomers’ actual credit card numbers and possibly
their identifying information as described in data-

base stealing scenario. With those information, the
attacker tries a random CCT for each customer
and hopes at least one try would succeed. The
probability of success of this attack is

M- (n+10])
107! ’

If the attacker tries m CCTs for each customer (be-
fore gets blocked), the probability is

M -m(n+|0)
107

This attack can be thwarted by selecting long
CCTs such that the probability is low unless M
is extraordinarily large. In the case that the attack-
er manipulates to know a large number of actual
credit card numbers such that one try would suc-
ceed, it may take too long time because on average
the attacker has to try 5= customer accounts (and
for each account try m CCTs) in order to find the
“right” one.

Finally, assume that the attacker obtains a valid
CCT somehow and gets the CCT verified in an ille-
gal transaction. The victim customer will be aware
of the credit card fraud as soon as one of his legal
payments is abnormally refused or one of his de-
layed payments cannot be verified (no need to wait
for credit card statement as in traditional pay-
ment). The refused legal payment will be at most
n transactions away from the verified illegal pay-
ment due to the extending limit. Early awareness
of credit card fraud on the customer side will help
reduce the loss of money.

In terms of security, our scheme, like anything
else, is not perfect.2 Particularly, a successful de-
nial of service attack on a card issuer’s computing
system is ruinous, but this is true for any one-time
payment systems, even for the traditional pay-
ment. Due to this threat, card issuers’ systems
are very well protected nowadays.

Due to transmission error or network discon-
nection, a CCT may not reach corresponding mer-
chant site or card issuer site in online payment
scenario. In this case the merchant does not receive
any transaction request, or cannot verify the CCT

2 According to [8], perfect security is not realistic for business.
“Good enough [security] is good enough.”

424 Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426

with the card issuer. Consequently, the transaction
is not confirmed. The smart card reader on cus-
tomer side thus discard the CCT and drop the
transaction request. This will not influence future
transactions.

Another possible attack is replay attack, where
an attacker intercepts a CCT during transmission
and quickly sends it to a merchant, hoping that
the intercepted CCT can be verified by the card is-
suer before the legal one. Such attack can be
thwarted by using SSL in transmission. In addi-
tion, our system is securer than traditional pay-
ment since the intercepted CCT is not always
useful, but only in the case that the legal CCT is
verified later than the intercepted one.

There are other attacks that can be mounted
from smart card readers by attackers, especially
when we assume that smart card readers have write
capability. A malicious operation from smart card
readers may release CCTs or other secret informa-
tion stored in smart chips, it may also results in de-
nial of service attacks by generating false CCTs
which cannot be verified by card issuers. In this pa-
per, we focus on the possible attacks that happen
during credit card transactions. The security of
smart card readers is out of the range of this paper.

5. Implementation options and discussions

In this section, we discuss several implementa-
tion options and compare our solution with PKI-
based schemes.

5.1. Payment without smart card reader

In some payment scenarios such as phone pay-
ment and fax payment, a customer may not have
access to a smart card reader. One option is to al-
low use of actual credit card numbers in this case.
This is also the option that is adopted by American
Express Private Payments and some other one-
time payment systems. Overall such payment sys-
tem is “mixed” because both one-time numbers
and actual credit card numbers are allowed to
use (probably in different payment scenarios).

The rational behind the “mixed” system is that
the vulnerability of using credit card is different in

different payment scenarios. For example, phone
payment may be considered “safer” than on-line
payment. Actual credit card numbers are allowed
to be used in those “safer” scenarios to facilitate
transactions.

Though a “mixed” system is convenient to use
and it is inter-operable with traditional credit card
payment facilitates, it compromises security. Once
an attacker learns a customer’s actual credit card
number (e.g., through shoulder surfing, dumpster
diving, or database stealing), the attacker can use
it repetitively in permitted scenarios.

Another choice sticks to pure one-time system, in
which one-time CCTs are always used in all pay-
ment scenarios. Whenever a smart card reader is
inaccessible, one must contact with the card issuer
(e.g., by phones, emails, or on-line registrations)
to get a special CCT. The special CCT is not gener-
ated from the previous one as in other cases since the
card issuer does not know the last CCT that the cus-
tomer has used (the last CCT may have not been ver-
ified yet). It is also impractical for the customer to
remember the last CCT and those special ones.

We propose to generate special CCT Ty from
time stamp ¢, and secret S using a cryptographic
hash function 7

Tpe = A (1]15), (3)

where 7, is the time when the CCT is required
by the customer. After generation, the card is-
suer delivers the special CCT to the customer
and inserts it into the verification queue such
that it can be verified the same way as normal
CCTs. No matter how many times special CCTs
are required, it does not affect at all the transac-
tions with normal CCTs. The influence of special
CCTs on our verification algorithm is equivalent
to that of normal CCTs in delayed verification
scenario.

We mention that in our scheme, a customer
does not need to reveal his identity to a merchant.
An actual credit card number can be used instead
of the customer’s identifying information in each
transaction and serves as the customer’s index in
verification. However, this is not the case in a
“mixed”” system since the actual credit card num-
ber may be learned by an attacker and then mis-
used in some application scenarios.

Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426 425

5.2. Using personal identification number

So far the security of our scheme is based on the
assumption that a physical credit card is not lost.
In the case of card loss or theft, the card issuer
should be notified in order to prevent credit card
fraud. However, it could be too late in some cases.

An option to enhance the security in this case is
to use personal identification number (PIN) in credit
card payment. The PIN number is known by both
the customer and the card issuer. In each transac-
tion, the customer punches in his PIN and updates
his CCT by hashing the previous CCT, the secret,
and the PIN. The card issuer also updates CCTs
with the same PIN. In the case of card loss or
theft, the blocking limit prevents an attacker from
trying PIN too many times. The use of PIN creates
a similar security as ATM card in the system of
automatic teller machines.

Change of PIN must be done through an
authenticated interaction between the customer
and the card issuer. During the interaction, the
customer informs his new PIN and the last CCT
generated with the old PIN. The last CCT is stored
in the customer’s credit card; it can be read out by
a smart card reader and transmitted to the card is-
suer. Before the card issuer replaces the old PIN
will the new one, the gap (in the verification queue)
between the current CCT (see Fig. 2) and the last
CCT (indicated by the customer) is filled with the
CCTs computed with the old PIN.

5.3. Recurring payment

To encourage convenient purchasing or sub-
scription, some e-commerce services (e.g., MSN
Wallet) allow a customer to choose recurring pay-
ment, in which the merchants store the customer’s
credit card information and repetitively use the
same credit card number in several payments that
may be split from a single transaction. A pure one-
time system requires that the merchants contact
with the customer each time in recurring payment
to get an updated CCT. While this is secure, it may
not be very convenient.

Another option allows some one-time CCTs to
be reused under some carefully controlled condi-
tions. Without messing up the verification queue,

we propose that such reusable CCTs be generated
by Eq. (3) through an interaction between the cus-
tomer and the card issuer. During the interaction,
the customer also indicates the conditions for reus-
ing the CCTs. These conditions may include the
number of reusable times, temporal and monetary
restrictions, and the corresponding merchants.
Such reusable CCTs are specially handled in veri-
fication such that the transactions with normal
CCTs are not affected.

5.4. Comparison with PKI-based schemes

Public key infrastructure (PKI) can be de-
ployed in various ways for securing credit card
transactions. Two possible solutions are SET
and SSL, which have been discussed in Section
1.2. In SET, PKI is needed for mutual authenti-
cation of involving entities. The dual signatures
of order and payment information in SET re-
quire that each entity (customer, merchant, cred-
it card issuer or bank) have a public key
certificate. This requirement limits the scalability
of system as each involving entity must obtain a
public key certificate before or during credit card
transactions. Because of this limitation, plus the
high complexity of the protocol, SET never suc-
ceeded in marketplace.

PKI is also used in SSL. Similar to SET, SSL
applies PKI for mutual authentication of involving
entities before creating a secure communication
channel between customer and server (i.e., mer-
chant or card issuer). The 2-way authentication
protocol in SSL is seldom deployed because digital
certificates on customer side have not been widely
used. As a result, most SSL applications enforce
server authentication only, though this one-way
authentication approach opens a door to potential
attacks.

Note that our approach does not exclude the
possibility of using SSL in credit card transactions.
Since our approach is independent of the commu-
nication mode between customers and merchants,
we can use SSL in the online payment scenario
$O as to construct secure communication channels.
The only difference is that we use one-time CCTs,
instead of real credit card numbers, during the
communications.

426 Y. Li, X. Zhang | Electronic Commerce Research and Applications 4 (2005) 413-426

In summary, the main disadvantage of PKI-
based schemes is that each customer is required
to possess a public key certificate. This requirement
may not be practical for credit card payment. An-
other disadvantage is that the maintenance of
PKI-based payment is not easy due to some man-
agement overheads such as certificate revocation,
mutual trust of CA’s, and etc. Our approach is
beyond the existing solutions not only because it
applies hash functions, but also supports one-time
payment in both online and off-line scenarios, at
the same time preserving the features of ease of
deployment and maintenance. Our analysis and
simulation show that the credit payment, including
delayed verification, is secure and practical.

6. Conclusion

We have presented a security enhancement
scheme for one-time credit card payment. In this
scheme, one-time transaction numbers are gener-
ated by hashing their previous transaction num-
bers and a shared secret between card holder
and issuer. The scheme is applicable in both
on-line and off-line payment scenarios. Analysis
and simulation show that the complexity of
our scheme is comparable to that of traditional
credit card payment and that the security of
scheme is much stronger. We have also discussed

several implementation options and compared
our scheme with PKI-based approach. We con-
cluded that our scheme is practical for thwarting
credit card frauds with a good balance of ease of
deployment for credit card companies and ease
of use for individual customers.

References

[1] Editorial. Security is in the smart cards. In: eWeek, March
3, 2003, p. 30.

[2] Internet Fraud Statistics Reports. Available from: http://
www.fraud.org/internet/intstat.htm.

[3] A.O. Freier, P. Karlton and P.C. Kocher. The SSL
protocol. Available from: http://wp.netscape.com/eng/
ss13/ssl-toc.html.

[4] Payment mechanisms designed for the Internet. Available
from: http://ntrg.cs.ted.ie/mepeirce/Project/oninternet.html.

[5] R. Jaques. Identity theft worse than Iraq war. Available
from: http://www.vnunet.com/News/1140291.

[6] Private Payments locked with smart chip. Available from:
http://home4.americanexpress.com/blue/privatepayments/
splash.asp.

[71 A.D. Rubin and R.N. Wright. Off-line generation of
limited-use credit card numbers. In: Proceedings of Finan-
cial Cryptography, 2001, pp. 196-209.

[8] R. Sandhu, Good-enough security, IEEE Internet Com-
puting 7 (1) (2003) 66-68.

[9] What is SET? Available from: http://www.setco.org/
set.html.

[10] A. Shamir, Secureclick: A web payment system with
disposable credit card numbers. In: Proceedings of Finan-
cial Cryptography, 2001, pp. 232-242.

http://www.fraud.org/internet/intstat.htm
http://www.fraud.org/internet/intstat.htm
http://wp.netscape.com/eng/ssl3/ssl-toc.html
http://wp.netscape.com/eng/ssl3/ssl-toc.html
http://ntrg.cs.tcd.ie/mepeirce/Project/oninternet.html
http://www.vnunet.com/News/1140291
http://home4.americanexpress.com/blue/privatepayments/splash.asp
http://home4.americanexpress.com/blue/privatepayments/splash.asp
http://www.setco.org/set.html
http://www.setco.org/set.html

	Securing credit card transactions with one-time payment scheme
	Introduction
	Evaluation criteria
	Related work
	Our solution
	Organization

	Customer payment scheme
	Credit card
	Smart card reader
	Payment scenarios

	Verification scheme
	Verification algorithm
	The length of verification queue
	System simulation
	Complexity

	Security analysis
	Implementation options and discussions
	Payment without smart card reader
	Using personal identification number
	Recurring payment
	Comparison with PKI-based schemes

	Conclusion
	References

