
Building a Stateful Reference Monitor with Coloured Petri Nets

Basel Katt and Michael Hafner
University of Innsbruck

Innsbruck, Austria
{basel.katt, m.hafner}@uibk.ac.at

Xinwen Zhang
Samsung Information Systems, America

San Jose, CA, USA
xinwen.z@samsung.com

Abstract

The need for collaboration and information sharing has
been recently growing dramatically with the convergence
of outsourcing and offshoring, the increasing need to cut
costs through cooperative agreements between partners as
well as competitors, and the rise in the demand for a high-
quality healthcare from different healthcare actors. New
access control requirements have emerged in these modern
collaborative and distributed environments, such as contin-
uous control of resource usage considering temporal and
cardinal rules, execution of additional tasks to compensate
violation of security policies or enforce obliged actions,
and constraints for concurrent access and usage of shared
resources. These new requirements stipulate the need for
new policy models and advanced enforcement mechanisms.
Towards these we aim at developing a formal framework
based on Coloured Petri Nets theory for the specification
of enforcement mechanisms of a resource-centric reference
monitor.

1. Introduction

The need for collaboration and secure information sharing
has been dramatically growing with the broadened spread
of the social networks, the convergence of outsourcing and
offshoring, the increasing need to cut costs through coop-
erative agreements between partners as well as competitors,
and the rise in the demand for a high-quality healthcare from
different healthcare actors [8]. In order to achieve their goals,
especially after the recent financial crises, companies tend
to merge or collaborate with partners and competitors to
cut costs [2]. Outsourcing entails a delegation of (a part
of) business function to an external company and share
the needed resources, which requires tight collaboration and
strict control. In order to increase healthcare quality and ef-
ficiency, different actors and institutions have to collaborate
and share resource, EHR (Electronic Health Record) at the
heart of them.
Problem Statement: In these modern collaborative and
distributed environments new security requirements arises.
(i) Usually, it is not enough to make authorization deci-
sions based on the static rules of each operation, since the

behavior of applications and the temporal interaction of
security related operations and actions play critical roles
in security [16]. For example, only users having already
joined a discussion room can have access to a shared
document. (ii) Beside authorization decisions, it is important
to be able to execute some actions to compensate violations
of security rules and enforce some obligatory tasks, e.g.,
updating attributes of users and resources [23] or sending
a notification to the clinic in case of a privacy violation by
a healthcare actor. (iii) Concurrency is a very important
aspect in collaborative environments when resources are
shared. These new requirements stipulate the need for new
policy models and advanced enforcement mechanisms. They
also show the importance considering functional behavior in
proposed policy models and enforcement mechanisms.

Plenty of work have been dedicated to formalize and
analyze security policies. However, fewer have paid the same
attention to enforcement mechanisms. Developing new pol-
icy languages without considering their enforcement mech-
anisms increases the gap between the policies expressed
and the actual enforcement [12], [7], thus the correctness
of the policy analysis is under question when a policy is
to be enforced. This is true especially when the policy is
dynamic and stateful. Hence developing a formal framework
for enforcement mechanisms is very desired to correctly
derive necessary and safe mechanism from policies and thus
enable analyzing the policies and mechanisms at the same
level of abstraction.

Monitors for program execution have been investigated by
a stream of work started by Schneider et al. [21], and lately
by Pretschner et al. [18] and Janicke et al. [12]. However
concurrency seems to have taken a back seat. Plenty of work
have proposed enforcement architectures/models, for exam-
ple, Zhang et al. [23] in the context of collaborative comput-
ing systems, however, their approaches are implementation
oriented and lack a formal foundation. Other industrial
standards deal with reference monitor based enforcement
mechanism such as XACML architecture [3]. However it
does not fit well for stateful policies, where the behavior
and the state of the reference monitor play an important
role in making decisions.

Solution: In this paper we establish a formal framework

to specify and reason about access control enforcement
mechanisms for an object-centric reference monitor, which
means that objects and resources are central elements of
our reference monitor. Our reference monitor is an ab-
stract state machine based on the Petri Nets formalism.
It intercepts security (resource) related sequence of sys-
tem actions and ensures that the system behaves securely
with respect to security conditions, concurrency rules, and
behavioral restrictions. In general, the reference monitor
has the following advanced enforcement mechanisms: (1)
terminating the usage of a resource by any user who
tries to violate any security condition without affecting the
usage of other users; (2) executing additional actions to
compensate for any violation or to enforce obligatory tasks;
(3) applying temporal restriction on action execution; (4)
applying cardinal restrictions on the execution of actions;
and (5) applying concurrency rules when multiple users are
executing sensitive actions on resources. Concurrency is one
of those aspects that are dealt with in our treatise of reference
monitor, in which different users accessing some resources
can be modeled.

Mechanisms are modeled with (parts of) Coloured Petri
Nets (CP-net or CPN) and security rules or properties are
defined based on the CPN’s formalism. We do not claim
that these mechanisms are complete – any access control
policy can be enforced by one or more mechanisms of our
reference monitor. However, we try to establish an extensible
framework for defining enforcement mechanisms based on
identified requirements of access control systems. On the
other hand, we show that the mechanisms are sound. We
specify a security property that is enforced by each mech-
anism. In this case, a mechanism that enforces a property
is sound if the property holds for the mechanism’s CPN. In
other words, we say that a set of enforcement mechanisms
of our reference monitor enforces a set of security properties
or rules if these rules hold for these mechanisms’ CPN.
Outline: The rest of this paper is organized as follows. An
overview of Coloured Petri Nets is presented in Section 2
and the motivating example is shown in Section 3. Basic
concepts and main notations used in our stateful object-
centric reference monitor are discussed in Section 4. In
Section 5 enforcement mechanisms are specified and their
correctness is shown with respect to security properties. The
combination of different mechanisms and analysis are dis-
cussed in Section 6 by considering the motivating example.
In Section 7 we discuss the related work and conclude the
paper and discuss our future work in Section 8.

2. Colored Petri Nets Overview

A Colored Petri Net (CPN) [13] can be defined as a tuple
CPN = (Σ,P,T,A,N,C,G,E,I,SC), where Σ is a set of color
sets, P, T and A are sets of places/states, transitions and arcs,
respectively. A transition has incoming and outgoing arc(s).

Incoming arcs indicate that a transition may remove one
or more tokens from the corresponding input places while
outgoing arcs indicate that the transition may add tokens
to the output places. The exact number of tokens and their
values are determined by the arc expression, defined by the
function E. N is a node function that determines the source
and destination of an arc. C is a color function that associates
a color set C(p) or a type with each place p. G is a guard
function that maps each transition t to a boolean expression
G(t). For a transition to be enabled, a binding of the variables
that appear in the arc expressions must be found, and for this
“binding element” the guard function must evaluate to true.
This binding makes the arc expression of each input arc
evaluates to a multi-set of token colors. I is an initialization
function that maps each place to a multiset I(p). The last
element is SC, which is the segmentation code function of
a transition, mapping a transition to a set of actions that are
executed when the transition occurs.

A token element is a pair (p, c) such that p ∈ P and
c ∈ C(p). For a color set s ∈ Σ , the base color sets of S
are the color sets from which S was constructed using some
structuring mechanisms such as cartesian products, records,
or unions. The set of all token elements is denoted by TE.

For x, x1, x2 ∈ P ∪ T , Out(x) = {y ∈ P ∪ T | ∃a ∈ A :
N(a) = (x, y) } is the postset of x; and In(x) = {y ∈ P ∪T |
∃a ∈ A : N(a) = (y, x) } is the preset of x. A(x1, x2) is
the set of arcs from x1 to x2, and the expression of (x1, x2)
is E(x1, x2) = Σa∈A(x1,x2)E(a).

V ar(t) is the set of variables of a transition t. Type(v) ∈
Σ denotes the type of the variable v. A binding element (t, b)
is a pair consisting of a transition t and a binding b of data
values to its variables such that G(t) < b > evaluates to
true. expr < b > in general denotes the value obtained
by evaluating the expression expr in the binding b. By B(t)
we denote the set of all bindings for a transition t. The
Binding element is written in the form (t, < v1 = c1, v2 =
c2, ..., vn = cn >), where v1, v2, ..., vn ∈ V ar(t) are the
variables of t and c1, c2, ..., cn are the data values such that
ci ∈ Type(vi) for 1 ≤ i ≤ n. For a binding element (t, b)
and a variable v of t, b(v) denotes the value assigned to v in
the binding b. B(t) denotes the set of all binding elements
is denoted BE.

M(p) denotes the marking of a place p in the marking M .
M0 is the initial marking. If a binding element (t, b) is en-
abled in a marking M1, denoted M1[(t, b)〉, then (t, b) may
occur in M1 yielding some marking M2. This is written as
M1[(t, b)〉M2. Accordingly, a finite occurrence sequence is
a sequence consisting of a marking Mi an binding elements
(ti, bi) denoted M1[(t1, b1)〉M2...Mn−1[(tn−1, bn−1)〉Mn

and satisfying Mi[(ti, bi)〉Mi+1 for 1 ≤ i < n. M1 is
called start marking, Mn+1 is called end marking, and n is
called the length of the occurrence sequence. If the length is
infinite we call the occurrence sequence infinite occurrence
sequence. The set of all finite occurrence sequences is

denoted by OSF, while the set of all infinite occurrence
sequences is denoted by OSI, and finally OS = OSF ∪OSI
is the set of all occurrence sequences. A reachable marking
is a marking which can be obtained by an occurrence
sequence starting in the initial marking. [M0〉 denotes the
set of reachable markings. Finally, The sets of all markings
and steps is denoted by M and Y, respectively.

Let X ⊆ BE be a set of binding elements and σ ∈ OSF
is a finite occurrence sequence, we can also consider an
infinite one, of the from: σ = M1[Y1〉M2 . . . Mn[Yn〉Mn+1.
For each i ∈ N+, ENX,i(σ) is the number of elements from
X which are enabled in the marking Mi and OCX,i(σ)
is the number of elements from X which occur in the
step Yi. Furthermore, ENX(σ) =

∑
i∈N+

ENX,i(σ) and
OCX(σ) =

∑
i∈N+

OCX,i(σ) are the total number of
enabling and occurrences in σ, respectively.

Finally, we introduce timed CP-net that is used for in-
vestigating the performance of systems, for example the
maximum time for execution and average waiting times
for certain requests. we leverage timed CP-net to provide
the mechanism to integrate time aspects in our enforcement
mechanism. Specifically, some tokens are allowed to carry
a time stamp which indicates when a token is ready to be
used by a transition.

3. Motivating Example

The following example illustrates the concepts of our
reference monitor. We consider a collaborative modeling
application between two automaker companies: Comp1

and Comp2. According to a cooperation agreement and
in order to cut costs, the two competitors agree on pur-
chasing together some of car components. The cooperation
on purchasing components requires integrating some of
financial and purchasing business processes by specifying
an inter-organizational work flow between the financial and
purchasing departments in Comp1 and Comp2. They decide
to use a collaborative modeling application, similar to the
one proposed by Rittgen in [19], [20], for the modeling
procedure.

The collaborative modeling tool provides the following
two features 1: proposal and score. A proposal is a sug-
gestion by a user for a revision of the current version of
shared inter-organizational work flow model, which is to
be evaluated by other users participating in the modeling
session. Each user gives a score for the proposal and
according to some threshold, the proposal can be accepted or
rejected. If accepted, the proposal can be committed to the
shared model repository. We can summarize the following
functionalities required from this collaborative application:
(1) propose to propose a proposal, (2) request for a user

1. These features are inspired from the COMA tool:
http://www.coma.nu/html/introduction.html

to request evaluation of a proposed proposal, (3) commit to
commit a proposal to the model repository, (4) update to
get the latest version of a model, (5) score to give a score
for a proposal, and finally (6) join and leave a modeling
(collaborative) session.

Requirements: Due to the sensitivity of the information
contained in these models, some behavioral and security
requirements must be enforced.
BR1: Committing is only allowed after a user proposes a
proposal and requests evaluations.
BR2: After requesting evaluation, a user can withdraw a
proposal.
SR1: Only users with role “Designer” are allowed to
propose proposals.
SR2: A maximum number of ten proposals are allowed for
the each model.
SR3: Requesting must not last more than 5 minutes for
each proposal.
SR4: Every time a new version is committed, a notification
message must be sent to all participants.
SR5: Only one user is allowed to commit at a time.

Figure 1: CPN of a functional behavior for collaborative modeling
application (SUB is color set representing subjects, s is a free
variable of type SUB, and sub is the initial marking of the place
subjects).

However, authorization is not supported by the current
version of the collaborative tool. Therefore, Comp1 and
Comp2 decide to implement a security solution to enforce
the needed requirements. For this reason, they need to
utilize a policy model/specification that is able to cover the
mentioned security requirements (this is out of scope of this
paper, but is planned for future work) and an enforcement
mechanism that is able to monitor and enforce these policy
rules. Furthermore, they want to be able to analyze the
mechanisms and ensure that these mechanisms enforce the
defined policies. In Section 6 we show how we can build
abstract enforcement mechanisms and analyze them.

Figure 1 shows that required behavior modeled as CPN.
The transitions represent system actions discussed previ-
ously, each abbreviated by the first 3-4 letters. subjects place
represents a pool of available subjects. The figure shows that
com action is only allowed after the req, and withdraw action

is available after requesting evaluations.

4. A Stateful Reference Monitor

In this section we establish the formal framework and ba-
sic notations for modeling and analyzing reference monitors
and security rules they enforce. We specify a system at a
high level of abstraction as a non-empty set of actions Act
which is modeled in our CPN notions as a set of transitions
T. An execution is a finite sequence of actions, or–in CPN
notion–a finite occurrence sequence OSF. Furthermore, a
system contains a set of subjects S represented by token
colour SUB, and set of objects O represented by token
colour OBJ. Finally, we define a finite set of security related
conditions Cond 2. We distinguish three views of an access
control system: the functional view, the policy view, and the
enforcement view. Functional view represents the behavior
of the system without any security consideration. Behavioral,
security and concurrency requirements will be presented in
the policy view. The enforcement mechanisms (enforcement
semantics) of the access control policy is shown in the
enforcement view.

Each action in the system, act ∈ ACT , is modeled as one
transition, t ∈ T in the policy view and is mapped into a
sequence of Transition-Place-Transition, (t, p, t) ∈ T ×P ×
T , in the enforcement view. The first transition represents
the action request and the start of executing the action, the
place represents the execution state of the resource by the
subject, and the second transition represents the end of the
action execution. Thus, we define the following mapping
functions:
• actP : ACT → T : maps each action in the system to a
transition in the policy view.
• actRM : T → T × P × T : constructs the enforce-
ment view of the action transition t. Each system action
is represented as a set of two transitions and one place
in the enforcement/reference monitor view. We call them
tRe, tEx, and tEn, representing the request transition,
executing place, and the end transition, respectively. This
constructor fulfills the following:

• C(tEx) = SUB: The color set of the execution place
is of type SUB.

• [∀p ∈ •t ⇒ p ∈ •tRe] ∧ [∀p ∈ t• ⇒ p ∈ tEn•] ∧
[•tEx = {tRe}] ∧ [tEx• = {tEn}]

Figure 2 shows an action representation in the different
views of the system. When the reference monitor intercepts
an action act ∈ Act, which is mapped to the transition
t = actP (act) in the policy view, that a subject s ∈ S is try-
ing to execute, this request for execution is represented as a
binding (t1, b1), where the transition t1 = actRM(t).reqT

2. Please note that we do not restrict any specific model or language
for the conditions to keep our model general. For example, constraint
specifications languages [6], [4] can be used for this purpose.

Figure 2: Action representation in the functional and the enforce-
ment views.

represents the request transition of the action act in the
enforcement view and s = b1(sub), i.e., the subject element
of the binding b1 equals the subject s that tries to execute the
action. If the binding element is enabled in a marking M1,
the action is recognized by the CP-net reference monitor.
The occurrence of this binding means that the action is
allowed and it moves the subject token sub = s to the
executing place actRM(t).exeP . Finally, the occurrence of
the binding (t2, b2) in a marking M2 represents the end of
the execution of the action act, where t2 = actRM(t).endT
represents the end transition of the action act in the enforce-
ment view, and b2 is an enabled binding having the subject
s = b2(sub) as its subject element. From this discussion
we can define the access request for executing an action as
follows:
Access Request: the request transition of an action is
enabled with a binding b that contains a token of the subject
sub iff (i) the subject sub has requested that action, which
is recognized by the defined bahavioral CPN, and (ii) the
guard of the request transition evaluates to true for this
binding b. Requests for single action is presented as binding
elements in which the requesting subject is contained in
the binding and the transition is the request transition of
requested action.

Our reference monitor is stateful and is a recognizer of
the correct behavior of the application, which is executed
on behalf of users. That means the control of the reference
monitor is continuous during the access session of resources.
We define the access session as follows:

Definition 1. An access session of a resource or a set of
resources is defined as a finite occurrence sequence σ =
M0[Y 1...Y n〉Mn, where M0 is the initial marking of the
access and the Mn is the finial marking where the access
is finished.

For example, the access session in the motivating example
represents the sequence of actions that all participants per-
form on the shared resources (models) during the meeting
period. It starts by initiating a collaborative session by an
administrator and ends by closing this session. During the
session periods, users can join and leave the session.

From the discussion above we can conclude that our
reference monitor can be seen as (1) a recognizer of the

functional behavior of a system, with respect to the protected
resources, and (2) a controller of the actions that a subject is
executing on resources. The following control mechanisms
are supported by our reference monitor, while the details are
illustrated in next section.

1) Halting Mechanism: stops the execution by a subject.
It prevents the violation of security rules. This can
be mapped to the mechanism of security automata
introduced by Schneider et al. [21], [22].

2) Temporal Mechanism: allows the execution of an ac-
tion by a subject for a specific time period.

3) Cardinal Mechanism: allows the execution of an action
by a subject for a maximum number of times.

4) Execution Mechanism: allows the execution of addi-
tional actions/tasks in order to compensate a violation
of security rules or enforce some needed tasks. These
actions can be either executed instantly or within a
specific time frame.

5) Concurrency Mechanism: this mechanism controls
concurrent executions of an action by multiple sub-
jects.

5. Abstract Enforcement Mechanisms

Using Coloured Petri Nets for specifying enforcement
mechanisms has two advantages. First, it provides a mathe-
matical framework to reason about and analyze the enforce-
ment mechanisms. Hence, it enables proofing the correctness
of the enforcement with respect to security rules to be
enforced. Second, it can be used for automatic configuration
of an enforcement engine based on CPN-based engines. The
development of a configurable reference monitor is a subject
of our future work. Thus closing the gap between a policy
specification and the reference monitor implementation. This
gap can lead to insecure systems as the overall security
depends on the correctness of the mechanisms used to
enforce sound policies.

Each mechanism is triggered or associated with one
system action. We define a general abstract enforcement
mechanisms as 3-tuple Mech = (act, o, PAR), where
act ∈ Act is the triggering system action, t = actP (act)
is the transition representing act in the policy view, o ∈ O
is the protected resource, and PAR is a set of parameters
that depend on each individual mechanism. For each of the
defined enforcement mechanisms we specify the security
property it enforces and show the correctness of the en-
forcement.

5.1. Mech1: Halting Mechanism

A halting mechanism can be defined as a 3-tuple
Mech1 = (act, o, co) ∈ HMech, where co ∈ Cond is
a condition that must be fulfilled instantly and HMech
is the set of all halting mechanisms. In other words, it

must fulfill an instant property. Instant properties represent
security rules that must be checked before a subject gets
access to a resource. It can be mapped to traditional access
control policies. Formally, we define the instant property
that the condition co ∈ Cond must be fulfilled before a
subject, represented by the token sub ∈ SUB, execute an
action act ∈ Act on a resource, represented by the token
obj ∈ OBJ as follows (where t1 = actRM(t).req and
sub = b(s)):

∀(t1, b) ∈ BE. ∀M ∈ M : (cond = false) ∧ sub = b(s)
⇒ @M ′ ∈ M : M [(t1, b)〉M ′ (1)

This rule is very intuitive and simply says: in any state of
the reference monitor with marking M , if a condition cond
is true and the transition t1 is enabled, then the transition t1
must occur, i.e., the action must be allowed. t1 is enabled
means that beside the condition is true, the subject s has
requested the action act. The occurrence of the binding
transforms the state of the reference monitor to the marking
M ′. In other words, the equation 1 indicates that if the
subject stated in the binding element tries to execute the
action act and the condition cond is not true then his request
must be rejected and his access is halted.

Figure 3: Halting mechanism.

The halting mechanism for enforcing instant rules can be
simply constructed by placing the condition as a guard on
the request transition of the action act. Figure 3 shows this
mechanism for restricting access to the action act, whose
request transition in the enforcement view is t1, by a subject
presented as the token in the S1 place. If the condition is
not fulfilled the execution is halted, otherwise the request
transition occurs and the subject starts executing the action.

Proposition 1. Mech1 enforces instant rules.

Proof: The proof is straightforward consequence of the
definition of step enabling and step occurrence of CP-net
[13].

5.2. Mech2: Temporal Mechanism

Temporal mechanism can be defined as a 3-tuple
Mech2 = (act, o, d) ∈ TMech, where d is the duration
within which the execution of the action act is granted to a
subject and TMech is the set of all temporal mechanisms.
We call the property that the temporal mechanism enforces a

temporal rule. A temporal property indicates that a subject
sub ∈ SUB is allowed to executed an action act ∈ Act,
where t1, t2, and p are the request transition, end transition
and executing place of the action act respectively, for the
time period d ∈ N . Formally we define this temporal rule
as follows (where s = b(sub)):

∀(t1, b) ∈ BE ∀M,M ′ ∈ M : M [(t, b)〉M ′ ∧ sub ∈ b(s)
⇒ ∃M ′′ ∈ M ∃σ ∈ OSF : M ′[σ〉M ′′ ∧ sub /∈ M ′′(p)

(2)

In this definition we do not specify the allowed duration of
execution, but we require that eventually the subject ends his
execution. However, it is possible to define the duration of
the allowed execution by adding the condition time(σ) ≤ d,
then we get the definition

∀(t1, b) ∈ BE ∀M,M ′ ∈ M : M [(t, b)〉M ′ ∧ s ∈ b(sub)
⇒ ∃M ′′ ∈ M ∃σ ∈ OSF : M ′[σ〉M ′′ ∧ s /∈ M ′′(p)

∧ time(σ) ≤ d (3)

The end of the execution is denoted by the condition sub /∈
M ′′(p), which means that the token element of the subject
sub leaves the executing place p in the marking M ′′.

The temporal mechanism for enforcing temporal rules
requires timer functionality. For this purpose timed CP-
nets can be used [14]. Using timed CP-net, the temporal
mechanism can be constructed by waiting d time units, and
then check if the subject is still executing the action, i.e.,
the subject token is still in the executing place.

Figure 4: Timing mechanism.

Figure 4 shows the CP-net representation of this mecha-
nism (please note that the token color of the waiting place
is a timed subject). When a subject starts executing the
action act, the request transition occurs. The occurrence
of this transition moves a subject token to the executing
state, indicating that the subject is executing the action.
Furthermore, a subject token with a time stamp @d is moved
to the waiting place. Thus, after d time units the token in
the waiting state is ready and the transition timeout occurs
if the subject token is still in the executing place p. In this
case the subject is moved from the executing place and the
execution is forced to be ended.

Proposition 2. Mech2 enforces temporal rules.

Proof: we want to proof that the temporal property for
the action act holds for the Mech2’s CP-net. We assume that
a binding element (b,t) is enabled in a marking M where
b(s) = sub and sub ∈ M(S1). The occurrence of this step
gives us a new marking M ′ where the subject token is moved
to the executing place p, i.e., sub ∈ M ′(p). Furthermore,
firing the transition t1 moves also a subject token to the place
Waiting with a timestamp d, i.e., sub@d ∈ M ′(Waiting).
From this marking M ′ we assume that there exists a finite
occurrence sequence σ ∈ OSF . We can distinguish two
possible cases:
Case 1: The subject ends the execution of the action act
within the duration d by firing the end transition t2. The
occurrence of t2 removes the subject token from the place
p.
Case 2: The subject does not end the execution of the action
act within the duration d. In this case, after d time units the
timeout transition occurs and the subject token is extracted
from the place p, i.e the execution of the action by the
subject is revoked.
It is clear from both cases that from the marking M ′ we
reach a marking M ′′ where sub /∈ M ′′(p). In the first case
we reach the marking M ′′ in a period of time less than d
and in the second in d time units.

5.3. Mech3: Cardinal Mechanism

We define a cardinal mechanism as a 3-tuple Mech3 =
(act, o, n) ∈ CMech , where n is the number of times an ac-
tion act can be used within one access session and CMech
is the set of all cardinal mechanisms. For this mechanism we
define the cardinal property, which indicates that an action
act can be used for only n times during each access session.
Assuming an access session σ = M0[Y1Y2 . . . Yn〉Mn, and
the request transition of the action act is t1, we define the
cardinal property formally as follows:

∀Yi = (t1, b) ∈ σ : 0 < i < n ⇒ OC(t,b)(σ) ≤ n (4)

This definition indicates that within one access session the
request transition of the action act can occur a maximum
number of n times, i.e., the action can only be allowed for n
times. This cardinal mechanism can be constructed by using
a new place of UNIT type containing n unit elements and
connect this place to the request transition of the action act
with one headed arc as shown in Fig. 5. The main element
of the this CP-net is the Card place that contains a multi-set
of UNIT color. The coefficient indicates how many times
the action, whose request transition is t1, is allowed to be
executed.

Proposition 3. Mech3 enforces cardinal rules.

Proof: It is easy to see that the transition t1 can occur
n times within any finite occurrence sequence , i.e., for any

Figure 5: Cardinal mechanism.

access session. After n occurrences of the binding (t1, b)
the place Card contains no elements and thus the binding
cannot be enabled.

5.4. Mech4: Execution Mechanism

An execution mechanism is a mechanism that executes
additional actions/tasks when a subject uses a resource. To
distinguish these actions that must be executed from the
actions that a subject can execute on resources, we call
the additionally executed actions tasks. They are of type
ACT and are represented as part of the segmentation code.
These tasks must be executed by the system and need not be
verified for fulfillment. For example, a security rule requires
that whenever a protected file is opened, the system executes
logging the name of the user and the accessed resource.
For this reason we define the following help function:
executed ∈ [Act → Bool], which maps each task to a
boolean value indicating whether the task is executed or not.
Properties that these mechanisms fulfill are called execution
properties, of which three types can be identified based on
the time instance of executing the task: the task must be
executed before the resource action is allowed, after the
execution of the resource action, or after a specific period
of time. Assuming that t1 and t2 are the request and end
transitions of an action act, and the task tsk ∈ ACT must
be executed when the act is executed by a subject sub, then
we define the three types of execution rules as follows:

∀(t1, b) ∈ EB ∀M, M ′ ∈ M : sub ∈ b(s) ∧ M [(t, b)〉M ′

⇒ executed(tsk) (5)

∀(t2, b) ∈ EB ∀M, M ′ ∈ M : s ∈ b(sub)∧M [(t2, b)〉M ′

⇒ executed(tsk) (6)

∀(t1, b) ∈ EB ∀M, M ′ ∈ M : s ∈ b(sub) ∧ M [(t, b)〉M ′

⇒ ∃M ′′ ∈ M ∃σ ∈ OSF : M ′[σ〉M ′′ ∧ executed(tsk)
∧ time(σ) ≤ d (7)

Execution mechanisms can be defined as a tuple
Mech4 = (act, o, type, task, d) ∈ EMech, where task is
the task that must be executed , type = After|Before

indicates whether the task must be executed before or
after the execution of the system action, d indicates the
period of time after which the task must be executed, and
finally EMech is the set of all execution mechanisms. This
mechanism can be constructed by adding the required task(s)
in the segmentation code of the request transition or end
transition of an action to execute the task before or after
this resource action is executed. Or a timer can be set and
the task can be executed when the deadline occurs. Figure 6

Figure 6: Enforcement action execution mechanism.

shows the CP-net representation of this mechanism for the
first type and Firgure 7 for the third type.

Figure 7: Enforcement action execution mechanism with delay.

Proposition 4. Mech4 enforces the first type of execution
rules.

Proof: Straightforward from the definition of binding
element, enabling, occurrence and the code segmentation of
CP-nets.

5.5. Mech5: Concurrency Mechanism

A basic concurrency mechanism can be defined as a 3-
tuple Mech5 = (act, o, n) ∈ COMech, where n is the
number of subjects that are allowed to execute the action
act in a truly concurrent way, and COMech is the set of
all concurrency mechanisms. More advanced and complex
concurrency rules can be defined by specifying the set of
users who are allowed to execute the action concurrently
and another set of users whose access must be interleaved.
Due to space limit in this paper we present the simplest way
concurrency can be supported by CPN. The property that
a concurrency mechanism enforces is called concurrency
property. Assuming that the executing place of an action
act is p and the initial marking of the access session is M0,
the concurrency rule can be defined as:

∀M ∈ [M0〉 : |M(p)| ≤ n (8)

Figure 8: Concurrency mechanism.

The purpose of this mechanism is to control the subjects
that are allowed to be located in the executing place of the
protected action. Figure 8 shows how the reference monitor
restricts subjects that are in the executing place p, i.e.,
subjects that are executing the action t concurrently, based
on the coefficient of the tokens e or () stated in the Sub’s
place.

Proposition 5. Mech5 enforces concurrency rules.

Proof: We want to proof that at any reachable marking
the number of tokens in the executing place p is less or
equal n. It can be noticed that •p = {t1} and p• = {t2},
which means that tokens can only be added to p by the
occurrence of the transition t1 and tokens are withdraws
from p by the occurrence of t2. Furthermore, •Sub′s = {t2}
and Sub′s• = {t1}, which means that tokens are added to
the place Sub’s by the occurrence of the transition t2 and are
withdrawn by the occurrence of the transition t1. Based on
this observation we conclude that ∀M ∈ [M0〉 : |M(p)| +
|M(Sub′s)| = Const, where Const is the number of token
in both places at the initial marking. However, |M0(p)| = 0
and |M0(Sub′s)| = n, thus ∀M ∈ [M0〉 : |M(p)| ≤ n.

5.6. Combined Mechanisms

After considering each mechanism separately, the cor-
rectness must be preserved when different mechanism are
combined for a specific action. It can be noted that execution
mechanisms has no effect on the access decisions, i.e., the
flow of subject tokens, and does not cause any violation
problems if it co-exists with other mechanism. Thus we will
consider the case of an action that applies all, but execution,
mechanisms and check the affect of applying more than one
mechanism to the correctness of each.

Figure 9: Combination of Mechanisms.

Figure 9 shows the combination of the four discussed
enforcement mechanisms applied on an action act, whose
enforcement view is the tuple (t1, p, t2). First, the request
transition can not occur if the condition of the halting
property (Eq. 1) is false. Thus it can be easily concluded
that the this property holds for the combined mechanisms.
Second, it can be seen that the request transition can
only occur for a maximum number of n times during any
occurrence sequence, i.e., access session, and lead to the
cardinal property, Eq. 4. Furthermore, the temporal property
can also be proved similar to the proof of proposition 2.
Concerning the concurrency property, its proof assumes that
p• = {t2}, however, the temporal mechanism adds an arc
from the place p to the new timeout transition. This violate
the assumption, thus the concurrency property does not hold.
Each occurrence of the action timeout will cause the UNIT
tokens of the Sub′s place to be decreased by one. To solve
this problem we add one arc from the timeout transition
to the Sub′s place (the dashed shadowed arc in Figure 9).
With this new arc the concurrency property can be proved
similar to the proof of proposition 5.

From the discussion above we conclude that when tempo-
ral and concurrency mechanism co-exists for an action, an
arc between the timeout transition, of temporal mechanism,
and the Sub′s place, of concurrency mechanism, must be
added.

6. Building Reference Monitor Mechanisms

In this section we show the feasibility of our approach
by building the mechanisms needed for the motivating
example mentioned in Section 3. The example shows the
need to protect the usage of a collaborative application
in order to facilitate the usability of such applications in
the real business scenarios. It can be seen that: in order
to enforce requirements SR1-SR5 we need the follow-
ing mechanisms: instant, cardinal, temporal, execution, and
concurrency mechanisms, respectively. While the behavioral
requirements BR1, BR2 are represented by the behavioral
CPN. (This is just a hypothetical example to show the
feasibility of the approach.)

To build the enforcement mechanisms needed for these
requirements, the following steps are required. First, the
functional behavior of the system has to be transformed into
the enforcement view. Each system action is represented
as one transition in the system view and two transitions
and one place in the enforcement’s view. For example, the
propose ∈ Act action is represented by the transition pro ∈
T in the system view and the (p1, pro, p2) ∈ T × P × T in
the enforcement view. Second, after transforming all actions
into the enforcement’s view, appropriate mechanisms have
to be constructed according to the security requirements 3.

3. This construction can be automatized in case specific access control
policy model is considered

Based on the requirements above mentioned, the following
mechanisms are needed:

• mech1 = (propose,model1, [user.role =
“Designer′′]) ∈ HMech, assuming that the user is
trying to propose the model model1 and the attribute
user.role indicates the role of the user.

• mech2 = (propose, “ ′′, n) ∈ CMech, where m = 2
represents the maximum number of users allowed to
propose models.

• mech3 = (request,model1, d) ∈ TMech, where d =
5 represents the maximum time units (minutes), within
which a user has to request scores.

• mech4 = (commit,model1, “After′′, notify(), 0) ∈
EMech, where notify is the task that must be exe-
cuted after a user has executed commit action.

• mech5 = (commit,model1, n) ∈ COMech, where
n = 1 represents the number of users allowed to
commit to model1 at the same time.

Figure 10 shows the (part of) CP-net model for the
enforcement mechanisms of the reference monitor needed
to enforce the security and concurrency requirements and to
ensure the correct behavior of the system.

6.1. Analysis

We have used the CPN tools [1] for constructing the
mechanisms’ CP-net shown in Fig 10. In the initial marking,
Init place contains five subject tokens and Models place
contains two models, while Subs place contains n = 2 unit
tokens, and Card place contains m = 10 unit tokens. This
tool allows the simulation of CP-net and the verification
of properties. Standard properties like home, boundness,
liveness and fairness are verified automatically. However, it
is also possible to specify additional property, expressed in
ML-like language, and use the state space analysis tools for
the verification of these properties. For example, to verify
the concurrency property that only one user can open a
commit at the same time, we defined the ML query function:
SearchNodes(EntireGraph, fn => true, noLimit,
fn n => size(Mark.page1′com 1 n) , 0, Int.max).
EntireGraph means that the entire state space is to be
searched, fn n => size(Mark.page1′com1, n) means
that the number of tokens in the com place is to be consid-
ered, and finally Int.max means the maximum number is
to be returned. Evaluating this query after creating the full
occurrence graph of the complete CP-net of the motivating
example gives us the expected value of 2.

7. Related Work

Major work in this field is the stream of papers started
by introducing the concept of execution monitor as security
automata by Schneider et al. in [21], [22], followed by

[11], [9], [10], and finally the edited automata developed
by Ligatti et al. [17]. In this line of work, a reference
monitor basically aims at monitoring a program’s behav-
ior to avoid entrusted and non-safe code to be executed.
The authors distinguish two implementations of a reference
(execution) monitor: one can be positioned between system
service entry points and the code providing the services,
the other is injected into client program at load time. That
is, the main purpose of these reference monitors is to
ensure that the code executed by a program is safe, i.e.,
unacceptable behavior from entrusted programs is prevented.
That is why the reference monitor is instrumented into the
code of the suspected program or wraps it. We call these
monitors code or application centric monitors. Comparing
to these approaches, our reference monitor aims at protecting
shared resources as well as monitoring system behavior
in distributed and collaborative environments. Systems in
our case can be composed by different applications and
users, with respect to operations related to the protected
resources. Pretschner et al. [18] and Janicke et al. [12] have
recently investigated reference monitors for usage control
and history based policies, respectively. Concurrency tends
to be overlooked by all these approaches, which is one of
the issues we are tackling in this contribution. By showing
that what is enforced by edit automata is not exactly what
is claimed in the policy, authors in [7] show the importance
of further investigating enforcement mechanisms for stateful
policies.

Due to the fact that petri nets is used in our approach,
another direction of related work that can be argued is in the
workflow community. There is a stream of work that applies
the formalism of petri nets to authorization in workflows,
most notably [5], [15], among others. Concurrency and
execution mechanisms, despite the fact that petri nets were
used, are tend to be overlooked. Furthermore, the notion of
reference monitor and distinguishing between policies and
mechanisms are not considered.

8. Conclusions and Future Work

In this paper we establish a framework for building access
control enforcement mechanisms for a stateful reference
monitor based on Coloured Petri Nets. Our reference mon-
itor can be seen as a recognizer of the functional behavior
of the system and a controller of the actions that a subject
is executing on resources. Five enforcement mechanisms
are introduced including halting, temporal, cardinal, execu-
tion and concurrency mechanisms. We show also that our
approach is sound by checking each mechanism against
its enforced property separately or when combined with
other mechanisms. Furthermore, CP-net’s state space tool
can be used for analysis and verification. This framework is
the first step to bridge the gap between abstract policies
and a reference monitor implementation. To achieve this

obj

objobj ()
()

sub

sub

subsub

sub

subsub

sub

sub

sub

sub@+d()

objobj

sub

sub

subsubsubsub

sub

sub

wt2wt1

cm2

input(sub)
action
notify(sub);

cm1

time
out

rq2rq1p2p1

[#2 sub = "Designer"]

n`()

UNIT

with

SUB

com

SUB

waiting

TSUB

Card m`()

UNIT

Models

1`model1++
1`model2

OBJ

Req'ed

SUB

req

SUB

pro'ed

SUB

pro

SUB

idle

1`sub1++
1`sub2++
1`sub3++
1`sub4++
1`sub5

SUB

obj

Subs

Figure 10: Reference monitor enforcement mechanisms for the motivating example.

goal our future work is twofold. First we are developing a
usage control policy language based on the same theoretical
foundation of the reference monitor specification, i.e., based
on Coloured Petri Nets. Second, we will explore how our
CPN based policies can be transformed automatically to
configurable CPN-based reference monitor engine.

References

[1] Cpn tools, http://wiki.daimi.au.dk/cpntools.

[2] http://online.wsj.com/article/bt-co-20090703-703278.html.

[3] Oasis extensible access control markup language (xacml),
http://www.oasis-open.org/committees/xacml.

[4] Gail-Joon Ahn and Ravi Sandhu. Role-based authoriza-
tion constraints specification. ACM Trans. Inf. Syst. Secur.,
3(4):207–226, 2000.

[5] Vijayalakshmi Atluri and Wei kuang Huang. An authorization
model for workflows. In In Proceedings of the 4th European
Symposium on Research in Computer Security, pages 44–64.
Springer-Verlag, 1996.

[6] E. Bertino, E. Ferrari, and V. Atluri. The specification
and enforcement of authorization constraints in workflow
management systems. ACM Transactions on Information and
System Security, 2(1):65–104, 1999.

[7] Nataliia Bielova and Fabio Massacci. Do you really mean
what you actually enforced? edit automata revisited. Techni-
cal report, Ingegneria e Scienza dell’Informazione, University
of Trento., 2008.

[8] YB Cheung, SB Tan, and KS Khoo. The need for collab-
oration between clinicians and statisticians: some experience
and examples. Annals of the Academy of Medicine, Singapore,
30(5):552, 2001.

[9] David E. Evans. Policy-directed code safety. PhD thesis,
2000. Supervisor-John V. Guttag.

[10] Philip W. L. Fong. Access control by tracking shallow
execution history. sp, 00:43, 2004.

[11] Kevin Hamlen. Security policy enforcement by automated
program-rewriting. PhD thesis, Ithaca, NY, USA, 2006.
Adviser-Morrisett,, Greg.

[12] Helge Janicke, Cau Antonio, Siewe Francois, and Zedan
Hussein. Deriving enforcement mechanisms from policies.
2007.

[13] K. Jensen. Coloured Petri Nets, volume 1. Springer-Verlag,
1992.

[14] K. Jensen. Coloured Petri Nets, volume 2. Springer-Verlag,
1997.

[15] K. Knorr. Dynamic access control through petri net work-
flows. In ACSAC ’00, page 159, Washington, DC, USA, 2000.
IEEE Computer Society.

[16] Ram Krishnan, Ravi Sandhu, Jianwei Niu, and William H.
Winsborough. Foundations for group-centric secure informa-
tion sharing models. In SACMAT ’09, pages 115–124, New
York, NY, USA, 2009. ACM.

[17] Jay Ligatti, Lujo Bauer, and David Walker. Run-time en-
forcement of nonsafety policies. ACM Trans. Inf. Syst. Secur.,
12(3):1–41, 2009.

[18] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter.
Mechanisms for usage control. In ASIACCS ’08, pages 240–
244, New York, NY, USA, 2008. ACM.

[19] Peter Rittgen. Collaborative modeling - a design science ap-
proach. Hawaii International Conference on System Sciences,
0:1–10, 2009.

[20] P.R08 Rittgen. COMA: A Tool for Collaborative Modeling.
In CAiSE’08 Forum, page 61.

[21] Fred B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 3(1):30–50, 2000.

[22] Úlfar Erlingsson and Fred B. Schneider. Irm enforcement of
java stack inspection. In S&P ’00, page 246, Washington,
DC, USA, 2000. IEEE Computer Society.

[23] Xinwen Zhang, Masayuki Nakae, Michael J. Covington, and
Ravi Sandhu. Toward a usage-based security framework
for collaborative computing systems. ACM Trans. Inf. Syst.
Secur., 11(1):1–36, 2008.

