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ABSTRACT

With increased popularity and wide adoption of smartphones and
mobile devices, recent years have seen a new burgeoning economy
model centered around mobile apps. However, app repackag-
ing, among many other threats, brings tremendous risk to the
ecosystem, including app developers, app market operators, and
end users. To mitigate such threat, we propose and develop a
watermarking mechanism for Android apps. First, towards au-
tomatic watermark embedding and extraction, we introduce the
novel concept of manifest app, which is a companion of a target
Android app under protection. We then design and develop a tool
named AppInk, which takes the source code of an app as input to
automatically generate a new app with a transparently-embedded
watermark and the associated manifest app. The manifest app can
be later used to reliably recognize embedded watermark with zero
user intervention. To demonstrate the effectiveness of AppInk in
preventing app repackaging, we analyze its robustness in defend-
ing against distortive, subtractive, and additive attacks, and then
evaluate its resistance against two open source repackaging tools.
Our results show that AppInk is easy to use, effective in defending
against current known repackaging threats on Android platform,
and introduces small performance overhead to end users.

Categories and Subject Descriptors K.6.5 [Man-

agement of Computing and Information Systems]: Security and
protection – Invasive software

General Terms Security; Algorithms

Keywords: Mobile Application; App Repackaging; Software
Watermarking; App Protection; Smartphone Security

1. INTRODUCTION

With the unprecedented adoption of smartphones in consumer
and enterprise users, a large number (and a wide variety) of mobile
applications (apps) have been developed and installed to extend the
capability and horizon of mobile devices. These apps in return fos-
ter an emerging app-centric business model and drive innovations
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across personal, social, and enterprise fields. At the same time, the
wild proliferation of mobile apps has introduced serious risks to the
stakeholders in the ecosystem. Particularly, app repackaging has
been considered as a major threat to both app developers and end
users. Through app repackaging, malicious users can breach the
revenue stream and intellectual property of original app authors,
and plant malicious backdoors or payloads to infect unsuspecting
mobile users. Recent studies have shown that app repackaging is a
real threat to both official and third-party Android markets [52,53],
and regarded as one of the most common mechanisms leveraged
by Android malware to spread in the wild [54]. Investigation has
also shown that app repackaging presents serious vulnerability to
mobile banking [27].

Facing the prevalent risks brought by app repackaging, we are in
a desperate need of a reliable, efficient, and easy-to-use mechanism
to detect repackaged apps and prevent their propagation. Android
package obfuscation tools such as Proguard [29] and DexGuard
[25] have been provided by Google and other companies to confuse
attackers when they are in the process of repackaging an app.
However obfuscation can only increase the difficulty of reverse
engineering Android apps, and cannot stop determined attackers
from achieving their purposes through manual analysis, laborious
experiments, and strong persistence. To defend against Android
app piracy and repackaging, Google has introduced a tool library
named license verification library to protect app developers from
having their apps stolen by third parties [17]. Other app market
operators (such as Amazon and Verizon) also provide their own
digital right management (DRM) options for app developers which
can be applied to prevent apps from being copied and pirated [41].
However, these mechanisms are hard to deploy correctly [13] and
also easy to crack [30–32]. Recently, researchers have introduced
various techniques to detect repackaged apps on a large scale [8,16,
42, 52, 53]. However, these mechanisms usually cannot detect app
repackaging online and in real-time. For these reasons, repackaged
apps have usually been widely distributed before being detected.

To overcome the above weaknesses, we propose to embed soft-
ware watermarks dynamically into the running state of an Android
app to represent the author or developer’s ownership. For verifi-
cation, an authorized party can extract the embedded watermark
by running the app with a specific input in a dedicated environ-
ment, e.g., a customized emulator. When the extracted watermark
matches the one provided by the developer, the verifying party
(e.g., an arbitrator) can confirm the ownership of the original de-
veloper even when the app is repackaged by another publisher. The
proposed watermarking mechanism should be resistant to manipu-
lation by common static and automated attacks, therefore making
it hard for an attacker to remove the original embedded watermark
or embed his own watermark.



A desirable solution needs to meet two requirements: watermark
embedding should be readily integrated into current app devel-
opment practice, and watermark extraction should be convenient
for the authorized verifying party to perform. To fulfill these two
requirements, we introduce the concept of manifest app, which is a
companion app to the original app under protection. Basically the
manifest app encapsulates a specific input to drive the watermark-
protected app automatically, and thus eliminates the user interven-
tions needed in traditional watermark extraction. Based on the
manifest app, we design and implement a practical tool named
AppInk, which consists of four components: watermarking code
generation, automatic manifest app generation, watermark em-
bedding, and watermark extraction. By seamlessly integrating
these four components, AppInk presents an effective app protection
solution for both developers and other authorized verifying parties.
Specifically, to leverage AppInk to protect her own app, a developer
applies the first three components of AppInk to the app’s source
code to generate two apps: the watermark-protected app to be
released to the public; and the manifest app which is presented
on demand to an authorized party to verify the originality of the
watermark-protected app. Upon request, the verifying party will
run the manifest app in the watermark extractor (the fourth com-
ponent of AppInk), which automatically launches the app under
review and extracts the originally embedded watermark.

Two typical scenarios can leverage this process to detect unau-
thorized repackaged apps and prevent their propagation. The first
scenario has a central authority (e.g., the app market operator) to
review each submitted app to verify its originality before accepting
it for publication. For that purpose, each app publisher submits
the manifest app along with the app under review (publishers
who cannot submit a companion manifest app are most likely
not original developers). The app market operator then runs the
watermark extracting algorithm, using the manifest app provided
by the publisher to drive the app under review.

The second scenario has a third-party arbitrator, who inspects
the evidence of app ownership to resolve dispute upon request.
In this scenario, when an app author suspects that one app is a
repackaged version of her own, she can run the suspect app inside
the watermark recognizer, using her own manifest app to feed input.
If the watermark extracted from the suspect app is the same as the
watermark from her own app, she can submit this as evidence to
prove that the suspect app is a repackaged version of her own app.
Within this scenario, AppInk provides an effective mechanism to
prevent the propagation of repackaged apps across different app
markets.

To demonstrate the effectiveness of AppInk in deterring app
repackaging, we analyze its robustness against general watermark-
targeted attacks, including distortive, subtractive, and additive at-
tacks. We also study its resistance against two open source repack-
aging tools (Proguard [29] and ADAM [51]). Our results show
that AppInk is effective in defending against common automatic
repackaging attacks. Our performance evaluation indicates that
an embedded watermark introduces only a small overhead for end
users.

In summary, this paper makes the following contributions::

• First, we design a complete dynamic graph based watermark-
ing mechanism for Android apps, which can be used to detect
and deter further propagation of repackaged apps. To the best
of our knowledge, it is the first watermarking mechanism for
Android apps.

• Second, we introduce the concept of manifest app and design
a series of automatic processes to make the watermarking

mechanism integratable into current app development prac-
tice and also conveniently deployable for arbitrators.

• Third, we implement a prototype tool named AppInk and
evaluate it against two open source repackaging tools, and
demonstrate that it is effective in defending against com-
monly available automatic attacks.

The rest of this paper is organized as follows. We present
the paper overview in Section 2, describe the AppInk design in
Section 3, and present its prototype implementation in Section 4.
After that, we present the robustness analysis of AppInk and eval-
uate it against real world repackaging attacks in Section 5, and
discuss the system’s limitations and suggest possible improvements
in Section 6. Lastly, we describe related work in Section 7 and
conclude this paper in Section 8.

2. OVERVIEW

2.1 Problem Statement
App repackaging refers to disassembling one app, making some

changes (to the code, data, or simply the signing key inside the
original app), and rebuilding the modified components into a new
app. As a technical method, it can be used for benign purposes.
For example, ADAM [51] uses app repackaging to tweak malware
samples for the purpose of stress testing various Android anti-
virus tools. Aurasium [50] uses app repackaging to intercept an
app’s interaction with its underlying OS, aiming to enforce user-
specified security policies for the app. However, app repackaging is
more commonly used for surreptitious and malicious purposes. For
example, greedy publishers use app repackaging to replace existing
in-app advertisements or embed new ones to steal advertisement
revenues [8, 52, 53]. Malicious attackers use app repackaging
[42, 53, 54] to plant malicious backdoors or payloads into benign
apps.

Because it is relatively easy to reverse engineer Android apps
(which are mainly written in Java), app repackaging has been iden-
tified as a widespread practice in current diversified app distribution
channels [8, 16, 23, 42, 53]. As a result, it not only brings a lot of
damages to app authors (in terms of losing their monetary income
and intellectual property), but also causes tremendous risks to the
large community of mobile users and affects the burgeoning inno-
vative app economy. As concrete examples, severe vulnerabilities
have been found in mobile banking apps through app repackaging,
and serious doubt is cast on mobile banking security and feasibility
in general [27]. More recently, researchers have identified that
about 10% of Android apps available in popular third-party markets
are repackaged [53]. The latest investigation from the industry [48]
has reported that most of the popular mobile apps are beset by app
repackaging threat: 92 of the top 100 paid apps for Apple iOS, and
all of top 100 paid apps for Android were found to be hacked.

Facing the widespread propagation of the app repackaging threat,
effective security defenses are seriously lagging behind. The cur-
rent industrial practices are either too weak to deter determined at-
tackers from conducting repackaging attacks, or too complex to be
deployed properly. For example, app developers are encouraged to
use obfuscation to protect their apps, but the introduced confusion
is usually not strong enough to prevent determined attackers from
achieving their goals [29]. App market operators (e.g., Google)
have provided license verification or DRM service to apps sub-
mitted to their stores, but automatic repackaging tools can work
around them easily [30–32]. Recently, researchers have begun
to tackle this problem, but most of the proposed solutions so far



focus on feasible mechanisms to detect repackaged apps after their
propagation [8,16,42,53]. Considering the wide and severe impact
of app repackaging, an effective and robust mechanism is urgently
demanded to efficiently prevent and deter app repackaging in the
first place.

2.2 Software Watermarking
Software watermarking has been studied extensively to defend

against the piracy of desktop software [4, 6, 35, 37, 39]. Since
the processes of mobile app repackaging and desktop software
piracy are similar, we believe that software watermarking can be
a promising technique in deterring app repackaging. In general,
watermarking software involves two steps: first a watermark, typ-
ically a number or a message string known only to the author or
publisher, is embedded into the target software in a specific way
such that it does not affect the running behaviors of the origi-
nal app and is difficult to remove without modifying the original
app semantic; then, a recognition technique is used to extract the
original watermark from the software. The matched watermarks
verify that this software package belongs to the original developer
or publisher. Depending on how the watermark is embedded and
extracted, there are static and dynamic watermarking methods.
Static watermarking embeds the watermark into the code or data of
a package and extracts the watermark without executing the code;
dynamic watermarking embeds the watermark into the execution
state of the target software, and extracts the watermark during
runtime.

Regardless of which method is used, it is desirable that a water-
mark embedded in a software package should be robust to various
well-known attacking techniques, especially distortive attacks –
to apply semantic preserving transformation on the watermarked
code to modify the embedded watermark, subtractive attacks –
to remove complete or partial watermark, and additive attacks –
to add attacker’s own watermark and confuse the arbitrator on
resolving ownership dispute. Typically, dynamic watermarking has
a stronger resistance against these attacks than static watermarking,
and it is used in our approach to embed and verify the ownership of
a specific Android app package.

2.3 Challenges of Watermarking Android Apps

There are several key challenges to incorporate dynamic water-
marking into current Android app development practice and make
it easily deployable by arbitrating parties.

Firstly, the state of the art dynamic Java watermarking tech-
niques need extensive intervention from developers to embed a
watermark. For example, SandMark [5] requires developer to
manually annotate source code to indicate where watermark can

be inserted, and to manually give input to drive the software when
embedding a watermark. These manual interventions make it
cumbersome to apply this technique in real practice and hard to
be made right.

Secondly, it is desirable to have automatic watermark recog-
nition so that it can handle thousands of apps with little human
effort in an online and realtime manner. To recover embedded
watermarks, SandMark leverages programmable Java Debug In-
terface [24] to access memory objects on the heap in order to
infer object reference relationships. However, there is no known
programmable debugging interface available on Android. Even
worse, manually providing input is required for watermark extrac-
tion phase as well. Obviously, this cannot scale to handle the
large number of watermark recognition requests for thousands of
Android apps submitted to current app markets on a daily basis.

Thirdly, Android apps, although mainly developed in Java lan-
guage, have significant difference from desktop Java software.
For example, Android apps depend more heavily on event-driven
mechanisms and the underlying execution environment to work
correctly. Unlike legacy Java applications that have a single entry
point named main, Android apps in general have multiple entry
points.

2.4 Solution Overview
To overcome these challenges, we introduce an entity named

manifest app, which is a companion app for a target app under
protection. Basically, the manifest app encapsulates a sequence
of input event to drive the watermark-protected app automatically,
and thus eliminates the user intervention needed in traditional
watermark extraction. Based on the manifest app, we design
and implement a practical tool named AppInk to automatically
generate the manifest app, embed the watermark, and execute the
dynamic watermark extraction with zero user intervention. As an
input during watermark embedding, the manifest app encodes the
event sequences and accordingly indicates the event handlers of
the target app where watermarking code segments can be inserted,
which addresses the first challenge. As an input for watermark
extracting, the manifest app automatically launches the original
app and feeds the input event sequences to it, which triggers all
the inserted watermarking code segments and thus recovers the
watermark object embedded. By doing so, we effectively overcome
the second challenge. Based on the insight that each event in
Android platform is uniquely mapped to a well-known system API,
we propose a conservative method to automatically generate an
event flow model for Android app, and leverage model-based test
generation to automatically create a suboptimal manifest app for
watermarking purpose, thus resolving the third challenge.

3. APPINK DESIGN
Figure 1 depicts the overall AppInk architecture. At the app

developer (left) side, AppInk consists of three components: man-
ifest app generation, watermark code generation, and watermark
embedding based on source code instrumentation. The input of
the manifest app generation component is the source code of the
target app including its resource files. The watermark code gen-
eration takes a watermark object (e.g., a number or a string) and
outputs watermarking code segments. The watermark embedding
component takes the manifest app and the code segments as inputs,
and generates a watermarked Android package that can be released
to app markets. At the arbitrator (right) side, the watermark
recognizer takes the inputs of the released Android package and
the manifest app from the app developer side, and extracts the
embedded watermark.

Watermarking code generation: Given a watermark value spec-
ified by app developer, this component encodes the watermark
value into a special graph structure and transforms the graph into
watermarking code. In order to improve the stealthiness of the
embedded watermark, AppInk splits the watermarking code into
a variety of segments, each of which will be inserted into different
locations of the original app’s source code. The execution states of
these code segments collaboratively present specific object refer-
ence relationships and thus can be leveraged to reveal the original
watermark value. Section 3.1 explains the detailed design of this
component.

Manifest app generation: The main function of the manifest app
is to feed pre-determined user inputs to the app under review, which
trigger the executions of embedded code segments and thus recover
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Figure 1: The overall AppInk architecture.

the watermark value with the help of the watermark recognizer. To
ease the burden of writing manifest apps by developers, AppInk
leverages the event-driven nature of Android apps and the latest
model-based test case generation to automatically generate these
input events and makes this process totally transparent to app devel-
opers. Section 3.2 presents the detailed design of this component.

Source code instrumentation: By parsing the files in the manifest
app, this component first identifies encoded user input events, and
then determines their corresponding event handlers based on the
source code of the original app. Next, it inserts the watermark
code segments under the path of these identified event handlers.
After that, AppInk packages the modified app source into a released
app, which is for both public publication and arbitrating purposes,
and the manifest app into another executable package, which is
not released to the public but rather dedicated to arbitrator use.
Section 3.3 presents the detailed design of this process.

Watermark recognizer: This component is a modified Android
emulator on x86 [19], which is invoked by a shell script. The
script first installs both the Android app and the manifest app in
the emulator, then starts the manifest app which feeds a sequence
of input events to the Android app, and then calls the extended
Dalvik Virtual Machine (DVM) [10] to export all object reference
information in the runtime heap. From this information, AppInk
uses a special pattern to match potential watermarking structure.
If such a watermarking structure is identified, a reversed process
of the watermarking code generation is invoked to recover the
embedded watermark value. Section 3.4 illustrates the design of
this component.

3.1 Watermarking Code Generation
Different from static watermarking which embeds a secret wa-

termark object (e.g., a numerical value or a message string) into the
code or data section of a target application, dynamic watermarking
embeds a watermark object into special structures that present
themselves only in the runtime of the target application. AppInk
adopts graph-based data structure, which is hard to be reversed
by attackers due to the inherent difficulty of analyzing point-to
relationship in graphs [14, 45].

There are different ways to use graph to encode a watermark
object. AppInk uses permutation graph, which adopts a special
graph structure to encode a permutation mapping to the watermark
object. As depicted in Figure 2, the graph includes 5 nodes, each of
which has two outgoing edges, one in solid line and one in dotted
line. Through the solid line edges, the graph forms a cycle. If
we can further identify one unique node (e.g., the one which is
referenced by any other object outside the figure), a specific order
is defined. Suppose that only the first node is referenced by another
object not in the figure, we can assign number 0 to this node, which

1

2

0
3

4

0 21 3 4

<1,2, 0, 3, 4>

Figure 2: Example permutation graph. This graph encodes
numerical value of 116 as a watermark.

1 class WatermarkNode {

2 WatermarkNode solid;

3 WatermarkNode dotted;

4 ......

5 }

6 ......

7 node0 = new WatermarkNode();

8 ......

9 node4 = new WatermarkNode();

10
11 node0.solid = node1; // Points to next node

12 node0.dotted = node1; // Encode number 1

13 ......

14 node4.solid = node0;

15 node4.dotted = node3; // Encode number 4

Figure 3: Watermarking code for the permutation graph in Figure 2.

is called root node, and number 1 to 4 for the other four along
the circle. A dotted line edge of a node is then associated with
a number counting the distance from this node to its target node
along the solid line edges. For example, the dotted outgoing edge
from node0 to node1 encodes a number of 1 since the distance
from node0 to node1 is 1 along the solid line edges. Similarly
the dotted outgoing edge from node3 to node1 encodes a number
of 3. In Figure 2, the 5 dotted edges encodes the numbers of 1, 2,
0, 3, and 4 respectively, which is a perfect form of permutation.
According to the permutation-to-number algorithm in [28], <1,
2, 0, 3, 4> is mapped to 116, which is the watermark value
encoded by this graph.

In Java language, the permutation graph depicted in Figure 2 can
be represented by a doubly linked list, as shown by the skeleton
code in Figure 3. The class WatermakrNode (lines 1 to 5)
represents the node in the permutation graph. The following
initialization code (lines 7 to 9) creates five instance nodes, and the
later code (lines 11 to 15) defines the object reference relationship,
from which we can reconstruct the permutation graph at runtime.
As commented in the list, the member field solid points to the
next node in the list, and all these fields form a cycle. The member



1 public class TestAndroidCalculator

2 extends ActivityInstrumentationTestCase2<Main> {

3 protected void setUp() { ... }

4 protected void tearDown() { ... }

5 public void testEventSequence() {

6 enterText(0, "10");

7 enterText(1, "20");

8 clickOnButton("Multiply");

9 }

10 }

Figure 4: Example manifest app based on Robotium.

field dotted encodes the permutation distance for each node in
the permutation graph, which jointly encodes the watermark value
specified by the app developer.

When the above code is executed on Android platform, memory
space will be allocated for each instance object (node0 to node4)
at lines 7 to 9. At lines 11 to 15, the member fields are
assigned, which results in the establishment of the object reference
relationship among these WatermarkNode instances. Through
analyzing the runtime heap, this object reference relationship can
be extracted and decoded to recover the original watermark value.
Section 3.4 presents the details of this process in the watermark
recognizer.

Because linked structures are very commonly used in Java
applications, it is hard to distinguish these watermarking code from
other code. The stealthy nature of these graph structures, combined
with the inherent difficulty of point-to analysis in graph [14, 45],
makes it very challenging for attackers to succeed in reverse
engineering the watermarked code. (More detailed analysis on the
robustness of this technique is presented in Section 5.1.) To further
improve the stealthiness of the watermarking code, AppInk splits
the watermarking code into a number of segments and inserts them
into a variety of places in an app. This is especially helpful when
the watermark value is large and thus has to be represented by a
large number of code segments. Section 3.3 presents more details
of this technique with the help of manifest app.

3.2 Manifest App Generation

3.2.1 Manifest App Based on Robotium

Working as a companion app to drive the execution of a
released app inside watermark recognizer, a manifest app functions
in similar way as test cases. However, unlike common unit
tests which only provide component specific tests [21] and
special Android UI/application exerciser [22] which sends random
stream of events to apps under test, a manifest app needs
programmable event delivery within the entire target app, so
that watermarking code can be scattered to different places, thus
achieving better stealthiness. For this purpose, AppInk generates
manifest app based on Robotium [46], which extends Android
app instrumentation framework and provides precise UI element
locations and event delivery. Figure 4 shows an example of the
Robotium test case.

In Figure 4, the method setUp starts the main activity of the app
under test, tearDown clears the execution environment and stops
its execution, and testEventSequence (lines 5 to 9) sends
specific sequence of events to the app. To automatically generate
manifest app and later extract watermark by the recognizer,
AppInk needs to decide a proper input sequence and fill them
into the method testEventSequence. Specifically, AppInk
has two requirements for the input sequence: its execution must
deterministically trigger the watermarking code segments, and it

must be diversified enough so that the watermarking code can be
scattered into a large enough scope. AppInk leverages the event-
driven nature of Android apps and model-based automatic test case
generation to achieve these purposes.

3.2.2 Manifest App Generation

Different from desktop applications, the control flow of Android
apps depends heavily on the diversified Android events, including
user generated events (e.g., key presses and screen taps) and system
generated events (e.g., short messages received, incoming phone
calls, and various sensor events). Each event is handled by a well-
defined Android API. For example, a menu item click is handled by
the method onOptionsItemSelected in the corresponding
activity, a button press is handled by the onClick method of
the listener object registered for the button, and a short message
received event is handled by the method onReceive of the
activity registered for SMS_RECEIVED intent. By issuing these
events in a well-defined order, the app under test invokes these
event handlers in order, and responds in a deterministic manner.

For the purpose of automatic test generation, model based meth-
ods have been well studied for event-driven software in general, and
actively investigated for Android apps in particular [26, 34, 38, 47].
But to use it in AppInk, we need to have an app’s event flow model
as input. One option is to ask developers to provide the model.
But this puts an extra burden on them, and it is also prone to error.
Another option is to infer the event flow model through reverse
engineering. We note that generating a complete app model is
hard, but unlike common test case generation (whose task is to
exhaustively generate test sets to cover as many paths as possible),
AppInk only needs one test case if it can trigger as large set of code
segments as possible to achieve stealthy watermark embedding.
Therefore we only need to have a partial model for the app event
flow.

AppInk uses static method to infer a partial event flow
model for Android apps in a conservative but safe way.
This is achieved through parsing app source files, including
AndroidManifest.xml, UI layout, Java and other resource
files. The generated model is fed to an existing model-based test
generator for Android [11] to generate a set of test cases, from
which we pick the test input that covers most code segments.

We now use an example app to describe how AppInk generates
the event flow model. Figure 5 shows the user interface
elements and relevant events for the app NotePad. The
first screen (5a) pops right after the app starts. By analyzing
the layout and Java source files, we infer that the event Add
note is handled by method onOptionsItemSelected in
file NotesList.java. The second screen (5b) shows the
UI elements for the action of adding a note, including a text
input box and two menu items (Save and Discard), whose
event handlers are the method onOptionsItemSelected in
file NoteEditor.java. The third screen (5c) shows the UI
elements for editing a note, including a test input and three menu
items (Save, Delete, and Edit Title), each of which has its
own handler. The last screen (5d) shows the UI elements for editing
title, including a test input and one button (Ok), whose handler is
the onClick method in file TitleEditor.java.

At this point, each screen shows only individual events. Through
analyzing the handler for the event of clicking Add note (method
onOptionsItemSelected in file NotesList.java), Ap-
pInk determines that it starts an activity with the intent of
ACTION_INSERT, which is found later to be defined in file
NoteEditor.java by parsing file AndroidManifest.xml.
So the event Add Note connects screens 5a and 5b. Through



(a) Main Activity - NotesList (b) Note Editor - Create Note (c) Note Editor - Edit Note (d) Note Editor - Edit Title

Figure 5: User interface elements in app NotePad.
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Figure 6: Event flow graph for NotePad.

1 public void testEventSequence() {

2 clickOnMenuItem("Add note");

3 enterText(0, "Test");

4 clickOnMenuItem("Save");

5 goBackToActivity("NotesList");

6 clickInList(1);

7 clickOnMenuItem("Edit Title");

8 clickOnButton("Ok");

9 clickInList(1);

10 clickOnMenuItem("Delete");

11 }

Figure 7: Skeleton code to drive NotePad.

a similar analysis, we determine that the event of clicking list
item connects screens 5a and 5c, and the event of clicking Edit

title connects screens 5c and 5d. Furthermore, there is a back
button below the display screen of the phone, which connects the
current screen and the one before it. Having these connecting
events, AppInk generates the event flow model as depicted in
Figure 6.

After feeding the above event flow graph into M[agi]C [11] —
a test input generator tool, we obtain a test case with the skeleton
shown in Figure 7. This skeleton encodes the event sequence of
Add note, Enter text, Save, Back, Click list item

1, Edit Title, Ok, Click list item 1, and Delete.
This sequence covers all the activity classes in the app, thus
presenting an optimal test for watermarking purpose.

3.3 Source Code Instrumentation
Having the manifest app source, together with the original app

source and the generated watermarking code, AppInk uses source

code instrumentation to perform the watermark embedding. The
choice of source code instrumentation is reasonable since AppInk
is used by app developers, who already have the app source code
at hand. This also helps integrate AppInk with the well-established
app development environment for Android. We note that AppInk
can be supported by bytecode level instrumentation as well.

Source code instrumentation uses three steps to embed
developer-provided watermarks. First, AppInk fetches all control
events (including clicking button, menu and list items) from the
manifest app, each of which is mapped to a single event handler
in the original app (such as onOptionsItemSelected and
onClick). Next, AppInk splits the watermarking code into the
same number of code segments as the number of the event handlers,
and generates a configuration file to record the one-to-one mapping
from the watermarking code segments to the event handlers. Last,
AppInk parses the source code of the original app, generates its
abstract syntax tree, identifies nodes for the event handlers, and
inserts the watermarking code segments into their corresponding
event handlers.

After the above instrumentation, AppInk automatically builds
and generates an executable app package and signs it [20], which
can be used for public release. The manifest app is built into an-
other executable package, which is not released to public. Instead it
will be submitted upon request to the arbitrator for the verification
purpose. All these steps are serialized with an automated script,
which is seamlessly integrated into the app-building process.

3.4 Watermark Recognizer
The watermark recognizer takes both apps as input: a released

app for reviewing and the associated manifest app as the driver.
The core part of the recognizer (Figure 8) is an extended Dalvik
virtual machine (DVM), which is the execution engine for An-
droid app code and maintains the runtime heap. Unlike traditional
watermarking tool for Java that uses the Java debug interface to
access object reference information and reconstruct the watermark-
ing object, AppInk leverages the customized DVM to fetch object
reference information from the runtime heap directly. Further, with
the help of the manifest app generated in Section 3.2, the watermark
recognizer enables automatic watermark extraction without any
user intervention, which is highly desirable for scalable handling
of a large number of apps submitted to app markets.

Just like Java virtual machine executing Java code by interpret-
ing bytecode, DVM executes Dalvik bytecode, which is the main
body of Android apps. Therefore it has access to all the needed
information for watermark extraction purpose. Particularly, DVM
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Figure 8: Work flow of watermark recognizer.

1 adb install -r releasedApp.apk

2 adb install -r appTest.apk

3 adb shell am instrument -w InstrumentTestRunner

4
5 pid=‘adb shell ps|grep appName| awk ’{print \$2}’‘

6 ### Send USR2 signal to trigger GC

7 adb shell kill -10 $pid

8 adb logcat -d | grep $pid > $pid.log

9 java appink.wmGraphRecognizer $pid.log

Figure 9: Shell script to drive watermark extraction.

manages memory space for Android apps, and maintains relevant
information for memory reclaim (garbage collection). All object
reference information is maintained, so AppInk only needs to
extend the garbage collector to record and export this information,
among which a later module will search for the watermarking
graph. The identified watermarking graph is then decoded to
recover its corresponding watermark object and to verify whether
it is the same as what the author claims.

More specifically, DVM uses mark-and-sweep algorithm [49] to
execute the task of garbage collection, which scans all allocated
objects and their member fields (a reference relationship forms
between an object and its member fields) and determines if any
object is not needed any more and thus can be reclaimed. We
develop a module in DVM to record these object reference rela-
tionships in the scanning phase and export them into a log file.
From these reference relationships, a reverse process of that in
the watermarking code generation (cf. Section 3.1) is applied to
recover the watermark value.

Towards automatic operations, we create a shell script based
on Android debug bridge [18] to link all these steps, as shown in
Figure 9. The script first installs both apps – the released app and
the manifest app (lines 1 and 2), and then starts the manifest app
through the instrumentation command of Android activity manager
(line 3). This will feed the event sequence to the released app in a
specified order. The command at line 5 gets the process identifier of
the running DVM, and line 7 sends a SIGUSR2 signal to trigger the
object reference recording module inside the extended DVM. The
commands at lines 8 and 9 fetch these recorded messages, search
for reference relationship pattern among them, and try to extract
the embedded watermark.

4. IMPLEMENTATION

We have implemented an AppInk prototype on Ubuntu 10.04.
The watermarking code generation component is implemented in
Java, which accepts an integer or a string as input and outputs
its corresponding watermarking code. In the manifest app gen-
eration component, the parsing of Java source files is based on
ANTLR [40] – a language parser generator. More concretely, we
input a Java language grammar [15] into ANTLR, which generates

a Java AST (abstract syntax tree) parser. By iterating through
the AST, AppInk can locate the nodes for all event handlers, and
identify the connecting events for different UI states. The parsing
of AndroidManifest.xml, UI layouts, and resource files is
written in Python. Another Python script glues the output results
from these parsing modules, generates the event flow graph, feeds
it to the test case generator named M[agi]C, and picks up the test
case which has the largest coverage of watermarking code.

The source code instrumentation component includes three steps.
It first parses the manifest app source to identify all these event
handlers to insert the watermarking code, and then splits the water-
marking code into segments with the same number as that of events
to be delivered. Last it extends the Java source parser generated in
the manifest app generation component to insert the watermarking
code segments into the execution path for their corresponding
event handlers. To automate the watermark extraction on the
arbitrating side, this component also generates the shell script to
drive watermark extraction (as presented in Figure 9). Basically,
this script only needs relevant information for a released app and
its manifest app, which is readily available after the completion of
the first three components.

Having this watermark extraction script at hand, the watermark
recognizer needs two modules to achieve the final watermark recog-
nition task. The first module implements the extended DVM
to record and export object reference information when the app
receives a SIGUSR2 signal. This is achieved by modifying the
garbage collector code (in C language) in DVM and rebuilding the
Android open source project. The second module is written in
Java, which searches through these object reference relationships
to match any potential watermarking graph, and decodes the graph
to recover the corresponding watermark value.

5. ANALYSIS AND EVALUATION

While AppInk aims to embed strong ownership verification mech-
anism into Android apps, attackers always strive to defeat the
protections in any way they can think of. In this section, we first
analyze the robustness of AppInk against three common attacks
toward watermarking, namely distortive, subtractive, and additive
attacks. We then evaluate it against two open source repackaging
tools to demonstrate its effectiveness. Finally we evaluate the
runtime performance overhead for watermarked apps.

5.1 Robustness Analysis
AppInk adopts dynamic graph based watermarking as its key

technique to defend against app repackaging. Therefore its ro-
bustness depends heavily on that of dynamic graph watermarking,
which is highly resistant against distortive attacks, subtractive at-
tacks, and additive attacks according to our analysis.

Distortive attacks: This type of attacks applies semantic-preserving
transformations on target apps, trying to make it hard or impossible
to extract original watermarks from the modified apps. Many
static watermarking mechanisms are highly susceptible to distortive
attacks since they leverage the code or data syntax to encode the
watermark, which is very sensitive to semantic-preserving transfor-
mations. Dynamic watermarking, however, never depends on any
syntax structure in application code, but instead encodes watermark
object into the execution state of the application. Furthermore, the
semantic of runtime graph data structures is usually hard to analyze
without executing it in real environment, because of the inherent
difficulty in analyzing point-to relationships [14,45]. These factors
make it very hard for any static transformation to change these
graph structures without changing the application semantics. For



these reasons, most semantic-preserving transformations cannot
affect the execution states of apps, and theoretically dynamic graph
watermarking is resistant to distortive attacks. To further confirm
AppInk’s robustness in this aspect, we evaluate AppInk against a
series of semantic-preserving transformations available in two open
source tools 1, and report our results later in this section.

Subtractive attacks: This type of attacks tries to remove wa-
termarking relevant code segments in an application, and usually
needs manual analysis to identify the location of these code seg-
ments in the first place. The dynamic graph based watermarking
mechanism adopted in AppInk makes it relatively easier to defend
against subtractive attacks. First, since the arbitrators are in general
trustworthy, we can assume the manifest app is kept as secret. So
although the watermarking mechanism used in AppInk can become
public knowledge, the secrecy of manifest app provides one layer
of protection for the watermarking code segments. Second, the
data structures used in AppInk are commonly used in normal Java
applications, which makes it hard to separate these watermarking
code segments from other functional code.

What is more, we can also leverage the inherent difficulty of alias
analysis [14, 45] to add another layer of protection against subtrac-
tive attacks. Since the runtime graph data structures in AppInk have
reference relationships among themselves, an app developer can
easily know the correct reference relationships among the inserted
graphic nodes. Instead, without this pre-knowledge, attackers have
great difficulty in identifying these reference relationships through
reverse engineering. Therefore we can create bogus dependency
relationships between the original code and the newly inserted
code [7]. The attempt to remove or modify the watermarking graph
code segments will have high probability to damage the original
application logic, making it useless after repackaging.

Additive attacks: This type of attacks tries to add another
watermark on a watermarked app, with the assumption that at-
tackers somehow understand and implement the same watermark
embedding algorithm as presented in AppInk. In the defense
model applied in centralized app markets (cf. Section 1), there
is an inherent timing gap between the submission of the original
app and the repackaged app. That is, the original author always
submits her AppInk-protected app before an attacker succeeds in
executing an additive attack on that app. Therefore when the
attacker submits his repackaged app to the app market, the app
market can detect that there is an earlier app which has the same
functionality but has a different watermark extracted. The operator
can then launch another watermark extracting session on the app
under review, using the manifest app for the earlier app as the
watermark extraction driver. If the same watermark is extracted
as the earlier published app, it is derived that the second is a
repackaged one. However, this does not prevent the attacker from
downloading an app from one store and publishing in another one
where the original app has not been published yet.

In the postmortem arbitrary model, when an app author suspects
that one app is a repackaged version of her own, she can apply the
watermark recognizer with her own manifest app on the suspected
app. If the extracted watermark is identical with the one from
her own app, she can submit this as evidence to prove that the
suspected app is a repackaged version of her own one. In case
that an attacker can somehow embed his own watermark into the
AppInk-protected app and generate his own manifest app, two
watermarks can be extracted by using their corresponding manifest
apps. Under this confusion, the original author can present another

1They can be used for app repackaging as well.

evidence to show that her watermark is original, and the other is
additional. The evidence is that her manifest app can extract the
same watermark from both her original app and the repackaged
app, but the attacker’s manifest app can only extract his own
watermark from the repackaged app.

Next we evaluate the AppInk’s robustness against real repack-
aging tools. With our best effort we do not find any available tool
for subtractive and additive attacks. Therefore our evaluation is for
distortive attacks only.

5.2 Evaluation with Repackaging Tools
We evaluate AppInk against two open-source tools, which

apply semantic-preserving transformations on Android app
code and therefore can simulate the aforementioned dis-
tortive attacks. We have five Android apps under eval-
uation, one named AndroidCalculator from Robotium,
and the other four from Android SDK samples (including
ContactManager, NotePad, HoneycombGallery, and
SearchableDictionary). We first apply AppInk to
embed watermarks on these apps, and then apply the available
transformations present in the above tools to the watermarked apps.
Last we feed the modified apps to the AppInk watermark recognizer
to see if the originally embedded watermarks can be extracted.

ADAM: We first evaluate AppInk against an automatic Android
app repackaging tool named ADAM [51], which operates on
Android apps (.apk files) directly and automatically repackages
apps with different code transformation techniques. Figure 10
shows the above three-step evaluation process for the app
named NotePad. The first snapshot (Figure 10a) shows
the embedding session on NotePad.apk, with a string of
1234567890abcdef as the watermark value. It clearly
demonstrates the working process of the three AppInk components.

The second snapshot (Figure 10b) shows the repackaging ses-
sion, where we apply seven semantic-preserving transformations
from ADAM on NotePad.apk. Among these transformations,
three do not modify the app code but change other phases in
the app packaging process. For example, resign transformation
disassembles the app and re-signs the app using attacker’s signing
key, rebuild transformation disassembles the app and re-assembles
the components into a new one with the open-source tool named
apktool [44], and zipalign transformation realigns the locations of
different data in the app package in a different and pre-determined
way. Four other techniques apply various code obfuscation trans-
formations on the app code, including defunct code insertion, iden-
tifier renaming (include packages, classes, methods, and fields),
control flow obfuscation, and string encryption. To conduct the
evaluation, we apply these seven transformations on the water-
marked code with a bash script, and output the repackaged apps
into a directory.

The third snapshot (Figure 10c) shows the recognizing session.
We create a script to feed each of these seven repackaged apps
into the watermark recognizer, and check the extracted watermark
value. The first attempt shows that AppInk recognizes the
watermark value of 1234567890abcdef correctly from six
of these repackaged apps. The app repackaged with identifier

renaming obfuscation fails the first attempt. Further analysis shows
that ADAM incorrectly renames one Android API method, which
results in the incorrect execution of the repackaged app. After
fixing this bug in ADAM, AppInk recognizes the correct watermark
from all these repackaged apps (Figure 10c shows the result after
fixing the ADAM bug).

Proguard: Our second evaluation is against a popular Android
app obfuscation tool named Proguard [29]. Different from ADAM



(a) Snapshot of AppInk watermark embedding (b) Snapshot of ADAM repackaging (c) Snapshot of AppInk watermark recognizing

Figure 10: Snapshots for watermark embedding, app repackaging, and watermark recognizing.

Figure 11: Execution time of watermarked app.

which works directly on final .apk files, Proguard operates on
class files generated in Android app building process. To conduct
this evaluation, we modify the watermarking embedding process
as presented in Section 3, by adding Proguard obfuscation as a
post-compilation action into the app building process 2. With this
extra action, the generated class files are optimized and obfuscated
first, and then packaged into the final released apps. Last we feed
these obfuscated apps into the AppInk recognizer. Our experiments
show that AppInk recognizer can extract the correct watermarks
embedded into all of these transformed apps successfully.

These two sets of evaluations demonstrate that AppInk has high
resistance against currently available repackaging and transforma-
tion tools, and thus is very robust against distortive attacks.

5.3 Performance Evaluation
We conduct performance evaluation in two aspects

with three different Android apps (ContactManager,
SearchableDictionary, and NotePad). As the size
of the permutation graph is the main factor to decide the extra code
size and thus the final performance, we watermark each of these
three apps with five different watermark values, which encode
permutation graphs with sizes of 5, 10, 15, 20, and 25, respectively.
These values can encode a number from 24 to 1.6*10

25. Our
experiments show that even the longest watermark value only
introduces trivial performance overhead.

First, we measure how much extra time is required to execute
these watermarked apps, which affects the user experience of an
end mobile user when running these AppInk protected apps on

2Concretely, we add a new Proguard configuration file and
Proguard action into one ant [20] building script.

Figure 12: Extraction time of watermarked app.

their devices. To reduce the undecidability of human input and also
exercise all these watermarking code, we use the manifest apps to
drive these apps in a normal Android emulator. Figure 11 shows the
times in seconds to finish each watermarked app. Please note that
for each app, the first column shows the time to execute the original
(un-watermarked) app. The small differences between the five
watermarked apps and the original apps show that AppInk causes
very small runtime overhead (2.4% at most in our evaluation).

Second, we measure how much time is required to recognize
a watermark. This is the time that an arbitrating party needs
to verify an app’s originality. For that purpose, we feed these
watermarked apps into the extended Android emulator as presented
in Section 3.4, and measure how much time elapses when AppInk
recognizes the watermark values. Figure 12 shows the measure-
ment results in seconds. As shown, it takes 7 seconds to 28
seconds to verify these apps. Additionally, a longer watermark
value in general requires more time to be recognized, but the
difference is small. Compared with the data in Figure 11, we
find that most time for watermark recognition is spent on the app
execution itself. The time differences for the same watermarked
apps in these two figures show the execution time dedicated to the
watermark extraction, is from 1.3 seconds to 1.6 seconds. With this
scale of time requirement, AppInk’s watermark recognition can be
deployed at current largest app market to handle thousands of app
submissions every day.

6. DISCUSSION

Our prototype implementation and evaluation have demonstrated
the effectiveness of AppInk for preventing the propagation of repack-
aged Android apps and deployable capability for general Android



app development practice. In this section, we examine possible lim-
itations in the current prototype and discuss future improvements.

First, AppInk uses a conservative model-based test generation
algorithm to generate manifest apps, which may not be the opti-
mum for watermarking purpose. One possible enhancement is to
investigate the latest automatic test case generation methods that
have been studied by researchers in software engineering field. For
example, the concolic execution based and GUI ripping based tech-
niques [1, 2, 33] are actively investigated in software engineering
community to enable automatic generation of high-coverage test
inputs for Android apps. We plan to study these methods to see if
they can be leveraged by AppInk for watermarking purpose.

Second, our AppInk prototype supports user input events only,
which are the primary driver for app functionality, but ignores
possible discrete system events, such as short messages received,
incoming phone calls, and various sensor events. We plan to study
the working mechanisms of all these events and explore ways to
incorporate them into AppInk.

7. RELATED WORK

Software watermarking: Static watermarking embeds water-
marks into the code or data of applications [35, 37], which usu-
ally involves syntax transformation and is vulnerable to semantic-
preserving transformations. A variety of dynamic watermarking
mechanisms have been proposed to overcome these attacks, in-
cluding graph based [6, 39], thread based [36], and path based
watermarking [4]. AppInk does not claim any novel contribution
in this aspect. We instead leverage existing dynamic graph based
watermark to improve Android app’s capability in preventing and
defending against common app repackaging attacks.

Java software protection: Android apps are mainly written in
Java. Due to its high-level expressiveness, Java code is relatively
easier to be decompiled and reversed [43] than native code. To
protect software written in Java, various solutions are pursued
since its inception. One popular solution is to apply different
levels of obfuscation to Java code, such as code or data layout
obfuscation, control flow obfuscation, and string encryption [3, 9,
12]. Watermarking is also used to prove the ownership of Java code
and to discourage Java software piracy [6,35]. SandMark [5] is one
popular research platform to study how well different obfuscation
and watermarking mechanisms work in protecting Java software.

Android app protection: To protect Android apps from piracy
and foster the healthy development of Android app economy, Google
has introduced several mechanisms. For example, Google rec-
ommends developers to leverage ProGuard [29] to optimize and
obfuscate apps. Google also provides licensing verification li-
brary [17] to query a server to verify if an app running on a mobile
device has been properly downloaded from Google’s app market.
There are also attempts from other parties in this aspect. For
example, Amazon and Verizon have introduced their own digital
right management solutions for Android apps available in their
app markets [41]. These mechanisms can increase the difficulty
of reverse engineering Android apps, but are not strong enough to
deter determined attackers from repackaging through more labori-
ous manual analysis. For example, open source tools are available
to automatically crack these protections [30–32].

More recently, there are a series of work studying the app repack-
aging problem in Android platform [8, 16, 42, 52, 53]. Different
from the dynamic watermarking mechanism proposed by AppInk,
all these systems attack the app repackaging problem from the point
of view of measuring the apps similarity. DroidMOSS [53] uses
fuzzy hashing to speed up the pair-wise similarity comparison at

the opcode level. Potharaju et al. [42] compares each app pair
using different syntactic fingerprinting schemes, and can handle
different levels of obfuscation used by the attacker. Juxtapp [16]
collects static code features and represents them as bit vectors to
improve the efficiency of pairwise comparison. It also supports
incremental update and distributed analysis. DNADroid [8] uses
program dependency graph (PDG) to characterize Android app and
compares PDGs between methods in app pairs, showing resistance
to several evasion techniques. By proposing a new distance met-
ric design and an associated nearest neighbor search algorithm,
PiggyApp [52] overcomes the scalability limitation from the pair-
wise comparison as presented in previous systems, and achieves
a better scalability with O(n ∗ logn) complexity. None of these
similarity based methods need modification to the released apps,
but their results can only indicate possible repackaging, the final
decision of which is left for human review. AppInk, although
requiring some modification from the app developer side, does
not have this drawback. The successful extraction of the author’s
watermark from the suspected app clearly derives the fact that it is
repackaged. What is more, AppInk automates the work at both the
app developer and arbitrator sides, enables the online and realtime
detection of repackaged apps, and thus provides stronger deterrence
towards app repackaging threat.

8. CONCLUSION
App repackaging is a serious threat to Android ecosystem in-

cluding app developers, app store operators, and end users. To
prevent the propagation of unauthorized repackaged apps, we pro-
pose to adopt a dynamic graph based watermarking mechanism and
discusses two scenarios where this mechanism is mostly useful.
To make the watermarking mechanism readily integratable into
current app development practice and conveniently deployable by
relevant parties, we introduce the concept of manifest app, which
is a companion app for an Android app under protection. We then
design and implement a tool named AppInk to generate manifest
apps, embed watermarks to apps, and extract watermarks without
any user intervention. Our robustness analysis and practical eval-
uation against currently available open source tools demonstrate
that AppInk is effective in defending against common automatic
repackaging threats while introducing trivial performance over-
head.
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