Usage Control Platformization via Trustworthy SELinux

Masoom Alam
IM | Sciences
Peshawar,Pakistan
mmalam@imsciences.edu.pk

Jean-Pierre Seifert
Samsung Information Systems America
_ San Jose, California,USA
j-seifert@samsung.com

ABSTRACT

Continuous access control after an object is released into a dis-
tributed environment has been regarded as the usage control prob-
lem and has been investigated by different researchers in various
papers. However, the enabling technology for usage control is
a challenging problem and the space has not been fully explored
yet. In this paper we identify the general requirements of a trusted
usage control enforcement in heterogeneous computing environ-
ments, and also propose a general platform architecture to meet
these requirements.

Categories and Subject Descriptors

K.6 [MANAGEMENT OF COMPUTING AND INFORMA-
TION SYSTEMS]: Security and Protection; K.4.4 [Electronic
Commerce]: Security

General Terms

security

Keywords
Trusted Computing, Usage Control, SELinux

1. INTRODUCTION

The traditional access control problem [9, 12, 16] is considered
in closed environments where identities of subjects and objects can
be fully authenticated and enforcement mechanisms are trusted by
system administrators which define access control policies. How-
ever, with increasing distributed and decentralized computing sys-
tems, more computing cycles and data are processed on leaf nodes.
This leads to two distinct access control problem spaces. The first
one focuses on the reasoning of authorizations with subject at-
tributes from different authorities. For example, in trust manage-
ment [4, 8, 13, 17] systems, a user presents a set of attributes or
credentials and another subject (e.g., a resource or service provider)
can determine the permissions of the user based on the presented
credentials. In this problem, objects are typically protected in a
centralized server. The second problem focuses on continuous con-
trol on accesses to an object after it is distributed to other (decen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASIACCS 08, March 18-20, Tokyo, Japan

Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

245

Qi Li
Dept of Computer Science
Tsinghua University, Beijing, China
gili@csnet1.cs.tsinghua.edu.cn

Xinwen Zhang
Samsung Information Systems America
_San Jose, California,USA
xinwen.z@samsung.com

tralized) locations or platforms, which is called the usage control
problem proposed by researchers in literatures [14, 19, 20, 23].
Although there is no precise definition in the literature, the main
goal of usage control is to enable continuous access control to ob-
jects after an object is released to a different control domain from
its owner or provider, especially in highly distributed and hetero-
geneous environments. Typically, a usage control policy is defined
for a target object by its stakeholder, which specifies the conditions
that accesses to the object on a target platform can be allowed. A
stakeholder can be the owner of a target object, or a service provider
that is delegated by the object owner to protect the object. An ob-
ject in usage control can be static data, various types of messages,
or user or subject attribute or even a credential. Thus, this makes
the problem pervasive in many distributed computing applications
such as healthcare information systems, Web Services, and iden-
tity management systems. Different from other distributed access
control problems, such as trust management, in usage control, an
object is located out of the controlling domain of a policy stake-
holder such that (1) there are many aspects of access control deci-
sions other than subject identities and attributes, and (2) an object
stakeholder needs high assurance on the enforcement of the policy.
As Figure 1 shows, an object and its usage control policy are
distributed from a data provider to a target platform. The policy is
enforced in the platform to control the access to the object within
a rrusted subsystem. Typically, an access control decision is deter-
mined according to pre-defined factors specified in a policy, which,
logically, can be defined based upon the information of the sub-
ject and the object of an access request, where the subject is an
active entity trying to perform actions on the passive entity object.
In closed access control systems such as in a local platform, poli-
cies are defined based upon the identities of subjects and objects.
In traditional distributed access control systems such as trust man-
agement, policies are defined based on attributes or credentials that
are certified by external authorities. However, in usage control,
access control policies can be defined by very general attributes
of subjects and objects, such as application-specific attributes and
temporal status. Furthermore, as an object can be located on vari-
ous platforms in a heterogeneous environment such as a mobile de-
vice, environmental restrictions and system conditions are manda-
tory decision factors in many applications, such as location-based
service and time-limited access. An ongoing access should be ter-
minated if these environmental or system conditions change which
violate policies. For example, a mobile application might require
that a service can be used only if a mobile device is in a particu-
lar location, which itself is activated by a user through the service
agent deployed on the mobile device. Simply relying on traditional
access control mechanisms in a target platform cannot satisfy these

requirements since the decision factors (i.e., subject and object at-
tributes) of these approaches are mostly static and pre-defined and
cannot fit a dynamic computing environment.

Data/service provider Target platform
(usage control policy stakeholder) (usage control enforcement)
2 %
Object Object e==x
T A
(O |
| I Trusted \ |
| | subsyslem |
sage Policy | 17 - J _ \/\
C°""°' \ - ~\ ~~ Mg

Pol\cles

_J | PohclesJ |

Figure 1: Abstract architecture
As usage control is naturally distributed, another challenge to

enforce usage control policies is the trustworthy of the security
enforcement mechanism. Typically, an access control decision is
made and enforced by a reference monitor, which has the require-
ments of being tamper-proof, always-invoked, and small enough [5,
10] — which is relatively easy to achieve at least in closed systems.
Note that in trust management systems, policy enforcement is still
within the stakeholder’s control domain of an object. However,
as objects or services are deployed to different domains from its
stakeholder, a mandatory requirement for usage control is the trust-
worthy enforcement of security policies by the reference monitor.
Here, through trustworthiness, a stakeholder needs to ensure that
(1) all factors for usage control decisions can be obtained and their
information (e.g., attribute values or environmental conditions) are
authentic, (2) correct decisions are made based on these factors, (3)
the reference monitor enforces access control decisions correctly,
and (4) all accesses to a target object on a target platform have to
go through the reference monitor. Overall, by a “trusted subsys-
tem” we mean that it is expected to behave in a “good” manner and
this manner can be especially verified by the policy stakeholder.

Previous work on usage control focus on high level policy spec-
ifications and conceptual architectures [14, 19, 20, 23], while the
enabling and trusted mechanisms are mainly relied on digital rights
management (DRM) approaches. However, DRM mechanisms
cannot support general attributes and trusted enforcement in ubiq-
uitous environments. Most importantly, DRM approaches cannot
provide an overall solution for usage control in open and general-
purpose target platforms, since they usually rely on software-
enabled payment-based enforcement in relatively closed environ-
ments, e.g., through a media player by connecting to a dedicated
license server. Another intuitive solution is to use cryptography
algorithm. For example, a stakeholder can encrypt a target object
such that it only can be decrypted on a target platform with a par-
ticular application. Fundamentally, this has the same problems as
the DRM approach, since a typical DRM scheme relies on encryp-
tion/decryption with a unique key shared between a client and con-
tent server [1, 3]. Particularly, cryptography alone cannot protect
the key during the runtime on a target platform such as to build a
trusted subsystem [18]. For example, malicious software can eas-
ily steal a secret by exploring some vulnerability of the protection
system, either when the secret is loaded in some memory location,
or when the secret is stored locally.

As one of the main contributions of this work, we consider the
integrity of a subsystem in access control mechanisms. With this,
not only traditional subject and object attributes are considered in
access control decisions, but also the integrity information of sub-
jects and objects, and any other components necessary in a trusted
subsystem. The overall goal of our approach is to build a “virtu-

246

ally closed” and trusted subsystem for remote usage control policy
enforcement.

The present paper is organized as follows. Section 2 summa-
rizes the principles to build a distributed usage control system. We
describe a platform architecture to build a trusted subsystem in Sec-
tion 3. We eventually conclude this paper and present our ongoing
work in Section 4.

2. DESIGN PRINCIPLES

In our work, we have identified the following general security
requirements and design principles for usage control.

Requirement 1: Need high assured but usable security mechanism
Typically in usage control, objects are located out of the domain
of a stakeholder such that high assurance of policy enforcement
is desired. However, as usage control is such pervasive that it
happens in open and general-purpose platforms and “usable secu-
rity” mechanism is strongly desired for cost-effective objective.
For example, leveraging local host access control mechanism to
enforce usage control policy is desirable if the mechanism can be
trusted to do the “right” thing. That is, the goal of pervasive usage
control is not to provide a perfect solution for security but to be
“good-enough” [22].

Requirement 2: Need a comprehensive policy model Traditional
security systems distinguish policy and mechanism [15]. However,
early policy systems such as Bell-LaPadula [6] and Biba [7] are too
restrictive for convenient use of applications. They support simple
policies such as one-way information flow but provide insufficient
and inflexible support for general data and application integrity,
separation of duty and least privilege requirements. Besides these,
usage control considers many constraints or conditional restrictions
such as time and location as aforementioned. Traditional policy
models cannot supports these and we need a comprehensive policy
model to support the variants of security requirements.

Requirement 3: Need MAC mechanism for trusted subsystem on a
target platform As in discretionary access control model (DAC),
a root-privileged subject has the capability to change security
configuration of the whole system such that the subsystem can be
compromised either by malicious user or software. For example,
a virus or worm can obtain the root permission of a system by
exploring some vulnerabilities, e.g., with buffer-over-flow attacks.
Thus, mandatory access control (MAC) mechanism is needed.
For example, with SELinux, one can label the applications and
all resources of a subsystem with a particular domain and define
policies to control the interactions between this domain and others
for isolation and information flow control purposes.

Requirement 4: Need a polity transformation mechanism from high
level usage control policies to concrete MAC policies Typically, a
stake holder’s policy is specified in different format and semantics
from those of the MAC policies on a target platform. For example,
a stakeholder can be implemented as a Web Service, where a
security policy is specified in XACML. This policy has to be
transformed to a concrete policy that can be enforced on a target
platform, which follows its local MAC policy model. Efficient and
convenient policy transformation mechanism is needed such that
security properties are preserved during the transformation, which
means, the allowable permissions and information flows are the
same in the policies before and after a transformation.

Requirement 5: Build trust chain for policy enforcement from

boot to applications High assurance of a subsystem in a remote
computing platform should origin from a root-of-trust, and then
is extended to other system components through which policy
enforcement mechanism is built. Typically, MAC mechanism
is implemented in the kernel of the operating system (OS) on
a platform. Thus, a trusted subsystem should include a trusted
kernel and any other components booted before kernel, such as
BIOS and boot loader. To obtain the trust of a MAC mechanism
in a trusted subsystem, any other supporting components should
also be trusted, including policy transformation and management,
subject and object attribute acquisition, and the reference monitor
itself. The fundamental goal of this trust chain is to achieve a
trusted runtime environment for object access where the integrity
of all related parts can be verified by a stakeholder.

Requirement 6: Built trusted subsystem with minimum trusted
computing base Related to above requirement, to build practical
and usable trusted subsystem, minimum trusted computing base
(TCB) is desired. TCB includes all the components in the trust
chain for policy enforcement during runtime. A large component
in this chain results in high cost both on system development
and verification since each trusted component requires detailed
verification of the software implementation.

Our work follows these principles. Specifically, we propose
a platform architecture with mandatory and minimum compo-
nents. Our implementation is built with emerging trusted comput-
ing technologies with hardware-based root-of-trust. We leveraged
the MAC mechanism in SELinux for policy enforcement, and we
also develop a policy transformation mechanism from high level
XACML policies to SELinux policies with an extended MAC pol-
icy model. Due to space limit, we just give an high-level view of
our platform architecture in next section.

3. PLATFORM ARCHITECTURE

A trusted subsystem includes a root-of-trust, trust chain, and pol-
icy transformation and enforcement mechanism, and runtime in-
tegrity measurement mechanism. Figure 2 shows a target platform
architecture to enforce usage control policies. The hardware layer
includes a Trusted Platform Module (TPM), a Core Root of Trust
Measurement (CRTM), and other devices. The TPM and CRTM
provide the hardware-based root-of-trust for the whole platform.
Similar to trusted or authenticated boot [11, 21], the booting com-
ponents of the platform, including BIOS, boot loader, and operat-
ing system (OS) kernel, are measured and their integrity values are
stored in particular Platform Configuration Registers (PCRs) of the
TPM. Specifically, according to TCG specification [2], the CRTM
is the first component to run when the platform boots. It measures
the integrity of BIOS before BIOS starts, which in turn, measures
the boot loader and then in turn the kernel and kernel modules,
recursively. Along this booting and measurement sequence, partic-
ular PCR(s) are extended with the measured values, and the result
is denoted as PC Rpoot. TPM guarantees that PC Ry is reset
once the platform re-boots.

Upon a user’s request on the target platform, a client application
(e.g., a healthcare client software) is invoked to communicate with
a data owner/provider to obtain an object. At the same time, a pol-
icy can be downloaded by the client application from a stakeholder,
which can be the same as the data provider or not. For example, a
data provider can delegate its policy specification and enforcement
to a security service provider, which is the policy stakeholder when
an object is downloaded and processed in a client platform.

When a usage control policy (e.g., an XACML policy file) is

247

[VO | . |
X | . | Usage Control Policy
} Configurations } | Object | ‘ (e.g., XACML Policy) }
———) L __
|

S VT T Y- M
} [Policy I
| Client Application I | Transformation !
I } ! Service }
- ool
——————~

I Integrity | | |

} Verification } | Sensor }

|
t ,S‘i“’,'CE,» (S ,,/
Integrlty Reference
Measurement Monitor MAC
Service Policies
A
Kernel
CRTM TPM Device Device
Hardware

Figure 2: Platform architecture for usage con-
trol policy enforcement

downloaded from its stakeholder, it is transformed by the policy
transformation component to MAC policies such that they can be
enforced by the reference monitor. The client application is the
target process that can manipulate the object and is to be protected
by MAC policies. Also, MAC policies should also include the rules
to control accesses to the object from others and any configurations
for the client application and the overall security system (e.g., local
security policy management).

As aforementioned, usage control policies typically include en-
vironmental authorization factors such as time and location. A sen-
sor is a component that sends these environmental information to
the policies and thus can be considered. For example, in a mobile
application where a service only can be accessed in a particular
location, the sensor reports the physical (e.g., through a cellular
network provider or GPS) or logical (e.g., through a Wi-fi access
point) location of the device, such as home, office, and an airport.

In the kernel level of the platform, the reference monitor cap-
tures every possible access attempt to the object and queries the
MAC policies before allows the access. A fundamental require-
ment for the reference monitor is that it has capture all kinds of
access attempts, from storage in the local file system to the mem-
ory space of the object. Also, the reference monitor controls the
interactions between the client application and others, locally and
remotely, according to loaded MAC policies.

The integrity measurement service (IMS) is a mandatory com-
ponent in a trusted subsystem, which starts right after the kernel is
booted. The main function of IMS is to measure mandatory compo-
nents which consist of the TCB to enforce usage control policies.
All measured events and the integrity values are stored in a mea-
surement list and corresponding PCRs are extended. Particularly,

e The reference monitor is measured after the kernel is booted.

e The client application, object, and configurations are mea-
sured right before the client application is invoked.

e The integrity of usage control policy (e.g., XACML policy
file downloaded from its stakeholder), policy transformation

service, and the sensor are measured when they are invoked
and before run.

e MAC policies are measured when they are loaded, either
when the platform boots or during runtime (i.e., loaded by
the policy transformation service).

e Any other applications or services that communicate with the
client application.

In general, to only allow accesses to a target object from au-
thorized application, and control the information flow between this
application and others, IMS should measure not only the policy
enforcement services such as policy transformation and platform
sensor, but also all applications that interacts with the client appli-
cation running on the same platform.

As part of policy specifications, integrity verification service ver-
ifies corresponding integrity values measured by the IMS and gen-
erates inputs to the reference monitor. As a typical example, the
client application only can access the target object when its “cur-
rent” integrity is a known good value, where the current integrity is
the one measured by the IMS.

Note that although we use data objects (e.g., files) through this
paper, our usage control mechanism is applicable to other types of
objects such as messages and streams. The essential requirement
for the object is that its authenticity and integrity can be verified
such that, as an input for the application on a client platform, the
initial state of the platform can be trusted.

4. CONCLUSIONS AND FUTURE WORK

Usage control focuses on the problem of enforcing security poli-
cies on a remote client platform with high assurance and verifiable
trust. In this paper we identified general security requirements for
usage control and proposed a general framework for this problem.
The main idea of our approach is to build a trusted subsystem on
an open platform such that a policy stakeholder can deploy sensi-
tive data and services on this subsystem. We propose an architec-
ture with a hardware-based TPM as the root-of-trust and consider
integrity measurement/verification and other environmental restric-
tions in our MAC policy model.

We are implementing a prototype system based on a mobile ref-
erence platform. We are also exploring automated policy trans-
formations in mobile computing environment. In addition, as our
architecture is extensible, extra components can be included in the
TCB of a trusted subsystem for increasing security requirements.
Particularly we are investigating how to enforce some kind of obli-
gation policies in our architecture.

5. REFERENCES

[1] Fairplay. http://en.wikipedia.org/wiki/FairPlay.

[2] TCG Specification Architecture Overview.
https://www.trustedcomputinggroup.org.
Windows media digital rights management (DRM).
http://www.microsoft.com/windows/windowsmedia
/drm/default.aspx.
M. Abadi, M. Burrows, and B. Lampson. A calculus for
access control in distributed systems. ACM Transactions on
Programming Languages and Systems, 15(4):706-734, 1993.
J. P. Anderson. Computer security technology planning study
volume II, ESD-TR-73-51, vol. II, electronic systems
division, air force systems command, hanscom field,
bedford, MA 01730.
http://csrc.nist.gov/publications/history/ande72.pdf, Oct.
1972.

(3]

(4]

(3]

248

[6] D.E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations and model. Mitre Corp. Report
No.M74-244, Bedford, Mass., 1975.

K. J. Biba. Integrity consideration for secure computer
system. Technical report, Mitre Corp. Report TR-3153,
Bedford, Mass., 1977.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized
trust management. In Proceedings of IEEE Symposium on
Security and Privacy, pages 164—173, Oakland, CA, May
1996.

D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5), May 1976.
Department of Defense National Computer Security Center.
Department of Defense Trusted Computer Systems
Evaluation Criteria, December 1985. DoD 5200.28-STD.
J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn,
S. W. Smith, and S. Weingart. Building the ibm 4758 secure
coprocessor. [EEE Computer, (10):57-66, 2001.

M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in
operating systems. Communication of ACM, 19(8), 1976.
A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid.
Access control meets public key infrastructure, or: assigning
roles to strangers. In Proc. of IEEE Symposium on Security
and Privacy, pages 2—14, 2000.

M. Hilty, D. Basin, and A. Pretschner. On obligations. In
Proc. of 10th European Symp. on Research in Computer
Security, September 2005.

B. Lampson. Computer security in the real world. [EEE
Computer, (6):37-46, June 2004.

B.W. Lampson. Protection. In 5th Princeton Symposium on
Information Science and Systems, pages 437-443, 1971.
Reprinted in ACM Operating Systems Review 8(1):18-24,
1974.

N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust-management framework. In Proc. of IEEE
Symposium on Security and Privacy, pages 114-130, 2002.
P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor,

J. Turner, and J. Farrell. The inevitability of failure: The
flawed assumption of computer security in modern
computing environments. In Proceedings of the National
Information Systems Security Conference, October 1998.

J. Park and R. Sandhu. The UCON,y, usage control model.
ACM Transactions on Information and Systems Security,
7(1):128-174, February 2004.

A. Pretschner, M. Hilty, and D. Basin. Distributed usage
control. Communications of the ACM, (9):39-44, September
2006.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement
architecture. In USENIX Security Symposium, pages
223-238, 2004.

R. Sandhu. Good-enough security: Toward a pragmatic
business-driven discipline. I[EEE Internet Computing,
(1):66-68, January/February 2003.

R. Sandhu, K. Ranganathan, and X. Zhang. Secure
information sharing enabled by trusted computing and PEI
models. In Proceedings of ACM Symposium on Information,
Computer, and Communication Security, Taipei, Taiwan,
March 21-24 2006.

(7]

[8

—

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

