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Abstract. To support a variety of web applications with diverse con-
tents such as video and audio, plugins have been widely adopted to ex-
tend the functionality of existing web browsers. Although instrumental
for developing web applications efficiently, the open mechanism of plu-
gins poses tremendous threats to browser security. While a plethora of
approaches have been proposed to improve the overall security of web
browsers, their treatment of plugins is either incomplete (e.g., missing
many plugins for browser extensions) or demands code modification for
legacy browsers and plugins or introduces significant performance degra-
dation. Against this backdrop, we propose a novel in-process sandboxing
mechanism called sePlugin to monitor and confine suspicious behaviors
of plugins in popular commodity browsers such as Microsoft Internet
Explorers. sePlugin enhances the security of a browser by controlling
how plugins access the browser’s internal objects and external system-
level resources such as file systems and network interfaces. sePlugin deals
with both native and .NET-based plugins and its unique design renders
it possible to work with commodity web browsers without requiring any
modifications to the legacy browser architecture or plugin code. We have
implemented sePlugin in IE8 under Windows XP and IE8 and results
from a number of experiments attest to both its strong capability of se-
curity policy enforcement and its low operational overhead (only 4.46%
of browser loading time).

Key words: Plugins, Browser Security, In-process Sandbox, Web Security

1 Introduction

Since the inception of WWW in the early 90’s, web contents have evolved from
simple static plain text to dynamic and rich media contents that are common
in the current Internet. One common approach to extending web browser capa-
bilities is using plugins. From a functionality point of view, there are two types
of plugins in contemporary web browsers: browser extensions and content ex-
tensions [13]. Browser extensions allow software developers to add customized



functionalities to existing browsers so as to improve user interfaces and brows-
ing experience. For example, Microsoft Internet Explorer (IE) defines various
browser extensions such as toolbars and browser helper objects (BHOs). Other
popular browsers like Firefox also provide browser add-ons for similar functional-
ities [12]. On the other side, content extensions enhance a browser’s capabilities
of rendering web objects, such as audio clips, streaming files, and flash videos.

While plugins greatly improve users’ browsing experience, they do not come
as free: plugins commonly run third-party code in the same process space as the
browser, thus increasing the complexity of a browser’s internal structure and
potentially introducing new vulnerabilities. This actually has been evidenced by
the ever-increasing attacks that target web browsers through plugins. A recent
study [21] shows that nowadays a large portion of malware infections are in the
form of plugins on web browsers such as IE. An overwhelming majority of mal-
ware have a browser extension such as a BHO or a browser toolbar. Another
study [25] has shown that out of 120 distinct spyware programs, about 90 use
BHOs as an entry point to monitor user activities, 46 use the IE toolbar mech-
anism, and some malware programs even use both mechanisms. BHO, one of
the most commonly used plugins, is named by CERT [19] as one of the most
frequently used techniques employed by spyware writers along with stand-alone
applications. In addition, although attacks have been found on other platforms
and browsers such as Linux and Firefox [20], as of today the occurrence of mal-
ware affecting other platforms and browsers is much lower than that affecting
Microsoft Windows and IE.

The threat posed by the increasing usage of plugins is rooted from the fact
that mainstream web browsers like IE have been lacking a comprehensive secu-
rity model for plugins for many years. As concerns over security breaches through
browsers have mounted in the past few years, there have been plenty of research
dedicated to improving browser security [21, 7, 26, 23]. In particular, several new
browser architectures have been designed recently to provide a complete solution
by taking security as one of the fundamental requirements. The major objective
of these approaches is to integrate a security model into the browser execution en-
vironment at different levels, and most of them enforce strong isolation using the
same-origin policy (SOP) [14]. Some advanced browsers such as OP browser [18],
Gazelle [24] and Chrome [1] run plugins in separate plugin processes rather than
the browser process and enforce security policies on individual plugin processes.

Even with all these efforts that take security seriously in browser design,
security threats posed by malicious plugins still have not been fully alleviated.
First, most of these new browser designs only consider plugins used as content
extensions [24], which can be secured by breaking them into separate OS-level
processes and adopting the SOP policy. For plugins used as browser extensions,
another major type of plugins introducing numerous security issues, these new
architectures typically do not provide effective solutions. In particular, as most
browser extensions are designed to handle information that is distributed over
the entire browser, it is difficult to split them from a browser’s kernel and ap-
ply the traditional SOP policy. Second, to enforce strong isolation, most exist-
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ing solutions divide the browser system into components including plugins that
run as OS-level processes, and OS-level sandboxing techniques (e.g., SELinux)
are used to constrain the interactions among different components and between
components and the OS. As a result, inter-process communications inevitably
introduce high computational cost in these new architectures. For example, in
the OP browser, the X-server is required to merge GUI display, which causes
considerable performance problems as acknowledged by the authors [18]. Third,
nearly all these solutions demand an overhaul of major browser components in-
cluding the browser kernel and the plugins. The wide deployment of legacy web
browsers such as IE and a large number of existing plugins suggest that a prac-
tical solution can only survive if it is compatible with these legacy applications
without introducing too much performance overhead.

To this end, we propose in this paper sePlugin, a new mechanism that pro-
vides security protection to web browsers and the underlying OS by transpar-
ently sandboxing third-party plugins. Different from existing solutions, sePlugin
does not isolate each plugin or each plugin instance into an individual OS-level
process. Instead, sePlugin builds an intra-process sandbox for each plugin, which
monitors accesses from the plugin to critical resources including internal browser
objects and OS resources (e.g., file systems and network interfaces). Meanwhile,
sePlugin enforces a set of high-level security policies to control accesses that are
originated from plugins. In a nutshell, the distinguishing features of sePlugin
can be summarized as follows: (1) it works with the commodity web browsers
without requiring code modifications to legacy browser architecture or plugin
code; (2) it is lightweight and introduces as little as 4.46% performance over-
head for fine-grained access control; (3) it offers a comprehensive solution to
enforcing various security policies on both types of browser plugins; and (4) it
deals with both native and .NET-based plugins. We have implemented sePlugin
in Windows XP and IE8 and the results from a variety of experiments show that
sePlugin is a viable solution in practice due to its strong protection capabilities
and low computational overhead.

The remainder of the paper is organized as follows. Section 2 introduces
related work and also highlights some differences between sePlugin and exist-
ing browser architectures. Section 3 presents a high-level description on how we
design sePlugin. We continue to elaborate on the implementation details of se-
Plugin in Section 4 and discuss the access control enforcement in sePlugin for
IE8 in Section 5. In Section 6, we present results about the effectiveness and
efficiency of sePlugin from a set of experiments with real-world plugins. Section
7 concludes this paper.

2 Related Work

Due to continuous threats from web browsers [15, 11, 19], a lot of efforts have
been made to re-define the browser’s software framework. The OP browser [18]
breaks a browser into several isolated components, each of which runs as a sepa-
rate OS-level process. The OS-level sandboxing technique is used to control the
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permissions of plugins, which thus reduces the likelihood of illegitimate accesses.
Thus, OP can enforce different types of security policies including the SOP pol-
icy. Gazelle [24] is a secure web browser based on IE. Gazelle identifies web site
principals defined by the SOP policy and puts principals into separate protection
domains. The protection domain of a principal instance is a restricted/sandboxed
OS process. The use of processes guarantees the isolation of principals even in
the face of attacks that exploit memory vulnerabilities. Such a multi-principal
OS construction brings significant security and reliability benefits to the overall
browser system. Google Chrome [1] isolates the browser rendering engines (in-
cluding HTML, CSS, image, and JavaScript) from the browser kernel by putting
them into two different processes with the process-per-site-instance model by
default. For plugins, Chrome does not provide strong isolation. Plugin contents
from different principals or sites share a plugin process in Chrome, and the pro-
cess runs in the browser user’s full privilege by default. Therefore, it can access
OS resources with the user’s permission rights.

All the above designs restrict plugins’ accesses to the browser objects with
IPC control. In addition, they often require modifications to legacy browsers
and plugins and thus cannot enhance the security of mainstream web browsers
such as IE. Moreover, these newly designed browser architectures only consider
plugins for content extensions, leaving browser extensions without protection. It
is actually difficult to break plugins for browser extensions such as BHOs and
toolbars into separate processes as they usually are designed to handle infor-
mation distributed over the entire browser, and it is not clear how to define
origins for them. As most of the above architectures leverage OS-level sandbox-
ing mechanisms to constrain plugins’ behavior and enforce security policies, they
inevitably introduce significant performance overhead for web browsing.

As a spyware containment technique specifically targeting browser plugins,
SpyShield [22] offers a general protection mechanism against surveillance by
spy add-ons such as BHOs. SpyShield blocks the access of an untrusted add-on
whenever sensitive data are being accessed by its host application (a browser).
To achieve this, SpyShield inserts an access-control proxy between untrusted
add-ons and their host applications to control their communications by enforc-
ing a set of security policies on add-on interfaces. Optionally, SpyShield provides
an one-process solution to run plugins within a browser process or a two-process
solution to run plugins as independent processes. SpyShield, however, has access
control only for browser objects, and it thus does not refrain malicious native
plugins from accessing OS resources. Furthermore, SpyShield only deals with
COM-based plugins, and its two-process approach, albeit optional, also brings
high inter-process communication (IPC) overhead. Lastly, the access control po-
lices in SpyShield have to be configured by the user, which is often error-prone.
Compared with existing approaches, sePlugin aims to provide comprehensive
confinement not only for content extensions, but also for browser extensions.
The protection service is not only for browser objects, but also for OS resources.
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3 sePlugin Design

3.1 Threat Model

sePlugin protects browser objects and system resources from malicious plugins.
Therefore we assume that the IE browser kernel is trustable so that it works
as originally designed and can enforce default security policies. We further as-
sume that other components in IE such as the COM rendering engine and the
JavaScript engine are not compromised. In our current design we consider nei-
ther collusion attacks between malicious plugins nor malicious active contents of
a web page loaded by IE (e.g., malicious JavaScript code that actively sends sen-
sitive data obtained from a web page to a plugin, leading to information leakage
to outside attackers). Instead, sePlugin focuses on enforcing security policies on
active access requests from plugins via pre-defined interfaces.

On the other side, sePlugin deploys a sandbox for each plugin, which inter-
cepts and controls all possible access attempts from the plugin to browser and
system resources. Thus, a plugin cannot bypass sePlugin. Furthermore, to com-
promise the integrity of sePlugin, a malicious plugin has to access some browser
objects or system resources, say, by modifying the implementation of sePlugin
or change its security policies. Certainly the plugin has to invoke some APIs to
achieve these objectives, which are controlled by sePlugin itself. Thus we have
the assurance that during runtime, sePlugin cannot be bypassed or compromised,
due to its advantageous position in implementation. Provided this, we assume
that all resource and physical memory access requests from a plugin are through
pre-defined APIs (e.g., COM interfaces) or system calls via Windows API, which
is the case for IE on Windows platforms. We do not consider attacks from plug-
ins with direct kernel code calling for physical memory access and system calls.
This is a feasible assumption in practice: malware directly calling kernel code are
rare because they are prone to cause browser crashing [2].

3.2 Overview of sePlugin

sePlugin aims to create a secure and controllable environment for executing all
kinds of plugins while minimize performance degradation due to such protection.
For this purpose, sePlugin heavily relies on in-process sandboxes, which we will
illustrate in more detail later. Besides in-process sandboxes, sePlugin also in-
cludes a sandbox manager and an entry point, called proxy, which is used when
a plugin is to be loaded. Figure 1 shows a high-level of the sePlugin architecture.

As shown on Figure 1, in-process sandboxes are created and managed by
the sandbox manager upon the execution of plugins, with assistance from the
proxy. To deal with various types of plugins and system resource accesses, the in-
process sandbox further consists of interfaces dealing with COM objects, system
calls and .NET-based plugins respectively, and a policy enforcement part. In the
following subsections, we will present more details about these components.
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Fig. 1. sePlugin Overview

3.3 Sandbox Manager

The sandbox manager is the center of sePlugin. It generates, manages, and
configures all in-process sandboxes in a browser process. After creating an in-
process sandbox, the sandbox manager can alter the security configuration at
run-time by changing its security policies. As the user navigation changes, the
sandbox manager can also change the origins that plugins are allowed to access.

3.4 Proxy

As shown in Figure 1, whenever the browser process is about to create a plugin,
the sandbox manager creates an in-process sandbox to contain that plugin. This
is done with the assistance of a proxy. This proxy, an important component in
sePlugin, is the entry point for a plugin to connect with sePlugin. In sePlugin,
this proxy works as follows:

– When a web browser loads a plugin (called target plugin), a proxy is created
first. The proxy implements the same COM interfaces as the target plugin
to be loaded. This enables the web browser to easily load and run a proxy
like a real plugin.

– The proxy also works as a delegate for communications. All COM commu-
nications thereafter to the target plugin are forwarded by the proxy.

3.5 In-process Sandbox

An in-process sandbox is the running environment created by sePlugin to ex-
ecute plugins. To reduce performance impact while providing strong security
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enforcement, sePlugin relies on in-process sandboxes (instead of OS-level pro-
cess sandboxes). An in-process sandbox is a runtime environment within an OS-
level process. It provides a layer that monitors and controls the communications
between the code running inside the sandbox and the rest of the process and
the underlying OS. It also offers interfaces to change configurations for different
security purposes. Thus it allows to enforce access control on plugins running in-
side. On the other side, since plugins are not implemented as separate processes,
the overhead is low due to no IPC involved.

On Windows platforms, COM [9] is the base of a Windows application and
all web browser plugins are also COM objects. Here, we present the design
of in-process sandboxes for COM-based applications (e.g., IE). With sePlugin,
COM-based plugins can be put into different in-process sandboxes according to
their security requirements, and any plugin inside an in-process sandbox cannot
directly access resources such as other IE components and the underlying OS
outside the sandbox.

In sePlugin, an in-process sandbox performs two major tasks, component
isolation and security enforcement. To accomplish component isolation, an in-
process sandbox has a COM interceptor to intercept all COM communications,
and a system call interceptor to intercept all system calls. To support .NET-
based plugins, an in-process sandbox also has a .NET interceptor. Besides in-
terceptors, in-process has a security checker for access control. Compared with
other alternative solutions such as the OP browser and Gazelle, an in-process
sandbox has the following advantages: (1) While an in-process sandbox enforces
security isolation just like a process-level sandbox, computational cost is greatly
reduced because all communications between components are local within the
OS process. (2) For all COM-based applications such as IE, an in-process sand-
box provides transparent access control so that it could be deployed on existing
IE browsers without any source or binary code modification to the browser or
plugins. (3) Flexible security policies can be defined and enforced by the in-
process sandboxing mechanism. An in-process sandbox provides interfaces to
set and change security policies. For various IE plugins, SOP and other high
level policies can be enforced dynamically while the user is navigating multiple
websites. (4) The computational cost of the in-process sandboxing mechanism is
low. In-process sandboxes are only created for plugins rather than for the entire
process.

COM interceptor All plugins in a web browser are COM objects. Although
there is no mandatory restriction, plugins in IE are designed to access browser
resources via COM interfaces. To control accesses to browser resources, an in-
process sandbox uses a COM interceptor to intercept COM communications. A
plugin can also access browser resources via direct memory operation, which will
be discussed later.

The COM interceptor works closely with the proxy. When the proxy cre-
ates the target plugin, it also creates other proxy objects that implement web
browser resource interfaces. For example, when a BHO plugin is created, the
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proxy creates another proxy object implementing interface IID IWebBrowser2
that presents a WebBrowser control. Because the proxy works as a delegate for
the target plugin, those proxy objects are passed to the target plugin as inter-
faces to intended web browser resources. The combination of all these proxy
objects provides a complete web browser environment for a plugin. The target
plugin cannot communicate directly with the browser; instead, it has to use the
proxy objects to communicate with the rest of the browser. All proxy objects
are COM objects, and they act as a middleman for COM communications by
the target plugin.

System Call interceptor In IE, plugins are designed to access browser re-
sources via COM interface, but there is no mechanism that forbids plugins to
access browser resources via other approaches. For instance, a plugin can directly
read physical memory of other browser components via system calls or Windows
APIs like IESetProtectedModeCookie. Besides browser resources, plugins can also
access underlying OS resources through system calls, and can even compromise
sePlugin through system calls. It is thus necessary to ensure that system calls
issued by plugins are not malicious.

On the Windows platform, applications make system calls usually through
Windows API. Although it is possible that malware evade the Windows API
interceptor by calling kernel code directly, this is unusual in practice because as
presented by threat model malware developers have to know the target operating
system, its service pack level, and some other information in advance. Empirical
results [2] show that most malware are designed to attack a large user base
and thus use Windows APIs instead of calling the kernel code directly. Hence,
sePlugin intercepts Windows APIs to monitor and control system calls made by
plugins.

Interception of Windows APIs has been well studied for a long time [3]. In
sePlugin, the challenge is how to achieve fine-grained interceptions. As sePlugin
applies security policies to plugins, it needs to intercept system calls made only
by plugins rather than by the entire process. According to work [3], such fine-
grained interception of system calls can be achieved by modifying the Import
Address Table.

Because malicious plugins run in the same memory context as the browser
and sePlugin, malicious plugins have the potential to attack sePlugin. To pro-
tect the integrity of sePlugin, some system calls that could be used to attack
sePlugin will be intercepted such as WriteMemory. In such a way, the system
call interceptor ensures that sePlugin itself would not be compromised by the
malware.

.NET interceptor In recent years, C# has gained great popularity among IE
plugin developers. With Visual Studio, developing plugins like BHOs and tool-
bars with C# is easy. A .NET-based plugin is implemented by the Common
Intermediate Language (CIL) [8]. Similar to the Java Virtual Machine, CLR’s
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just-in-time compiler converts CIL code into code native to the underneath op-
erating system [4].

A plugin developed with the .NET platform such as C# (which we call
the .NET-based plugin) differs from a plugin developed with C++ (which we
call the native plugin). Due to the different execution mechanisms, the COM
interceptor and the system call interceptor do not work for .NET-based plugins.
Hence, a new mechanism is needed specifically for .NET-based plugins. For CIL,
although DynamicProxy.NET developed from the castle project [10] can generate
lightweight .NET proxies at runtime, we find it difficult to use on IE. We thus
take an alternative approach in sePlugin: we apply static code weaving tools like
RAIL [17] to weave the interceptor code into the .NET-based plugin. Eventually,
it loads only instrumented .NET-based plugins rather than original ones.

4 sePlugin Implementation

4.1 Sandbox Manager

In sePlugin, the sandbox manager is implemented as a BHO plugin. The sandbox
manager is responsible for managing the life cycles of all in-process sandboxes,
assigning target plugins to proper in-process sandboxes (or creating new ones if
necessary), and configuring security policies for each in-process sandbox.

To apply security policies, the sandbox manager must be aware of the navi-
gation status of the browser. The necessary information includes the plugin type,
the current webpage content information including origins, and the security level
(sePlugin defines different level of security policies which are explained in Sec-
tion 5) from user configuration. In order to obtain all such information, as a
BHO plugin, the sandbox manager registers two browser navigation events Doc-
umentComplete and BeforeNavigate2. In section 5 we will further discuss how
in-process sandbox enforces security policies on plugins.

4.2 Proxy and COM interceptor

Figure 2 depicts the interfaces provided by a proxy. As aforementioned, both the
proxy and the target plugin are COM objects, the proxy creates the target plugin
and forwards COM calls to the target plugin. Although CoCreateInstance is the
general function to create a COM object, the proxy takes a different approach
as follows to create the target plugin so that it shares the same COM apartment
with the proxy.

– The proxy calls LoadLibrary to load the target plugin DLL into the memory.
– The proxy calls GetProcAddress with parameter IID IClassFactory to

get the address of procedure DllGetClassObject.
– The proxy calls IClassFactory::CreatInstance to create the COM instance.
– After the target plugin is created, the proxy will forward all related COM

calls to the target plugin.
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Fig. 2. Proxy Interfaces

Due to the variety of browser plugins, we have implemented a proxy that
implements all the plugin interfaces for each type of plugins. The most com-
monly used plugins are BHO, toolbar and ActiveX Control. The toolbar proxy
is implemented in a similar manner as BHO.

BHO Proxy: Normally, when IE creates a BHO plugin, it calls CoCreate-
Instance, which creates a single uninitialized object of the class associated with
a specified globally unique identifier of a COM class object (CLSID). With se-
Plugin, when IE tries to load a BHO plugin, a proxy BHO is created instead. In
many cases, by intercepting system call CoCreateInstance, sePlugin takes over
the task of creating a COM object including BHO. sePlugin then reads the plu-
gin information and executes the plugin in an in-process sandbox with proper
security policies.

sePlugin creates a proxy for a BHO and the proxy has the same interfaces as
the target BHO. The only interface required for the target BHO is IObjectWith-
Site. All requests to the target BHO are forwarded by the proxy. In this way,
sePlugin successfully creates a chain of proxy objects that intercept, monitor,
and control all COM communications of the target BHO.

ActiveX Control Proxy: If a plugin is an ActiveX control, IE calls Co-
GetClassObject instead of CoCreateInstance to obtain the class object of the
ActiveX Control and create the ActiveX Control plugin from it. With a slightly
changed procedure, sePlugin intercepts function CoGetClassObject and returns
an ActiveX Control proxy class object. In this way, IE finally creates a proxy
ActiveX Control. Other procedures are similar to that of the BHO proxy.

4.3 System Call Interceptor

As mentioned in the threat model, malware usually make system calls via Win-
dows API rather than calling kernel code directly to attack a larger user space. In
the following discussion, when we mention system calls, they refer to system calls
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made through Windows APIs. There are many approaches for Windows API in-
terception such as the proxy DLL, code overwriting, and altering the DLL import
address table [3]. sePlugin has some system calls that need to be intercepted
for the entire process because those calls are usually related to the program
flow. Those system calls include process creation calls such as CreateProcess,
COM creation calls such as CoCreateInstance and CoGetClassObject. Moreover,
system calls that directly access web resources like IESetProtectedModeCookie,
access system resources like readFile and WriteFile, or perform network commu-
nications like bind and connect are also intercepted. For such system calls, we
use Detours [5] for code overwriting. After the code is overwritten by Detours,
all these system calls from the entire process are intercepted.

On the other hand, to reduce the performance impact, for other system calls,
we only need to enforce access control on plugins within the in-process sand-
boxes. As plugins are in the form of DLL, we use the DLL import table al-
teration approach to add system call interceptors to plugins [3] for performance
considerations. More specifically, when a proxy loads the target plugin by calling
LoadLibrary which has already been intercepted by Detours when the browser
process was launched, the Import Address Table [16] of the target plugin is al-
tered and the function addresses are replaced with the interceptor’s function
addresses. The interceptor forwards system calls to the original system call after
sePlugin performs security checking. With this method, only system calls from
in-process sandboxes are intercepted while the rest is not affected.

4.4 .NET Interceptor

In Section 3, we have shown how sePlugin handles .NET-based plugins. To add
an interceptor to .NET-based plugins, we need a CIL code weaving tool. sePlugin
uses RAIL [17]. Here is an example of a .NET-based plugin interceptor. Suppose
that we need to add an interceptor to the method void BeforeNavigate2(object,
ref object), which a BHO calls to receive browser events before a web navigation
occurs. RAIL requires an epilogue method and a prologue method with the same
return value and parameters as the BeforeNavigate2 method. With RAIL, we
can weave these two methods into the plugin CIL code. The functions proBe-
foreNavigate2 and epiBeforeNavigate2 will be called before and after the Before-
Navigate2 method is called, respectively. Hence, all resource accesses made by
.NET-based plugins can be intercepted by in-process sandboxes and further be
checked by the security checker. The instrumented .NET-based plugin is loaded
at runtime as shown in Figure 3.

4.5 Security Checker

The security checker is the component in the in-process sandbox that actually
enforces security policies. The security checker saves a complete resource access
record of each plugin and performs security checking with security policies. We
will present more details about security policies in following sections.
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5 Securing IE with sePlugin

In this section, we explain how to deploy sePlugin in IE with a set of security
policies. Note that even with a single page tab process like IE, there can be more
than one plugins loaded, each of which has an in-process sandbox to enforce a
different set of security policies from others. Furthermore, a single web page may
have multiple origins as it can have contents loaded from different URLs.

5.1 Same Origin Policy for Content Extensions

Content extension plugins extend content formats that can be parsed, rendered,
and displayed within a browser. Both Gazelle and OP browsers enforce a strong
SOP for this type of plugins. Following the same security requirements, we also
enforce the SOP with the in-process sandbox mechanism in sePlugin. Similar to
Gazelle which puts plugins of the same origin in a single process, sePlugin puts
plugin instances of the same origin into a single sandbox.

When a content extension plugin is created, it does not belong to any sandbox
until a resource is assigned to it, e.g., by HTML tags or JavaScript code. For
example, an ActiveX document server needs the moniker that represents the
target document source. When function IPersistMoniker::Load is called by
IE, the ActiveX knows the URL of the document resource and thus requests the
sandbox manager for access privilege. A URL defines an origin. The sandbox
manager applies the SOP to the calling ActiveX plugin. The SOP states that a
plugin can only access objects with the same origin, and any access to objects of
different origins from a plugin’s origin is denied. For example, if the document
is hosted in the same origin of the web page, the ActiveX document server can
access all of its objects. However, if a third-party document is linked in the page,
the ActiveX plugin can only access the document while it cannot read or write
any object in the main browser space, including HTML and JavaScript, and
other browser objects (e.g., cookies) of other origins.
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5.2 Policies for Browser Extensions

Unlike content extensions, a browser extension works in the global context of the
browser. Thus they are designed to be able to access all the browser resources
rather than a specific type of contents in the browser. Thus, the restrictive SOP,
however, cannot be directly applied to a browser extension because there is no
origin for it by default. Neither OP nor Gazelle provides an effective approach
to controlling the behavior of browser extensions. SpyShield forbids BHOs to
access a web page with sensitive information. It is, however, difficult to request
end-users to classify sensitive documents. Therefore, SpyShield’s approach is
conservative by directly forbidding plugins to access the entire web page.

We adopt an optimistic approach with three levels of security policies. By de-
fault, under any of these policies, a browser extension cannot directly modify any
browser or web page contents, such as document URLs, DOM trees, JavaScript
code, and cookies. However, all these three policies allow a browser extension to
read information from the browser and the web page, while they have different
levels of restriction on possible information leakage after the reading operation.
In the following discussion, we describe these policies from the most restrictive
to the most relaxed.

Relaxed Same Origin Policy In the most restrictive manner, the SOP-like
control can be applied to browser extensions, similar to that for content exten-
sions. As a browser extension does not have an origin because it does not process
contents from a particular origin, we assign an origin for it when a new web page
is loaded. More specifically, a single web page may contain a set of origins. When
it is loaded by the browser, a new sandbox is created by the sandbox manager
in sePlugin with its origin name set to be the concatenation of all the origins
of this web page. A loaded browser extension is then dynamically assigned to
this sandbox. Therefore, the SOP for this sandbox is: the browser extension can
read any data and information in all the origins of the loaded web page, and
it can talk to any of the origins via network connections or HTTP requests.
Therefore, this policy can be essentially regarded as a relaxed SOP: the origin
of the browser extension is the set of all origins in the web page; a browser ex-
tension can access information in any of the origins but cannot leak any data to
the outside, and a browser extension cannot change or add new origins to the
web page, e.g., change the HTML contents or insert/link JavaScript code from
a third-party web page.

Protecting Sensitive Browser Information Although the relaxed SOP pol-
icy prevents any sensitive information from being leaked out of the origins of
a loaded web page, it also prohibits normal behaviors by many benign plugins.
For example, many toolbars are deployed on IE and other browsers for quick
search, which should be allowed to communicate with web servers different from
the loaded web page.

Therefore, we propose a less restrictive policy, which allows a browser exten-
sion to communicate with other origins out of the loaded web page but prevent
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possible leakage of sensitive information. Without control, a malicious browser
extension can read browser information such as the current document URL, the
browsing history, and data from the web page that is either loaded from the
hosting web server or typed by the user. This second policy protects sensitive
browser information as follows: a browser extension can read any information
from browser objects and origins in a web session, but after it reads any sensi-
tive information from the browser such as URLs, browsing history, cookies, and
sensitive web form data, it cannot send the data to any origin outside of the web
page, including saving them to a file and sending them to the network.

Protecting Sensitive Web Data The second policy is effective in preventing
sensitive data leakage, including those maintained by a browser such as user
browsing history, search keywords, cookies, and sensitive web data. There are,
however, many existing BHOs or toolbars that work with some browser informa-
tion. For example, Google and Yahoo toolbars collect user browsing history and
search keywords and do statistic analysis to improve their search services. Also,
many toolbars help users manage bookmarks on a dedicated web site. Therefore,
blocking any released browser information affects the benign behavior of these
widely used browser extensions.

For this purpose, we deploy a third policy which is further relaxed from the
second one. Under this policy, a browser extension can read usual browser infor-
mation such as URLs and bookmarks and send it outside of the sandbox, upon
possible user authorization if necessary. However, a browser extension cannot
leak sensitive web data to the outside at any time. Usually, a web page can have
both sensitive and non-sensitive data, which are represented in the DOM tree
and identified by tagName such as password. Accessing (both reading and writ-
ing) non-sensitive data should always be allowed. Under this policy, a browser
extension plugin is allowed to read sensitive data, but any attempt to modify or
leak sensitive data out of the sandbox is forbidden including saving it into the
file system or sending it to the outside over network.

6 sePlugin Evaluation

We conduct a set of experiments to evaluate detection rates on malicious plugins,
false positive rates on benign plugins, and its performance overhead. For these
experiments, we run sePlugin-enhanced IE8.0 on Windows XP Professional on
a machine with an Intel 2.79 GHz CPU and 2 GB RAM.

6.1 Detecting Malicious Plugins

We collected a number of malicious IE plugin samples and in this paper, we use
sample names that are used by Symantec. In this set of experiments, over 40
samples have been tested, which fall into 16 different types of malicious plugins
as shown in Table 1. For clarity, we show only one example for each type in
the table. Regarding malicious .NET-based plugins, we find it difficult to obtain
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Table 1. Malicious Plugins Detection with P1 (Relaxed Same Origin Policy), P2 (Pro-
tecting Sensitive Browser Information) and P3 (Protecting Sensitive Web Data)

name format type main behaviors P1 P2 P3
Adware.CPush BHO adware checking update and display advertisement X 7 7
Adware.CWSIEFeats BHO adware change IE default page, download file and display

advertisement
X X X

Internet Optimizer BHO adware redirect navigation X X 7
Adware.Rugo BHO adware display advertisement and information leak X X X
Trojan.Vundo BHO spyware download file and display advertisement X 7 7
Trojan.Linkoptimizer BHO adware display advertisement, block connection X X X
Spyware.CWSMi BHO spyware leak browse history X X X
Adware.Begin2search toolbar adware display advertisement and download file X X 7
Trojan. Elitebar toolbar spyware redirect use search, change IE home page and ac-

cess system files
X X X

Spyware. Dotcomtool-
bar

toolbar spyware forward HTTP requests to predetermined web X X X

Spyware.ISearch toolbar spyware track user activities and forward search X X 7
Adware.Mirar toolbar spyware periodically collect and leak user activities and

display advertisement
X X X

Adware.IEDriver toolbar spyware change home page and display advertisement X X X
Spyware.IEToolbar toolbar spyware leak user activities and display advertisement X X 7
888bar toolbar spyware change browser configuration and display adver-

tisement
X X X

Adware.MaxSearch toolbar spyware hijack search and change registry X X X
.NET plugin BHO spyware search sensitive user information X X X

real-world instances for testing. To circumvent the problem, we slightly modify
a popular BHO with C# source code [6]. This BHO reads passwords from a
web page. In our experiment, we observe through sePlugin-enhanced IE8 that
two actions have been performed by this plugin: (1) read sensitive data with
tagName password through a COM interface from the web; (2) send sensitive
data through a system call outside of the browser.

In the experiments, we test the three security policies that provide different
levels of security protection. The evaluation results are illustrated in Table 1.
From the table, we note that under the strictest policy (i.e., Relaxed Same Origin
Policy), sePlugin successfully detects all malicious plugins. Under the policy
of Protecting Sensitive Browser Information, sePlugin-enhanced IE8 achieves a
88.2% detection rate. If the most relaxed policy (i.e., Protecting Sensitive Web
Data) is applied, sePlugin-enhanced IE8 detects 64.7% of the malicious plugins.
On the other side, we find that although neither of the Protecting Sensitive Web
Data and the Protecting Sensitive Browser Information policies achieves a 100%
detection rate, those undetected malicious plugins actually do not leak sensitive
user information out of the browser. Moreover, the malicious .NET-based plugin
can be detected by each of the three policies.

6.2 False Positive Tests

We also conduct experiments to test 18 benign plugins to see whether sePlugin
will raise false alarms. These benign plugins include 6 toolbars and BHO from
renowned sources like Google, Yahoo! and Microsoft, and other popular plugins
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like spybot, T-Online toolbar, Airoboform, Microgarden, LostGoggles and Secu-
rity Software Search Bar. The false positive rates of sePlugin are shown in round
1 of Table 2.

Table 2. False Positive Rate

false positive rate Relaxed SOP Protecting Sensitive Protecting Sensitive
Browser Information Web Data

round 1 11.1% 5.5% 5.5%

round 2 22.2% 16.7% 16.7%

round 3 5.5% 0% 0%

Some benign plugins also collect user or browser information. For example,
some Yahoo! toolbars allow users to share information with Yahoo! about the
sites a user has visited to improve Yahoo!’s services. This feature requires the
user’s consent. To analyze its security threat, we repeat the experiments by en-
abling the information sharing feature and the results are shown in round 2 of
Table 2. Clearly, the results show that if the user agrees to share his browsing in-
formation, sePlugin raises more security alarms. This implies that malicious and
benign plugins may adopt similar technologies and sometimes behave similarly.
Their critical difference lies in their intentions.

To reduce the false positive rate, we improve the security policy by labeling
communications with some well known web sites such as Yahoo!, Google, Mi-
crosoft as benign. In terms of the SOP, this step would add these trusted web
sites to the origin list that allows plugins to access. After this new configuration,
we repeat the experiments after information sharing is enabled. From the results
demonstrated in round 3 of Table 2, having a whitelist of known sources of be-
nign plugins can greatly help reduce the false alarm rates of sePlugin. It is noted
that two thirds of the benign plugins are not from the companies associated with
the whitelisted websites and even for the other remaining plugins, they may visit
websites other than Yahoo!, Google, and Microsoft.

6.3 Operational Overhead

To evaluate the execution overhead of sePlugin accurately, we try to minimize
the impact of measurement noise. As web browsing on the real Internet intro-
duces noise due to end-to-end data transfer delays and jitters, we perform our
experiments on a local web server that hosts downloaded web page contents. As
in the experiment IE has installed some benign plugins, when the web page is
loaded, these plugins will be loaded as well.

To measure execution overhead of sePlugin, we have developed a watching
BHO, which is installed in IE8. This watching BHO listens to all types of web
browser events like DocumentComplete and BeforeNavigate2. Once these events
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Fig. 4. Execution overhead of sePlugin

are triggered, the watching BHO records the time of these events. To evalu-
ate sePlugin’s overhead, we conduct web browsing with and without sePlugin
installed in IE8. For each case (sePlugin enabled or disabled), we repeat the
overhead tests for 50 times. The web loading times are illustrated in Figure 4.
Comparing the average web page loading time with and without sePlugin, we
find the average web page loading time with sePlugin installed is only about
4.46% longer than the time without sePlugin, which suggests that the execution
of sePlugin takes only a small portion of the overall webpage loading time.

7 Conclusion

These days plugins are the main vectors for web-based attacks. While a great
amount of endeavors have been made by both the research community and the
industry to improve the web security, existing solutions are far from effective.
We have designed and implemented sePlugin to enhance the security of plugin
execution in Windows IE. The key idea is a lightweight in-process sandbox-
ing mechanism that provides fine-grained yet flexible access control. We have
deployed sePlugin in IE8.0 and the experimental results show that it enforces
intended security policies with only about 4.46% execution overhead.
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